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Abstract

The design of PI controllers for systems with interacting loops is dis-
cussed. It is advantageous to deal with the interaction at the loop level, be-
cause supervisory control seldom has sufficient bandwidth. A new scheme
based on modified scalar PI design and static decoupling is developed,
where the frequency characteristic of the coupling between the lower-level
loops is taken into account. This leads to a design method emphasizing
the trade-off between the individual loop performances and the interac-
tion indices introduced in the paper. The controller is easily implemented,
due to its simple configuration based on standard components. A useful
observation is that the interaction can be reduced substantially by using
set-point weighting. The method is applied to three examples, including

a model of a new laboratory system called the quadruple-tank process.

1 Introduction

Model predictive control (MPC) is becoming the standard technique to solve

multi-variable control problems in the process industry [1, 2, 3]. Practically all
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MPC systems are however operating in a supervisory mode with PID controllers
at the lower level. A substantial portion of the performance improvement cred-
ited to MPC is actually due to improvements in the lower-level PID loops.
Interaction among the loops causes difficulties when the lower-level loops are
closed. There are some difficulties in dealing with the interaction at the MPC
level because the bandwidths of the MPC loops are limited: they operate in su-
pervisory mode with sampling intervals that are longer than in the PID loops.
It is therefore of interest to investigate ways of dealing with interaction at the
loop level [4]. A preliminary study of this problem is given in the paper. The
presentation is restricted to systems with two inputs and two outputs, because
such systems are common. Typical examples are boilers, machine direction
moisture and basis weight control in paper machines, distillation columns, heat
exchangers, and air-conditional systems [5]. The results can be extended to
systems with more inputs and outputs.

The approach we take is to investigate standard PID tuning [6] and see what
can be achieved by adding simple interactions between the feedback loops. In
many cases the performance of the system can be considerably improved, partic-
ularly if the coupling in the process is not severe. The proposed scheme is based
on a simple static decoupling, which implies that it can be easily implemented at
the loop level. The advantage by doing this is that it gives performance enhance-
ment in a frequency range that is normally not dealt with by MPC. Decoupling
is a classical tool in multi-variable control. Static and dynamic decoupling are
treated in many textbooks in process control, e.g., [7]. Recent contributions to
the design of decoupled PID control include the work by Adusumilli et al. [8].
Detuning for multi-variable PID control, as discussed in the paper, was treated
in a heuristic setting by Niederlinski [9].

Interaction analysis of multi-variable systems has been an important issue
for control structure design (such as input—output pairing) and decentralized
control problems. The first quantitative measure of interaction was the relative
gain array (RGA) introduced by Bristol [10]. It has been used widely and
successfully in the process industries [11, 12]. The most well known results on
the RGA are that a plant with large or negative elements in its RGA is difficult

to control and that input and output variables should be paired such that the



diagonal elements of the RGA are as close as possible to unity [13, 14]. An
alternative measure called the steady-state interaction indices was developed by
Chang and Davison [15] and it may provide a more accurate analysis of multi-
loop interaction, especially when the number of inputs and outputs is high. A

new interaction index is introduced in this paper.

2 The Method

Consider a multi-variable control problem consisting of the design of a linear
controller C for a linear stable process GG. For simplicity assume the process has

two inputs and two outputs, so that G is a transfer function of the form

g11(8) 912(s)

G(s) =
) g21(8)  g22(s)

The controller to be designed is a static decoupler combined with a decentralized

PID controller with set-point weighting. The control law can be written as

Ui(s) din  di2 c1(s)Y,
U2(S) dsy  das 52(8))/}2(3) - CZ(S)YZ (3)

where U is the control signal, Y the process output, and Y, the reference. The
decoupler
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is a constant matrix. The PID controller ¢; is different from ¢; to allow for

set-point weighting [6]. The controllers are of the form
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where b; is the set-point weight, which in practice often is equal to zero. Here,
for simplicity we assume b; = 0 and PI control, i.e., kp; = 0. It will be shown
that setting b; = 0 is essential to get good performance in decentralized PID

control.



2.1 Static Decoupling

The static decoupler is given by

D =G-1(0) = 1 g22(0)  —g12(0)

det G(0) \ —g51(0)  g11(0)

where we have assumed that G(0) is non-singular. The transfer function of the

decoupled system is Q(s) = G(s)D where

_ 911(5)922(0) — g12(5)g21(0)

a1 (s) det G(0)

~ 912(8)g11(0) — 912(0)g11(5)
ar2(5) = det G(0)
go1(5) = 921(5)922(0) — 921(0)g22(s)
>t det G(0)

_ 922(8)g11(0) — g21(8)g12(0)
422 (s) = det G(0)

It follows from the construction that @(0) is the identity matrix. A Taylor series

expansion of the transfer function Q(s) for small |s| gives

Q| o
K21S 1

for some constants k1o and k2. Hence, for low frequencies w, the diagonal
elements are equal to one and the off-diagonal elements are proportional to
iw. If the bandwidth of the decentralized PID controller is sufficiently low,
the off-diagonal terms will thus be small and the system will be approximately
decoupled.

It is straightforward to see that the closed-loop system can be described by

1+ c c C C
qi1€1 q12C2 v — qi1€1  q12€2 Y.

g21€1 1+ gaoeo G21C1  Q22C2
where we suppressed the dependency on s in the notation. This equation can

be written as

Y = iy,



where - B
quic1 + ((J11(J22 - Q12Q21)C1C2

hin =

(1 + Q1101)(1 + Q22C2) — (12921C1C2
7 q12C2
his =

(1 + Q1101)(1 + Q22C2) — (12921C1C2
7 Q21C1
ho1 =

(1 + Q1101)(1 + Q22C2) — (12921C1C2
By = @22C2 + (11922 — q1221)C1C2

22 =

(14 quier)(1 + g2c2) — qragaicica
The elements in H can be simplified by the following argument. The closed-loop
bandwidth wy is limited by the right half-plane zeros of G. If there is a single
zero in z > 0, which is approximately equally distributed between the two loops,
then the bandwidth must be less than 0.5z rad/s, see [16]. It is natural to assume
that the multi-variable zeros of G are not within the bandwidth of the closed-
loop system. (This will also ensure that the decoupler D is well conditioned.)

Recall that the zeros of G are given by the solutions to the equation

det G(s) = g11(5)g22(s) — g12(8)g21(s) =0

If we assume that | det G(s)| > 0 for all |s| < wy, then it follows from det Q(s) =
det G(s) det D that |g11(5)g22(s)| > |q12(8)g21(5)], since det Q(s) is a meromor-
phic function and det @(0) = 1. The denominator of the elements h;; can then
be approximated by (1 + qi1¢1)(1 + g2a¢2). The numerator of hy; is approx-
imated by q11¢1 + q11¢22¢1¢2 = 1161 (1 + g22¢2) and the numerator of hyo is
approximated by 2282 + q11¢22¢182 = q2282(1 + qu1¢1). The matrix H is then
approximated by

q11C1 q12Co
H— 14+ quc (14 qric1)(d + goac2)
g21€C1 q22C2
(14 quic1)(1 + gooc2) 1+ gazco

The structure of the diagonal elements of H is the same as for SISO control
design. Therefore, existing techniques [6] can be used for initial suggestions of
how to design the decentralized controllers. Sometimes they have to be modified
due to the interaction. The off-diagonal elements of H tell us what interaction
the SISO designs will lead to. Next, we exploit H to come up with a systematic

design procedure for decoupled PI control.



2.2 Interaction Indices

Before we discuss the actual design of the PI controllers ¢; and ¢;, let us elaborate

further on the off-diagonal elements of H:

iy = q12C2
(14 qric1)(1 + gaaca)
hoy = q21C1

(14 quie)(1 + goaco)
Since the controllers have integral action, we have for small s

Ii1282 Ii2182

=~ 1
kn ha (s) kro e

hlg(s) ~

The interaction is thus very small at low frequencies. To estimate the maximum

of the interaction, we observe that
hi2 = q12625152,  ha1 = q21¢15152 (2)

where S; = (14 gi1c1)™! and Sy = (1 + goaca) ™! are the sensitivity for loops
when the interaction is neglected. Upper bounds of the interaction terms are

thus given by
|h12(iw)| < |quaCz| Mgy Mo

|ho1 (iw)| < |g2182| Ms1 Mo
where My, and Mg, are the maximum sensitivity for the individual loops. For

low frequencies, we have

q12(8) & K125, q21(8) ~ K215

and

Elzkn/s, EQ%IC]Q/S

For low frequencies, we thus find that g2 and g21¢; are constant. It is therefore

natural to introduce the interaction indices
k1 = |k12kro| Mg Msa, Ko = |Ko1 k| Mg Mo (3)

The indices k; and ko describe the interaction of the second loop on the first
and vice versa. Note that the indices are products of two terms: one depends

on the system and the other is simply the integral gain of the corresponding PI



controller. Interaction can thus be reduced by reducing the controller gains. We
can ensure that the interaction is small by imposing a bound on the controller
gains. This is natural because a small k75 gives less coupling from the responses
in the second loop and a large kj; attenuate disturbances coming from the
second loop. Note that My, and Mg, also depend on kr; and kjo, respectively.
There is thus a trade-off between k1 and ka: if k12| and |k21]| are of similar size,
then both k; and k2 cannot be made small by choosing appropriate integral
gains. Either one of them can be made small while keeping the other larger, or
both of them have to be kept at a medium level. Which approach to choose,
follows from practical considerations of the importance of the individual control
loops.

Another convenient measure to be used in the control design is the frequen-
cies at which the interactions |h2 (iw)| and |h12(iw)| attain their maxima. These
frequencies will determine the bandwidth of the closed-loop system. It is pos-
sible to make the following simplifications in order to derive estimates of the
frequencies. Estimates of hi2(s) and ho(s) for small s are given by (1). For
large s, the assumption |q11(s)g22(s)| > |g12(s)g21(s)| used to derive H is still
reasonable, because this means that the diagonal elements of G is dominating at
high frequencies. Hence, the transfer function H describes the relation between
Y, and Y also for large s. This leads to that

kra kn
hlg(s) ~ m, h21 (S) ~ gdatl (4)

for large s, where d; is the pole excess of ¢12(s) and d» is the pole excess of
g21(s). Note that di and dy are uniquely defined by G, and do not depend on
the controllers. It follows from (1) and (4) that |hi2(iw)| and |he1 (iw)| will have
maxima. The location of the maximum of |h2(iw)| can, by using (1) and (4),

be approximated by the solution of the equation

|k12lw? |k
k] wditl

The peaks of the anti-diagonal terms |h12(iw)| and |he; (iw)| are thus approxi-

mately located at

knkr knkr

— di1+3 __ do+3

wiz = ! — woy = 7 —_—
K12 K21




If the pole excesses of g1 and ¢o7 are equal to one, then d; = dy = 1, so that

o krkr2 knkr

) w1 = (5)

W12 =

K12 K21

The interaction indices (3) are derived for PI controllers with set-point
weighting by = bo = 0. The interactions increase significantly if the controller
do not have set-point weighting. If b = by = 1 the interaction measures become

R1 = [k12|(|kp2lw + |kra2|) Mg Mo ©)
Fo = |ka1|(|kp1lw + |kr1|) Mg Mo
Finally, it should be remarked that the estimate (3) can be too conservative

if there is a significant difference in the bandwidths of the loops.

2.3 Design of Decentralized Controllers

To find the decentralized PID controller, we consider the diagonal terms of the
transfer function @(s). By construction we know that the static gain of all
diagonal elements are unity. Standard methods can be used for the design of PI
or PID controller for each transfer function g (s). The controller parameters
that give a PI controller with specified integral gain can be obtained by using
dominant pole design, see [17]. Another possibility is to use an optimization
technique which maximizes integral gain subject to a robustness constraint.
This is discussed for PI controllers in [18] and for PID controllers in [19]. Such
a method will give controllers which are optimized with respect to rejection of
load disturbances. The design methods will give integral gains k9, > 0, which
could be used if there were no interactions. The ratios A\, = klk/k?k are thus
measures of performance losses due to the interaction. If Ay > 1 there are no
performance losses and the limitations on performance are essentially given by
the loop dynamics. If 0 < A < 1 it is necessary to detune the controllers. In
this case we need methods to design PID controllers with specifications on the
closed-loop bandwidth. There are many methods which can be used for this
purpose. Two simple techniques for design of PID controllers are the direct
pole-placement design based on reduced-order models and the dominant pole

design, see [6] and [17].



2.4 Summary
The proposed design procedure is summarized in the following algorithm:

1. Find static decoupler D = G1(0).

2. Select desired interaction indices k1, ko and maximum SISO sensitivities

M317 Ms?-

3. If the specification in Step 2 can be attained by SISO controllers designed
through maximization of the integral gains (e.g., [18]), then apply these

controllers, else go to Step 4.

4. Either go to Step 2 but make a less demanding design specification, or
choose another SISO design method that will fulfill the specification (e.g.,
dominant pole design [6]).

As illustrated by the algorithm, the primary choice of design for the individual
SISO controllers is through maximizing the integral gains. If this result in a
closed-loop systems with too large interaction, however, the SISO controllers
must be retuned. This can be done either by changing the design specifications
(desired k; and Mg;), or by applying another SISO control design method. It is
possible to achieve the specifications in Step 2 by choosing SISO designs with
sufficiently low bandwidth, which is readily done using dominant pole design.
Note that it is easy to combine different SISO design methods and to retune the

controllers after simulations, which is illustrated in the examples.

3 Examples

The control design method is in this section illustrated on three examples from

the literature.

3.1 Rosenbrock’s System

The process

1 2
G(s) = ST] sq1L3
s+1 s+1
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Figure 1: Simulation of the design method applied to Rosenbrock’s system. The
figure shows the response of the outputs to steps in the command signals. The

PI controllers have set-point weighting b, = by = 0.

was originally proposed by Rosenbrock [20]. It is an example of a system that
looks very easy to control, but which has fundamental limitations because it
has a zero s = 1 in the right half-plane. If we introduce static decoupling, the

compensated transfer function becomes

3(1—s) 4s
Q)= |+ DE+3) (s+1)(s+3)
! s+1

The interaction is given by k12 = 4/3 and k21 = 0. Since k21 = 0, interaction
gives no performance limitations for the second loop. There are however limi-
tations because of the right half-plane zero at s = 1. Designing a PI controller
that maximizes integral gain subject to the constraints that the maximum sen-
sitivity M,1 and the maximum complementary sensitivity A, are less than
V2, gives kpy = 0.245 and k;; = 0.248, see [18]. Since ks = 4/3 there are
constraints on the design of the first loop because of the coupling. Requiring
that the coupling x; is less than 0.2 and the maximum sensitivity M, is less

than /2, we find that the integral gain of the second loop k72 must be less than

10
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Figure 2: Simulation of controllers without set-point weighting. The simulation

is identical to Figure 1 but the controllers have b; = b, = 1.

K1/ (K12 Mg1 M) = 0.0750. To design a PI controller, we use direct pole place-
ment [6] based on the model g22(s) = (s+1)~! and the desired closed-loop char-
acteristic polynomial s? 4+ 2{wgs +wg. This gives kps = 2¢wo — 1 and kry = w3.
Requiring that the integral gain is equal to 0.0750, we find that wo = 0.274.
With ¢ = 1 the controller gains become kps = —0.452 and kj» = 0.075. Fig-
ure 1 shows simulations of set-point responses for the closed-loop system. The
plots show the proposed design with set-point weighting (b = by = 0). A unit
step in the set point of the first controller is applied at time ¢ = 0 and a step in
the set point of the second controller is then applied at time ¢ = 40. Figure 2
shows the step responses for a controller without set-point weighting. The figure
clearly indicates the advantage of set-point weighting for multi-variable systems.
The reason why there is such a large difference is that the control signal is much
smoother with set-point weighting.

The effect of set-point weighting is illustrated also in Figure 3, which shows
the frequency response of the closed-loop system with (solid) and without (dashed)
set-point weighting. The interaction increases considerably when no set-point

weighting is applied. This agrees with the conclusion in previous section; com-

11



10 10
X N
N
N
N
_ N _
=, \ N
=10 <10
3 AN =
\
\
\
\
\
107 > , 107
10 10 10 10
w
10° 10°
N
N
\J
\
A\
= o '
107 g™ A
< = N
\
\
\
\
2 2 \
10 -2 0 2 10 -2 0 2
10 10 10 10 10 10
w w

Figure 3: Frequency responses of the closed-loop system with set-point weight-
ing (solid) and without (dashed). Note that without set-point weighting the

interaction |hi2(iw)| is larger and extends to higher frequencies.

pare the interaction indices with and without set-point weighting in Equa-
tions (3) and (6).

The maximum of the interaction |hys(iw)| in Figure 3 is equal to 0.31. This
should be compared to the interaction index x; = 0.2. The reason why the
estimate k1 is lower is that the sensitivities of the system are higher than the
design values. The maximum is attained at w = 0.52, while the estimate in (5)
predicts 0.41.

It is interesting to note that the bandwidth of the closed-loop system (as
measured by the maximal singular value) is equal to wy, = 0.49 rad/s, which is

close to the limitation imposed by the right half-plane zero at +1.

12



3.2 Wood—Berry’s Binary Distillation Column

The Wood—Berry binary distillation column plant [21] is a multi-variable system
that has been studied extensively. The process has the transfer function

12.8¢7%  —18.9¢ 3¢

- | B AR

109s+1 144s+1
The transfer function of the statically compensated system is

12.8¢ °  —189¢ 2\ [ 1570 —(0.1529

Q(S) — 16.7s+1 21.0s+1
—T7s —3s
61'(?.%es+1 _1149.fse+1 0.0534 —0.1036

A series expansion for small s gives

1-11.7s —12.31s
Q(s) ~

—0.5138s 1—17.3s
The interaction is thus given by k19 = —12.31 and k21 = —0.5138. The time
constants of the reduced-order models are T7 = 11.7 and T = 17.3. Let the
desired maximum sensitivity for the individual loops be equal to My = M =
V2. Requiring that the interaction indices k; and ks should both be less than
0.20, the integral gains should be k;; < 0.19 and k72 < 0.0081. This gives the

corresponding crossover frequencies

wor < Vkn /Ty = \/0.19/11.7 = 0.12
wo2 < Vkr2/To = 1/0.0081/17.3 = 0.022

We have wg1 L = 0.36 and wgs L = 0.066. The bandwidths are thus well below
the limitations wL < 0.7 imposed by the the largest time delay of the system
(L = 3), see [16]. Note that in this case there is a significant difference between
the bandwidths of the loops.

With these frequencies and the time delays present in the system, it is quite
reasonable to approximate the time delays with first order lags. The model
reduction should thus work reasonably well in this case. Choosing (; = (> =

¢ = 0.707 we find that the proportional gains are
k'Pl = 2(&)01 —1=1.1338
k‘PQ = 24(,002 —1=-0.4699

13
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Figure 4: Simulation of the design method applied to the Wood—Berry distil-
lation column. The figure shows the response of the outputs to steps in the

command signals.

In Figure 4 we show the step responses from set point to process output for
the system. Analyzing the figure we find that the response in y; caused by a
step in the set point y,» is quite small. It thus seems possible to increase the
bandwidth in the second loop. After some experimentation we found that a
reasonable value is wgs = 0.1, which gives that the controller parameters for the
second loop become kps = 0.7 and kj» = 0.123. The time responses are shown
in Figure 5. A comparison with Figure 4 shows that the response speed of the
second loop has been increased considerably without increasing the interaction
too much. This also shows that the method lends itself very well to tuning. The
step responses in Figure 5 compare favorably with designs obtained by other

methods.

3.3 Quadruple-Tank Process

Consider the quadruple-tank process in Figure 6. This lab process has been used

to illustrate many issues in multi-variable control [22]. The target is to control
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Figure 5: Simulation of the design method applied to the Wood—Berry distilla-

tion column. The bandwidth of the second loop has been increased to wgs = 0.1.

the level in the lower two tanks with two pumps. The process inputs are u; and
uy (input voltages to the pumps) and the outputs are y; and yo (voltages from
level measurement devices). The linearized dynamics for the process (which we

limit the discussion to here) is given by

e (1=12)ax
Gls) = (1—=m)as Y202 (7)
(1 + sTy)(1 + sT>) 1+ 8Ty
where
A; [2¢°
T, =2, 4 i=1,...,4 (8)
a; g

and a; = Tikik./A, and ay = Tokok./As. Here A; is the cross-section of
Tank i, a; the cross-section of the outlet hole, ¢? is the steady-state water level,
k; is the gain of Pump ¢, k. the measurement gain, and g acceleration of gravity.
The parameters 7;,v2 € (0,1) are determined from how the valves are set prior
to an experiment: the flow to Tank 1 is proportional to v; and the flow to

Tank 4 is proportional to (1 — 7 ), and similarly for 72 with respect to Tank 2

15
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Figure 6: Schematic diagram of the quadruple-tank process. The water levels in
Tank 1 and Tank 2 are controlled by two pumps. The flow ratios 7, and 7, set
by the valves determine the location of the transmission zero for the linearized

model. The zero can be put in either the left or the right half-plane.

and Tank 3. Since
Q109

e [T (1 + sTy)

X (1 + STg)(l + ST4) —

det G(s) =

(1 —1)(1 — ) ®)

Y1772
the transfer matrix G has two finite zeros for 1,72 € (0,1). The system is
non-minimum phase for

O0<m+7r<l1

and minimum phase for

1<m+7<2

Hence, by changing a single valve we can make the multi-variable level control

problem more or less difficult. The quadruple-tank process is thus ideal for

16



evaluating control designs. This is done next for the proposed decoupled PID

control design method. We restrict the discussion to the case
Ty =---=Ty=T >0, ap =as =1
The decoupled system is then given by
Q(s) = G(s)D = G(s)G'(0)

1—sT8 STM

- . Mnt+r-1
2 _
(1+sT) ST Ye(n —1) 1— 8T8
Nt -1
where = v172/(1 — 1 — 72). Note that
1—-sTp
q11(8) = q2a(s) = m

has a right half-plane zero whenever G has a (multi-variable) right half-plane
zero. As the zero approaches the origin (i.e., as § tends to +00), the achievable

closed-loop bandwidth vanishes. This is also reflected by the interaction indices

T (1 — Ty (1 —
iy = 71 (1 =) ot = Y2(1— 1)

e I—m—

which tend to 4+oo as the zero approaches the origin. Note that k12 and k21 are
positive if the system G(s) is minimum phase and negative if it is not.

Suppose the valves of the quadruple-tank system are set such that v; = o =
v € (0,1/2). The system is then non-minimum phase with the right half-plane
zero located in (1 — 2v)/(Ty). Let us study the particular case when T' = 1
and v = 1/3. Requiring that the coupling kK = k1 = K2 is less than 0.2 and
the maximum sensitivity Mg = Mo is equal to V2 lead through Equation (3)
to the design constraint k; = kr1 = ko < 0.15. (Note that we due to the
symmetry of the process have chosen identical SISO controllers ¢; = ¢2.)

A pole placement design for

1—sTp
q11(8) = qa2(s) = 1+ s2T
gives
o — 2w3T?B + 4CwoT — 1
P WET28% + 2(weTB + 1
WaT(2+ B)
kr =

C W2T?B2 + 2(weTB + 1

17



where
82 + 2Cwos + wi

denotes the (approximate) denominator polynomial of h11(s) = haa(s).
The right half-plane zero in (1—2v)/(T7) = 1 suggests that wg should be con-
siderably smaller than one. Let us compare designs with wy = 0.1,0.2,...,0.6.

The controller parameters are given as follows:
wo | 01 0.2 0.3 04 05 06

kp | —0.678 —0.371 —0.079 0.197 0.460 0.708
kr | 0.022 0.085 0.150 0.150 0.150 0.150

Recall the design constraint £; < 0.15. When wy > 0.3, the integral gains
obtained through the pole placement design violates the constraint. The applied
integral gain is then fixed to 0.150 as shown in the table.

The estimates of Kk = k1 = k2 and @ = wi2 = wq using Equations (3)
and (5), respectively, are given in the following table. The corresponding true

values

Bmax = max |hia(iw)| = max |ha1 (iw)]
Wmax = argmax |hi2(iw)| = arg max |ha (iw)|
w w
are also presented.

wo 0.1 0.2 0.3 0.4 0.5 0.6

K 0.030 0.113 0.200 0.200 0.200 0.200
w 0.165 0.323 0429 0.429 0429 0.429
Bumax | 0.158 0.190 0.179 0.104 0.076 0.071
wmax | 0.100 0.211 0.320 0.404 0.706 0.977

The interaction index k is a reasonable upper estimate of the true interaction
hmax for wg = 0.2,0.3,0.4. The estimate @ of the frequency at which the max-
imum is attained is quite close for all wy = 0.1,...,0.6. Figure 7 shows the
frequency responses for the elements in H.

The achievable bandwidth with the proposed decoupled PID design is sur-
prisingly close to the limitation imposed by the right half-plane zero at +1.
This is illustrated in Figure 8, which shows the frequency responses for the

maximum singular valued of the closed-loop system for wy = 0.1,0.2,...,0.6.

Figure 9 shows the corresponding responses to steps in the command signals.
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Figure 7: Frequency responses of the closed-loop system for designs with wg =
0.1,0.2,...,0.6. The dashed line corresponds to wy = 0.1 and the dotted line to
Wo = 0.6.

Note that both Rosenbrock’s system and the quadruple-tank system have a
right half-plane zero in +1. In both cases decoupled PID control succeeds giving
a closed-loop system with a bandwidth of approximately 0.5 which is close to
the limit derived in [16]. The result for the Wood-Berry’s binary distillation
column is similar. The examples thus suggest that the simple rule of thumb for
SISO systems may be extended to multi-variable systems. In some cases it is
important to also take the direction of the multi-variable right half-plane zero
into account [23]. For example, zero location and direction can be quantified in

terms of a trade-off between set-point response and interaction [24].

4 Conclusions

The suggested control scheme is a simple multi-variable controller consisting of
a static decoupler and two single-loop PI controllers. In spite of its simplicity
the controller can deal with many practical control problems. It is also easy to

implement in virtually any DCS system. A method for finding the parameters of

19



10

Figure 8: Maximum singular value of the closed-loop system illustrating the

bandwidth of the system for designs with wy = 0.1,0.2,...,0.6.

the controller has been developed in the paper. The key assumption is that the
interaction is not too severe. This is captured quantitatively by the interaction
indices k1 and ks. Possible detuning of the PID controllers was quantified
in terms of these indices. An important observation is that the interaction is
reduced substantially by using set-point weighting b; = b, = 0.

The interaction indices k1 and ko depend on both the process and the con-
troller. Note that the RGA reflects the interaction under very tight control.
The indices introduced in this paper capture the fact that interaction can be
reduced by detuning the loops. Furthermore, note that our interaction indices
also take dynamics into account. For the decoupled system Q(s) = G(s)D the
RGA is equal to the identity matrix, while the dynamic RGA [12] for small
|s| has approximately the diagonal elements 1 — k1221 s? and the anti-diagonal

elements k12k215% (with k;; as defined in Section 2).
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Figure 9: Step response experiments for the linearized quadruple-tank pro-
cess controlled using decoupled PID control. The plots correspond to wy =

0.1,0.2,...,0.6.
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