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Abstract: This work studies nonconvex distributed constrained optimization over stochastic
communication networks. We revisit the distributed dual averaging algorithm, which is known
to converge for convex problems. We start from the centralized case, for which the change of
two consecutive updates is taken as the suboptimality measure. We validate the use of such a
measure by showing that it is closely related to stationarity. This equips us with a handle to
study the convergence of dual averaging in nonconvex optimization. We prove that the squared
norm of this suboptimality measure converges at rate O(1/t). Then, for the distributed setup
we show convergence to the stationary point at rate O(1/t). Finally, a numerical example is
given to illustrate our theoretical results.
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1. INTRODUCTION

In recent years, distributed optimization has received
surged research interests from both academia and industry,
because of its capability of delivering high-quality solu-
tions to a system-wide task under the support of a cluster
of computing units/agents and real-time communication
networks. For a recent overview of distributed optimiza-
tion, the interested readers are referred to (Yang et al.,
2019).

This work is concerned with the distributed optimization
problem where the cost function is the sum of multiple
smooth and possibly nonconvex objective functions locally
with the agents, the constraint set is common across the
agents, and the communication network is time-varying
and random. Such formulation finds wide applications
including platooning control of multiple vehicles (Shen
et al., 2022), machine learning (Lian et al., 2017), to name
a few. Particularly, the stochastic time-varying commu-
nication network is of practical significance because real
communication networks suffer from congestion, failure,
and random package dropouts.

Existing works on distributed nonconvex optimization
mostly dealt with fixed communication networks; see, e.g.,
(Di Lorenzo and Scutari, 2015; Hong et al., 2017; Yi
et al., 2021). Recently, Scutari and Sun (2019); Xin et al.
(2021); Jiang et al. (2022) considered nonconvex com-
posite optimization with deterministic time-varying net-
works. However, the communication network is essentially
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assumed to be connected in every finite steps. Note that
all the above methods are developed based on gradient
descent. Different from them, distributed dual averaging
(DDA) originally proposed by Duchi et al. (2011) has
demonstrated its advantages in simultaneously handling
constraints and stochastic communication networks. Nev-
ertheless, this type of algorithms were only known to
converge for convex problems to the best of our knowledge.

It is worth mentioning that there are a few recent attempts
in the literature regarding the convergence of centralized
dual averaging (CDA) for nonconvex optimization. For
example, Defazio and Jelassi (2022) established the re-
lation between hyperparameters in CDA and stochastic
gradient descent (SGD), and then generalized the anal-
ysis in SGD to CDA. However, the analysis is limited
to unconstrained optimization, in which SGD and CDA
only differ in the choice of hyperparameters. However,
they may generate distinct trajectories of variables in
the presence of constraints (Fang et al., 2022). Héliou
et al. (2020) investigated the behavior of dual averaging
in online nonconvex optimization with constraints. The
authors considered nonsmooth time-varying loss functions
with bounded subgradients, which is not applicable to the
setup considered in this work.

In this work, we extend the dual averaging based dis-
tributed optimization algorithm developed in (Liu et al.,
2022a) to nonconvex constrained problems. The main con-
tributions of this work are as follows. First, we prove the
convergence rate of CDA for nonconvex smooth optimiza-
tion with constraints for the first time. A new measure
of suboptimality is defined and its relation to stationarity
is discussed. Based on them, we prove the O(1/t) con-



vergence rate of dual averaging in terms of the squared
norm of the suboptimality measure. Then, the results are
extended to the distributed setup with stochastic com-
munication networks. Under rather mild conditions, the
convergence rate of DDA is proved to be O(1/t).

Notation Given a convex set X ⊂ Rm, we denote the
normal cone to X at x by NX (x) = {g ∈ Rm : ⟨g, y −
x⟩ ≤ 0,∀y ∈ X}. For a real-valued random vector x,

we define ∥x∥E =
√
E∥x∥2. We use ρ(·) to denote the

spectral radius of a matrix. A differentiable function d is
said strongly convex with modulus a−1 > 0 if

d(y) ≥ d(x) + ⟨∇d(x), y − x⟩ +
1

2a
∥y − x∥2, ∀x, y.

2. PROBLEM STATEMENT

2.1 Optimization problem

Consider the finite-sum constrained optimization problem

min
x∈X

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
(1)

where each fi is a smooth and possibly nonconvex func-
tion, and X ⊂ Rm is a compact convex set. The optimal
objective value is denoted as f∗ > −∞.

Assumption 1. Each fi is continuously differentiable on an
open set that contains X , and ∇fi is Lipschitz continuous
with Lipschitz constant L > 0, i.e.,

∥∇fi(x) −∇fi(y)∥ ≤ L∥x− y∥, ∀x, y ∈ X .

A direct consequence of Assumption 1 is

fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩ +
L

2
∥y − x∥2, ∀x, y ∈ X .

For Problem (1), we recall the stationarity condition,
which is a necessary local optimality condition (Beck,
2017, Definition 3.73).

Definition 1. (stationary point). A point x∗ ∈ X is a
stationary point of Problem (1) if −∇f(x∗) ∈ NX (x∗).

2.2 Communication network

Consider the standard distributed optimization setup,
where each agent i holds a local objective function fi
and is only able to communicate with other agents if
they are connected in the communication network. At
time t, a doubly stochastic matrix P (t) is used to describe
the network topology and the weights of connected links.
In this work, we consider a general setting of stochastic
communication networks, i.e., P (t) is a random matrix for

every t. We denote by p
(t)
ij the (i, j)-th element in P (t).

p
(t)
ij > 0 only if the two agents i and j are neighbors at t.

The set of i’s neighbors at time t is denoted as N (t)
i .

Assumption 2. For every t ≥ 0, it holds that i) P (t)1 = 1
and 1TP (t) = 1T , where 1 denotes the all-one vector of
dimensionality n; ii) P (t) is independent of the random
events that occur up to time t − 1; and iii) there exists a
constant β ∈ (0, 1) such that√

ρ

(
Et

[
P (t)TP (t)

]
− 11T

n

)
≤ β, (2)

where the expectation Et[·] is taken with respect to the
distribution of P (t) at time t.

Assumption 2 is satisfied by a host of common stochastic
networks, e.g., randomized gossip (Boyd et al., 2006) and
Bernoulli stochastic networks (Kar and Moura, 2008). Dif-
ferent from the deterministic time-varying networks con-
sidered in (Nedic et al., 2017; Xin et al., 2021; Jiang et al.,
2022), Assumption 2 does not require the communication
network to be connected every finite time steps. In fact, for
stochastic networks defined in Assumption 2, it is possible
that the mixing matrix P (t) never produces a deterministic
contraction property in finite steps. Thus, the convergence
analysis for deterministic time-varying networks cannot
be applied or easily extended to the setting of stochastic
networks.

This work focuses on the theoretical convergence proper-
ties of dual averaging algorithms for nonconvex optimiza-
tion in both centralized and distributed settings.

3. DUAL AVERAGING ALGORITHM FOR
NONCONVEX OPTIMIZATION

In this section, we present the CDA algorithm and derive
its convergence rates for nonconvex problems.

Given constant a > 0 and an arbitrary variable x(0) ∈ X ,
we define a class of proximal functions d : Rm → R.

Definition 2. (proximal function). d is called a proximal
function if: i) x(0) is the “d(·)-center” of X , i.e., x(0) =
argminx∈X d(x) and d(x(0)) = 0; ii) d(x) is a−1-strongly
convex and differentiable.

Associated with d, we define the convex conjugate

d∗(z) = max
x∈X

{⟨z, x⟩ − d(x)}.

According to Danskin’s Theorem (Bertsekas, 1999, Propo-
sition 6.1.1), it holds that

∇d∗(z) = argmax
x∈X

{⟨z, x⟩ − d(x)}.

Starting from x(0), CDA produces a sequence of variables
{x(t)}t≥0 according to

x(t) = ∇d∗(−z(t)) (3)

where

z(t) =

t−1∑
τ=0

∇f(x(τ)). (4)

To investigate the convergence of CDA for nonconvex
optimization, we define the following mapping that can be
taken as a generalization of the notion of the gradient. The
convergence of the proximal gradient descent algorithm
(Beck, 2017, Definition 10.5) relies on a similar concept,
in the sense that they both represent the change of two
consecutive updates. Nevertheless, CDA and the proximal
gradient descent generally lead to different trajectories
for constrained problems. Therefore, the properties of
gradient mapping in CDA need to be re-examined.

Definition 3. (gradient mapping). Suppose that Assump-
tion 1 holds. For any primal-dual pair (x(t), z(t)) generated
by (3) and (4), the gradient mapping is defined by



Ga(x(t), z(t)) =
1

a

(
∇d∗(−z(t)) −∇d∗(−z(t) −∇f(x(t)))

)
.

(5)

When X = Rm and d(x) = ∥x−x(0)∥2/(2a), Ga(x(t), z(t)) =
∇f(x(t)) for all t ≥ 0. In this case, clearly, x∗ is a sta-
tionary point of Problem (1) if and only if there exists
z∗ such that Ga(x∗, z∗) = 0. In the unconstrained case,
the relation between x(t) and z(t) is bijective. However, in
the presence of constraint, it only holds that (Rockafellar,
1970, Theorem 26.5):

−z(t) ∈ {∇d(x(t))}⊕NX (x(t)), x(t) = ∇d∗(−z(t)) ∀t ≥ 0,

where ⊕ denotes the Minkowski sum defined by

A⊕ B := {a + b|a ∈ A, b ∈ B}.
Proposition 1. x∗ is a stationary point of Problem (1) if
and only if there exists some primal-dual pair (x∗, z(t

∗))
at some t∗ ≥ 0, i.e., x∗ = ∇d∗(−z(t

∗)), such that
Ga(x∗, z(t)) = 0,∀t ≥ t∗.

Proof. Necessity. Suppose x∗ is a stationary point. Pick
any z′ satisfying x∗ = ∇d∗(−z′), and label the time instant
as t∗, i.e., z′ = z(t

∗). By optimality, it holds that

−
t∗−1∑
τ=0

∇f(x(τ)) −∇d(x∗) ∈ NX (x∗).

If x∗ is a stationary point, we have −∇f(x∗) ∈ NX (x∗)
and therefore

−
t∗∑

τ=0

∇f(x(τ)) −∇d(x∗) ∈ NX (x∗).

This together with the strong convexity of d gives us
x(t∗+1) = x∗ and Ga(x∗, z(t

∗)) = 0. By induction, the
equality holds for all t ≥ t∗.

Sufficiency. Suppose there exists some t∗ such that
Ga(x(t), z(t)) = 0,∀t ≥ t∗. Thus x(t) = x(t+τ),∀τ ≥ 1.
Denoting x(t) = x∗,∀t ≥ t∗, it holds that

v − (t− t∗)∇f(x∗) ∈ NX (x∗) and v ∈ NX (x∗),∀t ≥ t∗ + 1

where v = −
∑t∗−1

τ=0 ∇f(x(τ)) − ∇d(x∗). For the sake of
contradiction, suppose

−∇f(x∗) /∈ NX (x∗).

Then, there must exist some sufficiently large t such that

v − (t− t∗)∇f(x∗) /∈ NX (x∗),

which yields a contradiction.

Next, we present the convergence rate of CDA for general
nonconvex optimization problems.

Theorem 1. Suppose Assumption 1 is satisfied and let
{x(t)}t≥0 be the sequence generated by the dual averaging
algorithm in (3) and (4) with a < 2L−1. Then

i) the sequence {f(x(t))}t≥0 is non-increasing, and

f(x(t)) > limτ→∞ f(x(τ)) if and only if x(t) is not
a stationary point;

ii) Ga(x(t), z(t)) → 0 as t → ∞;
iii) for all k ≥ 1,

min
t≤k

∥Ga(x(t), z(t))∥2 ≤
2
(
f(x(0)) − f∗)
a(2 − aL)k

. (6)

Remark 1. Theorem 1 provides a sufficient condition for
the parameter a, under which CDA converges. In particu-
lar, the objective value monotonically decreases until a sta-
tionary point is reached, as stated in point i). Furthermore,
point ii) indicates that the norm of the suboptimality
measure in Definition 3 converges to 0. Finally, point iii)
demonstrates that the minimum of squared norm of the
measure before arbitrary time k ≥ 1 is bounded from
above by O(1/k).

Proof of Theorem 1: Before proving Theorem 1, we
present Lemma 1, whose proof can be found in (Liu et al.,
2022b).

Lemma 1. Suppose Assumption 1 holds. For the sequence
{x(t)}t≥0 generated by the dual averaging method in (3)
and (4), it holds that

⟨∇f(x(t)), x(t+1) − x(t)⟩ ≤ −1

a
∥x(t+1) − x(t)∥2. (7)

We are now in a position to prove Theorem 1.

i) By Assumption 1, we have

f(x(t+1)) − f(x(t))

≤ ⟨∇f(x(t)), x(t+1) − x(t)⟩ +
L

2
∥x(t+1) − x(t)∥2.

(8)

Using Lemma 1, we obtain

f(x(t)) − f(x(t+1)) ≥
(

1

a
− L

2

)
∥x(t+1) − x(t)∥2

=
a(2 − aL)

2
∥Ga(x(t), z(t))∥2,

(9)

which implies f(x(t)) ≥ f(x(t+1)). Because the sequence
{f(x(t))}t≥0 is non-increasing and bounded from below,

it converges. If x(t) is not a stationary point, then∑∞
τ=t∥Ga(x(τ), z(τ))∥2 ̸= 0 according to Proposition 1,

and therefore f(x(t)) > limτ→∞ f(x(τ)). If x(t) is a sta-
tionary point, then

∑∞
τ=t∥Ga(x(τ), z(τ))∥2=0 and x(τ) =

x(t),∀τ ≥ t, and thus f(x(t)) = limτ→∞ f(x(τ)).

ii) Because the sequence {f(x(t))}t≥0 converges, f(x(t)) −
f(x(t+1)) converges to 0 as t → ∞, which in conjunction
with (9) gives the desired result.

iii) Summing (9) over t = 0, 1, . . . , k yields

a(2 − aL)

2

k∑
t=0

∥Ga(x(t), z(t))∥2 ≤ f(x(0)) − f(x(k+1))

≤ f(x(0)) − f∗

where the last inequality follows from f(x(k+1)) ≥ f∗.

4. DISTRIBUTED DUAL AVERAGING FOR
NONCONVEX OPTIMIZATION

In this section, we revisit the DDA algorithm in (Liu et al.,
2022a), and provide its rate of convergence for nonconvex
optimization problems in the form of (1).

The design of DDA is motivated in (Liu et al., 2022a),
where the idea is to use dynamic averaging consensus to
estimate z(t) in (4) in a distributed manner, followed by a
similar step to (3) locally performed by each agent with an
inexact version of z(t). The DDA algorithm is detailed in



Algorithm 1 DDA

Input: a > 0, a continuously differentiable and a−1-
strongly convex proximal function d, x(0)

Output: x
(t)
i , t = 1, 2, . . .

1: Initialize: set x
(0)
i = x(0), z

(0)
i = 0, and s

(0)
i =

∇fi(x
(0)) for all i = 1, . . . , n

2: for t = 1, 2, . . . , each agent i synchronously do

3: collect z
(t−1)
j and s

(t−1)
j from all agents j ∈ N (t−1)

i

4: update z
(t)
i by

z
(t)
i =

∑
j∈N (t−1)

i
∪{i}

p
(t−1)
ij

(
z
(t−1)
j + s

(t−1)
j

)
5: compute x

(t)
i by

x
(t)
i = ∇d∗t (−z

(t)
i )

6: update s
(t)
i by

s
(t)
i =

∑
j∈N (t−1)

i
∪{i}

p
(t−1)
ij s

(t−1)
j +∇fi(x

(t)
i )−∇fi(x

(t−1)
i )

7: end for

Algorithm 1. First, each agent initializes the algorithm by

setting the local variables x
(0)
i , z

(0)
i , and s

(0)
i properly. At

each time t ≥ 1, each agent exchanges the variables z
(t−1)
i ,

s
(t−1)
i with its neighbors at time t− 1, and then computes

z
(t)
i , x

(t)
i , and s

(t)
i according to steps 3–6.

Note that Algorithm 1 (Liu et al., 2022a) is differ-
ent from (Duchi et al., 2011) where nonsmooth opti-
mization problems are considered, and the former intro-

duces an additional variable s
(t)
i that is an estimate of

n−1
∑n

i=1 ∇fi(xi).

4.1 Analysis setup

Similar to (Duchi et al., 2011; Liu et al., 2022a), we
construct a sequence of auxiliary variables {y(t)}t≥1 by

y(t) = ∇d∗(−z(t)), (10)

where z(t) = n−1
∑n

i=1 z
(t)
i , and y(0) = x(0). For each

x
(t)
i , i = 1, . . . , n and y(t), we have the following relation

(Duchi et al., 2011, Lemma 5).

Lemma 2. For every t ≥ 0 and i = 1, . . . , n, there holds

∥x(t)
i − y(t)∥ ≤ a∥z(t)i − z(t)∥.

To proceed, we recall the analysis from (Liu et al., 2022a)

in quantifying ∥z(t)i − z(t)∥. First, we introduce the nota-
tions:

M =

[
β β

aL(β + 1) β(aL + 1)

]
and

x(t) =

x
(t)
1
...

x(t)
n

 , y(t) =

y
(t)

...

y(t)

 , g(t) =
1

n

n∑
i=1

∇fi(x
(t)
i ).

(11)

For the dual variable z(t) in (10), one can verify from steps
4 and 6 in Algorithm 1 that

z(t) = z(t−1) + s(t−1) = z(t−1) + g(t−1),

where s(t) = n−1
∑n

i=1 s
(t)
i . Next, we remark that the

update of {y(t)}t≥1 in (10) can be viewed as dual averaging
with inexact gradients, whose convergence property is
summarized in the following lemma. Its proof can be found
in (Liu et al., 2022b), and is omitted here for brevity.

Lemma 3. Suppose Assumption 1 holds. For y(t), t =
1, . . . , generated by (10), it holds that ∀ϵ > 0

n
(
f(y(t)) − f(y(t−1))

)
≤
(
L + ϵ

2
− 1

a

)
∥y(t) − y(t−1)∥2

+
L2

2ϵ
∥y(t−1) − x(t−1)∥2.

(12)

We emphasize that Lemma 3 discerns the behavior of
inexact dual averaging in two consecutive updates. This
is different from the convex setup where one characterizes
the convergence behavior using all the updates in history
(Liu et al., 2022a, Lemma 6). We make the change here
because, without convexity, the running average of all the
updates in history may not be used and the convergence
analysis of individual variable is performed.

4.2 Rate of convergence

We begin by defining the consensual stationary point in
the distributed case.

Definition 4. (consensual stationary point). A vector x∗ =
[x∗

1; . . . ;x∗
n] is called a stationary solution if

x∗
1 = · · · = x∗

n and −∇f(x∗
i ) ∈ NX (x∗

i ), ∀i = 1, · · · , n.
(13)

A sufficient condition to (13) is that there exists a primal-

dual pair (y∗, z(t
∗)) at time t∗, i.e., y∗ = ∇d∗(−z(t

∗)), such
that

n∥Ga(y∗, z(t))∥2 +

n∑
i=1

∥x∗
i − y∗∥2 = 0, ∀t ≥ t∗ (14)

where Ga(·, ·) is defined in (5). To see this, we note that
(14) implies

∥Ga(y∗, z(t))∥2 = 0 and ∥x∗
i − y∗∥2 = 0 ∀i = 1, . . . , n

for all t ≥ t∗, where the former ensures that y∗ is a
stationary point in the centralized case, and the latter
gives x∗

i = y∗,∀i = 1, . . . , n.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied. If
the constant a satisfies

1

a
> L · max

{
1

2
+

4

3(1 − ρ(M))
,

2β

(1 − β)2

}
,

then, it holds that

lim
t→+∞

n∥Ga(y(t−1), z(t−1))∥2E+∥x(t−1)−y(t−1)∥2E = 0 (15)

and, for all t ≥ 1,

min
τ≤t

n∥Ga(y(τ−1), z(τ−1))∥2E+∥x(τ−1)−y(τ−1)∥2E ≤ C

t
(16)

where

C :=

(
min

{
3L(1 − ρ(M))

8
, a− a2L

2
− 4a2L

3(1 − ρ(M))

})−1

×
(

2π2

3L(1 − ρ(M))
+ n

(
f(y(0)) − f∗

))
.



Proof of Theorem 2: Before proving Theorem 2, we
provide the following lemma. Its proof is similar to the
proof of (Liu et al., 2022a, Lemma 5). Due to space
limitations, the proof is omitted.

Lemma 4. If Assumption 2 holds and

a <
(1 − β)2

2βL
, (17)

then, for x(t) and y(t) defined in (11), it holds that
t∑

τ=1

∥x(τ) − y(τ)∥2E ≤ 8

9(1 − ρ(M))2

t−1∑
τ=0

∥y(τ+1) − y(τ)∥2E

+
8π2

9L2(1 − (ρ(M))2)

where π2 =
∑n

i=1

∥∥∇fi(x
(0)) − g(0)

∥∥2.
Now we are ready to prove Theorem 2.

Recall (12)

n
(
f(y(t)) − f(y(t−1))

)
≤
(
L + ϵ

2
− 1

a

)
∥y(t) − y(t−1)∥2

+
L2

2ϵ
∥y(t−1) − x(t−1)∥2.

Summing it from 1 to t yields

n
(
f(y(t)) − f(y(0))

)
≤

(
L + ϵ

2
− 1

a

) t∑
τ=1

∥y(τ) − y(τ−1)∥2

+
L2

2ϵ

t∑
τ=1

∥y(τ−1) − x(τ−1)∥2.

Taking expectation on both sides, we obtain

nE
[
f(y(t)) − f(y(0))

]
≤

(
L + ϵ

2
− 1

a

) t∑
τ=1

∥y(τ) − y(τ−1)∥2E

− L2

2ϵ

t∑
τ=1

∥y(τ−1) − x(τ−1)∥2E +
8π2

9ϵ(1 − (ρ(M))2)

+
8L2

9ϵ(1 − ρ(M))2

t−1∑
τ=0

∥y(τ+1) − y(τ)∥2E

=

(
L + ϵ

2
+

8L2

9ϵ(1 − ρ(M))2
− 1

a

) t∑
τ=1

∥y(τ) − y(τ−1)∥2E

− L2

2ϵ

t∑
τ=1

∥y(τ−1) − x(τ−1)∥2E +
8π2

9ϵ(1 − ρ(M))2
.

This is equivalent to

na2
(

1

a
− L + ϵ

2
− 8L2

9ϵ(1 − ρ(M))2

)
×

t∑
τ=1

∥Ga(y(τ−1), z(τ−1))∥2 +
L2

2ϵ

t∑
τ=1

∥x(τ−1) − y(τ−1)∥2E

≤ 8π2

9ϵ(1 − ρ(M))2
+ n

(
f(y(0)) − f∗

)
< +∞

because of

∥y(τ) − y(τ−1)∥2 = na2∥Ga(y(τ−1), z(τ−1))∥2.
Thus, (15) holds. Finally, we set ϵ = 4L/(3(1 − ρ(M))) >
0 to obtain (16).

5. NUMERICAL EXAMPLE

Consider the distributed principal component analysis
(PCA) problem

min
∥x∥≤1

f(x) := −
n∑

i=1

∥Mix∥2

where n = 50. Each agent i possesses a data matrix
Mi ∈ R30×500, where each row M j

i , j = 1, . . . , 30 is

randomly generated with zero mean and ∥M j
i ∥ ≤ 1. For

the communication network among agents, we consider
the Bernoulli stochastic network (Kar and Moura, 2008),
where a complete graph is taken as the supergraph and at
each time t every edge of the set of edges of the supergraph
is activated with probability 0.1. Based on it, a Laplacian-
based weight matrix (Xiao et al., 2005) is used at each
time t.

We initialize Algorithm 1 by randomly generating a 500-
dimensional vector with i.i.d. elements drawn from the
standard Normal distribution and then projecting it onto
the constraint to get x(0). Set the parameter a = 1,
and d(x) = ∥x − x(0)∥2/2 accordingly. We contrast the
proposed algorithm with the distributed proximal gradient
algorithm (DPGA) in (Jiang et al., 2022) which is able
to handle time-varying networks. The stepsize for DPGA
is set as 1e−4 in order to stabilize the updates. We
remark that DPGA does not have convergence guarantees
in stochastic communication networks.

The experiment was repeated 10 times with random seeds.
We evaluate the performance of the algorithm via the
values of the cost function and the sum of difference in
two consecutive updates and consensus error, i.e., ∥x(t) −
x(t−1)∥+∥x(t)−1⊗x(t)∥, t ≥ 1 where x(t) = n−1

∑n
i=1 x

(t)
i

and ⊗ denotes the Kronecker product. We remark that the
latter is an approximation of the residual term in Theorem
2. Their mean and standard deviation in 10 runs by the
two algorithms are plotted in Figures 1 and 2. Note that a
lower value of the cost suggests a closer distance from x(t)

to the principal eigenvector. From the figures, we observe
that for DDA both the cost and the residue converge. In
addition, the convergence of DDA is faster than PDGA,
since the latter has to use a much smaller stepsize to
avoid divergence in this experiment. In contrast, DDA
remains convergent under a larger range of parameters.
This highlights the advantage of DDA in dealing with
stochastic communication networks.

6. CONCLUSION

This work examined the convergence rate of dual averaging
for nonconvex constrained smooth optimization problems
in both centralized and distributed settings. We developed
a new suboptimality measure and established its relation
to stationarity. The squared norm of such measure con-
verges at rate O(1/t) for CDA. Under mild conditions on
the stochastic communication network, the rate of DDA is
proved to be O(1/t). For future research, we are interested
in speeding up DDA for a special class of nonconvex
problems satisfying the Kurdyka- Lojasiewicz condition.
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Fig. 1. Convergence of the cost f(x(t)).
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Fig. 2. Convergence of ∥x(t) − x(t−1)∥ + ∥x(t) − 1⊗ x(t)∥.
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