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Abstract

The design of PID controllers for systems with interact-
ing loops is discussed. It is important to deal with the
interaction at the lower-level loops, since supervisory
control based on for instance MPC seldom has sufficient
bandwidth. A new scheme based on modified scalar
PID design and static decoupling is developed, where
the frequency characteristics of the coupling between
the lower-level loops is taken into account. This leads
to a design method emphasizing the trade-off between
the individual loop performances and the so called in-
teraction indices. The controller is easily implemented,
due to its simple configuration based on standard com-
ponents. The method is applied to a couple of exam-
ples.

1 Introduction

Model predictive control (MPC) is becoming the stan-
dard technique to solve multivariable control problems
in the process industry [12, 5, 8]. Practically all MPC
systems are however operating in a supervisory mode
with PID controllers at the lower level. A substantial
portion of the performance improvement credited to
MPC is actually due to improvements in the lower-level
PID loops. Interaction among the loops causes difficul-
ties when the lower-level loops are closed. There are
some difficulties in dealing with the interaction at the
MPC level because the bandwidths of the MPC loops
are limited: they operate in supervisory mode with
sampling intervals that are longer than the PID loops.
It is consequently of interest to investigate ways of deal-
ing with interaction at the loop level [6]. A preliminary
study of this problem is given in the paper. The pre-
sentation is restricted to systems with two inputs and
two outputs, because such systems are common. Typ-
ical examples are boilers, machine direction moisture
and basis weight control in paper machines, distilla-
tion columns, heat exchangers, and air-conditional sys-
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tems [7]. The results can be extended to systems with
more inputs and outputs.

The approach we take is to investigate standard PID
tuning [2] and see what can be achieved by adding sim-
ple interactions between the feedback loops. In many
cases the performance of the system can be consider-
ably improved, particularly if the coupling in the pro-
cess is not severe. The proposed scheme is based on
a simple decoupling, which implies that it can be eas-
ily implemented at the loop level. The advantage by
doing this is that it gives performance enhancement in
a frequency range that is normally not dealt with by
MPC.

The outline of the paper is as follows. The design
method is described in detail in Section 2, where first
the implications of decoupling is discussed in the fre-
quency domain, followed by the introduction of a new
set of interaction indices, and the design of decentral-
ized PID controllers. In Section 3, the method is il-
lustrated on two examples from the literature. A brief
discussion is finally given in Section 4.

2 The Method

Consider a multivariable control problem consisting of
the design of a linear controller C' for a linear stable
process G. For simplicity assume the process has two
inputs and two outputs, so that G is a transfer function

of the form
_ g11(8)  g12(s)
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The controller to be designed is a static decoupler com-
bined with a decentralized PID controller with set-
point weighting. The control law can be written as

(o) = () (00— e

where U is the control signal, Y the process output,
and Y, the reference. The decoupler

dii diz
D =
<d21 d22>
is a constant matrix. The PID controller ¢; is differ-
ent from ¢; to allow for set-point weighting [2]. The



controllers are of the form
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where b; is the set-point weight, which in practice often
is equal to zero. Here, for simplicity we assume b; = 0
and PI control, i.e., kp; = 0. It will be shown that
setting b; = 0 is essential to get good performance in
decentralized PID control.

Decoupling
The static decoupler is given by

e 1 g22(0)  —g12(0)
D=G(0) = det G(0) (—;il(O) 9112(0) )

where we have assumed that G(0) is non-singular. The
transfer function of the decoupled system is Q(s) =
G(s)D where

_ 911(8)g22(0) — g12(5)g21(0)

a1 (s) det G(0)
o(s) = 912(5)911(0) — 912(0)g11(5)

Q2 det G(0)
_ 921(8)g22(0) — g21(0)g22(s)

a21(s) = det G(0)
_ 922(8)911(0) — g21(5)912(0)

a22(5) = det G(0)

It follows from the construction that @(0) is the iden-
tity matrix. A Taylor series expansion of the transfer
function Q(s) for small s gives

Q(s) ~ (Kl ”1128)

for some constants k12 and k2;. Hence, for low fre-
quencies w, the diagonal elements are equal to one and
the off-diagonal elements are proportional to iw. If the
bandwidth of the decentralized PID controller are suf-
ficiently low, the off-diagonal terms will thus be small
and the system will be approximately decoupled.

It is straightforward to see that the closed-loop system
can be described by

1+ qua q12C2 _ [q11C1  q12C2
Y = _ Y.
g21€1 1+ gqa2e2 q21C1  Q22C2

where we suppressed the dependency on s in the nota-
tion. This equation can be written as

Y = @y,

where

@11¢1 + (Q11g22 — q12¢21)C1C2

hi1 =

(1+quie)(1+ Q22_02) — q12G21C1C2
512 _ q12C2

(14 quie)(1+ 1122_02) — q12G21C1C2
oy = g21C1

(14 quic1)(1 + gac2) — quagoicics
Frow = q22Co + ((I11(I22 - (112(]21)0152

22 =

(14 qric1)(1 + g22¢2) — qr2gorcico

The elements in A can be simplified by the following
argument. The closed-loop bandwidth wy is limited by
the right half-plane zeros of G. If there is a single zero
in z > 0, which is approximately equally distributed
between the two loops, then the bandwidth must be
less than z rad/s. It is seldom possible to achieve this
high bandwidth with decoupled PID control, due to
the restricted freedom in the implementation. There-
fore, we pay our attention to less demanding control
problems, where we do not want to push the perfor-
mance to the limit. It is then natural to assume that
the multivariable zeros of G is not within the band-
width of the closed-loop system. Recall that the zeros
of GG is given by the solutions to the equation

det G(s) = g11(8)g22(s) — g12(8)g21(s) =0

If we assume that |det G(s)| > 0 for all |s| < wy,
then it follows from det @Q(s) = det G(s)det D that
lg11(8)g22(s)| > |q12(5)g21(s)|, since det Q(s) is a mero-
morphic function and det @(0) = 1. The denomina-
tor of the elements h;; can then be approximated by
(1 4+ gi1c1)(1 + gazca). The numerator of hyq is ap-
proximated by ¢i1¢1 + qi1ge2Cic2 = q11¢1(1 + gaaco)
and the numerator of hss is approximated by gs2C2 +
Q11GQ22C1Cy = QQQEQ(]. + qucl). The matrix H is then
approximated by

q11C1 q12C2
H— 14+ qua 14+ qrie1)(d + gaaca)
B g21C1 q22C2

(1 4+ quicr)(1 + gozco) 1+ goaco

The structure of the diagonal elements of H is the same
as for SISO control design. Therefore, existing tech-
niques [2] can be used for initial suggestions of how to
design the decentralized controllers. Sometimes they
have to be modified due to the interaction. The off-
diagonal elements of H tell us what interaction two
SISO designs will lead to. Next, we exploit H to come
up with a systematic design procedure for decoupled
PI control.

Interaction Indices
Before we discuss the actual design of the PI controllers
¢; and ¢;, let us elaborate further on the off-diagonal



elements of H:

hiy = q12C2
(14 qric1)(1 + ga2c2)
21C1
ha1 = g

(14 qric1)(1 + ga2c2)

Due to the integral action in the controllers, the in-
teraction is small at low frequencies. To estimate the
maximum of the interaction, we observe that

his = q12¢25152, h21= @21¢15152 (1)

where S; = (1+qi1c1) ! and Sy = (1+¢2202) ! are the
sensitivity for loop one and two, respectively, if the in-
teraction is neglected. Upper bounds of the interaction
terms are thus given by

|h12(iw)| < |quaCa| Mg Mo
|ha1 (iw)| < |g218a| Mg Mo

where M, and Mgy are the maximum sensitivity for
the individual loops. For low frequencies, we have

q12(8) & K128, @21(8) = K18

and
Elzkn/s, 52%]612/8

For low frequencies, we thus find that g;2¢2 and g¢21¢1
are constant. It is therefore natural to introduce the
interaction indices

k1 = |k12kr2| M1 Msa, ko = |ko1kn | MaMse  (2)

The indices k1 and ko describe the interaction of the
second loop on the first and vice versa. Note that the
indices are products of two terms: one depends on the
system and the other is simply the integral gain of the
corresponding PI controller. Interaction can thus be
reduced by reducing the controller gains. We can en-
sure that the interaction is small by imposing a bound
on the controller gains. This is natural because a small
kr2 gives less coupling from the responses in the sec-
ond loop and a large k; attenuate disturbances coming
from the second loop. Note that M, and M, depend
on ky; and kys, respectively. There is thus a trade-off
between k1 and ko: if |k12| and |ko1| are of similar size,
then both k1 and ks cannot be made small by choosing
appropriate integral gains. Either one of them can be
made small while keeping the other larger, or both of
them have to be kept at a medium level. Which ap-
proach to choose, follows from practical considerations
of the importance of the individual control loops.

Another convenient measure to be used in the con-
trol design is the frequencies at which the interactions
|h12(iw)| and |h12(iw)| attain their maxima. These fre-
quencies will determine the bandwidth of the closed-
loop system. It is possible to make the following sim-
plifications in order to derive estimates of the frequen-
cies. Since the controllers have integral action, we have

for small s

K21 32
kra

I’u‘12$2

h12(8)% k[l s

ha1(s) = 3)
For large s, the assumption |g11(s)g22(s)] >
|g12(8)g21(s)| used to derive H is still reasonable, be-
cause this means that the diagonal elements of G is
dominating at high frequencies. Hence, the transfer
function H describes the relation between Y, and Y
also for large s. This leads to that

kro

ki
hia(s) = prATE

hai(s) = pry (4)

for large s, where d; is the pole excess of gi2(s) and
dy is the pole excess of ¢21(s). Note that d; and da
are uniquely defined by G, and do not depend on the
controllers. It follows from (3) and (4) that |hi2(iw)|
and |hg1(iw)| will have maxima. The location of the
maximum of |hi2(iw)| can, by using (3) and (4), be
approximated by the solution of the equation

|kr2lw? _ |k
k] Wi

The peaks of the diagonal terms |h;2(iw)| and |hay (iw)|
are thus approximately located at

krikra krikra
— di1+3 . do+3
wig = ) wop = %

K12 K21

If the pole excesses of g12 and g2; are equal to one, then
di = dy = 1, so that

o krkr2 .
W12 = , Wa1 =
K12

The interaction indices (2) are derived for PI controllers
with set-point weighting by = bo = 0. The interactions
increase significantly if the controller do not have set-
point weighting. If by = by = 1 then the interaction
measures become

k1 = |k12|(|kp2|w + |kra|) Ms1 Mo
ke = |kat1|(|kp1|w + [kr1 |) Ms1 Ms2

knkr

K21

()

(6)

Finally, it should be remarked that the estimate (2) can
be too conservative if there is a significant difference in
the bandwidths of the loops.

Design of Decentralized Controllers

To find the decentralized PID controller, we consider
the diagonal terms of the transfer function Q(s). By
construction we know that the static gain of all di-
agonal elements are unity. Standard methods can be
used for the design of PI or PID controller for each
transfer function gxr(s). One possibility is to use an
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Figure 1: Simulation of the design method applied to
Rosenbrock’s system. The figure shows the
response of the outputs to steps in the com-
mand signals. The PI controllers have set-point
weighting b1 = b2 = 0.

optimization technique which minimizes integral gain
subject to a robustness constraint. This is discussed
for PI controllers in [3] and for PID controllers in [10].
Such a method will give controllers which are optimized
with respect to rejection of load disturbances. The de-
sign methods will give integral gains k9, > 0, which
could be used if there were no interactions. The ratios
A = krx/ k?k are thus measures of performance losses
due to the interaction. If A; > 1 there are no perfor-
mance losses and the limitations on performance are
essentially given by the loop dynamics. If 0 < A, < 1
it is necessary to detune the controllers. In this case we
need methods to design PID controllers with specifica-
tions on the closed-loop bandwidth. There are many
methods which can be used for this purpose. Two sim-
ple techniques for design of PID controllers are the
direct pole-placement design based on reduced-order
models and the dominant pole design, see [2] and [11].

3 Examples

The control design method is in this section illustrated
on two examples from the literature.

Rosenbrock’s System
The process

2
G(s) = 34{1 3T3
s+1 s+1

was originally proposed by Rosenbrock [13]. It is an
example of a system that looks very easy to control,
but which has fundamental limitations because it has
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Figure 2: Simulation of controllers without set-point
weighting. The simulation is identical to Fig-
ure 1 but the controllers have by = by = 1.

a zero s = 1 in the right half-plane. If we introduce
static decoupling, the compensated transfer function
becomes

3(1-5) 4s
Q)= | 6+ 1)0(5 +3) (s+ 1)1(3 +3)

s+1

The interaction is given by k12 = 4/3 and ka1 = 0.
Since k91 = 0, interaction gives no performance limi-
tations for the second loop. There are however limi-
tations because of the right half-plane zero at s = 1.
Designing a PI controller that maximizes integral gain
subject to the constraints that the maximum sensitivity
Mg, and the maximum complementary sensitivity My
are less than \/5, gives kp; = 0.245 and kj; = 0.248,
see [3]. Since k12 = 4/3 there are constraints on the de-
sign of the first loop because of the coupling. Requiring
that the coupling k, is less than 0.1 and the maximum
sensitivity My, is less than /2, we find that the in-
tegral gain of the second loop kr2 must be less than
K1/ (K12 Mg Mg) = 0.0750. To design a PI controller,
we use direct pole placement [2] based on the model
q22(s) = (s + 1)7!. This gives kpa = 2{wo — 1 and
kra = w?. Requiring that the integral gain is equal to
0.0750, we find that wy = 0.274. With { = 1 the con-
troller gains become kps = —0.452 and k2 = 0.075.
Figure 1 shows simulations of set-point responses for
the closed-loop system. The plots show the proposed
design with set-point weighting (b;y = by = 0). A unit
step in the set point of the first controller is applied at
time ¢ = 0 and a step in the set point of the second con-
troller is then applied at time ¢ = 40. Figure 2 shows
the step responses for a controller without set-point
weighting. The figure clearly indicates the advantage
of set-point weighting for multivariable systems. The
reason why there is such a large difference is that the
control signal is much smoother with set-point weight-
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Figure 3: The frequency response of the closed-loop sys-
tem with set-point weighting (solid) and with-
out (dashed). Note that without set-point
weighting the interaction |hi2(iw)| is larger and
extends to higher frequencies.

ing.

The effect of set-point weighting is illustrated also in
Figure 3, which shows the frequency response of the
closed-loop system with (solid) and without (dashed)
set-point weighting. The interaction increases consid-
erably when no set-point weighting is applied. This
agrees with the conclusion in previous section, com-
pare the interaction indices with and without set-point
weighting in Equations (2) and (6).

The maximum of the interaction |his(iw)| in Figure 3
is equal to 0.3. This should be compared to the inter-
action index k1 = 0.2. The maximum is attained at
w = 0.52, while the estimate in (5) predicts 0.41.

It is interesting to note that the bandwidth of the
closed-loop system (as measured by the maximal sin-
gular value) is equal to wp = 0.49 rad/s, which is fairly
close to the limitation imposed by the right half-plane
zero at +1.

Wood-Berry’s Binary Distillation Column

The Wood-Berry binary distillation column plant [14]
is a multivariable system that has been studied exten-
sively. The process has the transfer function

12.8¢~° —18.9¢735
o= | Bt T
109s+1 144s+1

The transfer function of the statically compensated sys-
tem is

12.8¢"°

—18.9¢~3°

0.1570 —0.1529
Qs) = (61.%‘07?713 —2119318?135) (0.0534 —0.1036)
10.9s+1 14.4s+1

A series expansion for small s gives

1-11.7s —-12.31s
Q) ~ (—0.51385 1- 17.33)
The interaction is thus given by k;2 = —12.31 and
ko1 = —0.5138. The time constants of the reduced-

order models are 77 = 11.7 and T5 = 17.3. Let the de-
sired maximum sensitivity for the individual loops be
equal to My = Mg = V2. Requiring that the interac-
tion indices k1 and k2 should both be less than 0.20, the
integral gains should be kr; < 0.19 and kr» < 0.0081.
This gives the corresponding crossover frequencies

wor < VVkr1 /Ty = 1/0.19/11.7 = 0.12
woz < Vkr2/Te = /0.0081/17.3 = 0.022

We have w1 L = 0.36 and w2 L, = 0.066. The band-
widths are thus well below the limitations wL < 0.7
imposed by the the largest time delay of the system
(L = 3), see [1].

With these frequencies and the time delays present in
the system, it is quite reasonable to approximate the
time delays with first order lags. The model reduction
should thus work reasonably well in this case. Choosing
(1 = (o = ¢ = 0.707 we find that the proportional gains
are

k‘pl = QCMOI —1=1.1338
kPZ = 2(&)02 —1=-0.4699

In Figure 4 we show the step responses from set point
to process output for the system. Analyzing the figure
we find that the response in y; caused by a step in the
set point y,.o is quite small. It thus seems possible to
increase the bandwidth in the second loop. After some
experimentation we found that a reasonable value is
woz = 0.1, which gives that the controller parameters
for the second loop become kps = 0.7 and k> = 0.123.
The time responses are shown in Figure 5. A compari-
son with Figure 4 shows that the response speed of the
second loop has been increased considerably without
increasing the interaction too much. This also shows
that the method lends itself very well to tuning. The
step responses in Figure 5 compare favorably with de-
signs obtained by other methods.

4 Conclusions

The suggested control scheme is a quite simple multi-
variable controller. However, it handles a large number
of practical control problems, although it can be im-
plemented with regular PID controllers together with
a proportional controller D. It is desirable to have effi-
cient design methods for decoupled PID control. Such
a method has been developed in the paper, under the
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Figure 4: Simulation of the design method applied to
the Wood-Berry distillation column. The figure
shows the response of the outputs to steps in
the command signals.

assumption that the interaction is not too severe. Pos-
sible detuning of the PID controllers was quantified via
the interaction indices k1 and k2. An important remark
made in the paper was that set-point weighting is neces-
sary for PID controllers in multivariable systems. The
interaction between the control loops can be reduced
considerably if set-point weighting b; = by = 0 is used.

Other methods for doing detuning for multivariable
PID control includes Niederlinski’s heuristic design [9)].
Note that the interaction indices k1 and k2 depend on
the controller, which is for instance not the case for the
widely used interaction measure RGA by Bristol [4].
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