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The Interconnection of Quadratic Droop Voltage
Controllers Is a Lotka-Volterra System:

Implications for Stability Analysis
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Abstract—This letter studies the stability of voltage
dynamics for a power network in which nodal voltages
are controlled by means of quadratic droop controllers
with nonlinear AC reactive power as inputs. We show that
the voltage dynamics is a Lotka-Volterra system, which
is a class of nonlinear positive systems. We study the
stability of the closed-loop system by proving a uniform
ultimate boundedness result and investigating conditions
under which the network is cooperative. We then restrict to
study the stability of voltage dynamics under a decoupling
assumption (i.e., zero relative angles). We analyze the exis-
tence and uniqueness of the equilibrium in the interior of
the positive orthant for the system and prove an asymptotic
stability result.

Index Terms—Positive systems, power systems, cooper-
ative control, time-varying systems.

I. INTRODUCTION

THE RECENT interest in integrating distributed generation
in power systems has motivated the design of new con-

trol techniques for assuring desired performance, for instance,
maintaining appropriate voltage levels. Voltage control in vari-
ous problem settings have been widely studied in the literature,
e.g., [1]–[5] to name a few. In general, the physical model of
electrical power systems can be described using four main
variables: active power, reactive power, voltage magnitude
and angle. The way these variables are interacting in an AC
power network is defined by the (nonlinear) AC power flow
model [6]. It follows from this model that voltages and angles
depend on both active and reactive power flows. However,
most designs for controlling voltage (angle) dynamics rely on
a decoupling assumption where voltage (angle) depends only
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on the reactive (active) power. A decoupled, local and lin-
earized AC power flow model for lossless power networks is
the so-called DC power flow model which is the assumption
behind the design of conventional droop controllers. Recently,
a quadratic droop controller was introduced in [7] in order
to include the quadratic nature of the reactive power flow
in a decoupled power flow model for an inductive network.
Although the assumption behind designing (quadratic) droop
controllers is not the original AC power flow model, studying
the use of such controllers with this power flow model, which
includes the power losses and does not restrict the size of rel-
ative angles, is interesting from both theoretical and practical
point of views. A linearized model of a network of quadratic
droop controllers whose injected reactive power obeys the AC
power flow model was considered in [8] where it is shown that
the linearized time-invariant system is a stable positive system
provided some constraints on the relative angles, controller
gain and the power line parameters hold. Positive systems are a
class of dynamical systems whose state remain non-negative, if
their initial condition is non-negative. The fact that the sign of
the voltage magnitude is positive motives studying the voltage
dynamics from a positive system perspective.

Main contributions: This letter considers a power network
in which nodal voltages are controlled by means of the
quadratic droop controllers and studies the stability within
the framework of positive systems. First, we show that inter-
connected quadratic droop controllers with nonlinear injected
reactive power can be represented as a Lotka-Volterra sys-
tem, which is traditionally studied in mathematical biology.
Second, we investigate the dynamical properties of the net-
work with time-varying voltage angles, droop gains, and
references. We prove boundedness of the solutions. Third,
we consider the special case where a decoupling assump-
tion holds (i.e., zero relative angles) and study the condi-
tions under which the system possesses a unique equilibrium
in the interior of the positive orthant. We also provide a
Lyapunov-based argument to prove asymptotic stability of the
equilibrium.

Compared to previous works (e.g., [2], [7], and [8]), our
contribution is to shed a new light on inherent dynamical prop-
erties of a network of quadratic droop controllers. Moreover,
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we analyze the stability of the network from a nonlinear
positive system point of view which requires the application
of completely different analytical tools.

This letter is organized as follows. Section II-A presents
preliminaries and problem formulation. Section III reveals the
structure of the nonlinear positive system. Boundedness of the
time-varying lossy network and its properties are discussed
in Section IV. Stability of the network under the decoupling
assumption is analyzed in Section V. Section VI presents
simulation results and Section VII concludes this letter.

Notation: Let R+ = [0,+∞) and R
0+ = (0,+∞), while

R
n+ and int(Rn+) are the set of n-tuples for which all compo-

nents belong to R+ and R
0+, respectively. The boundary of

R
n+ is denoted by bd(Rn+). The notation diag(x) is the n × n

diagonal matrix whose entries are the elements of x ∈ R
n.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Consider the following differential equations

ẋ(t) = f (x(t)), (1)

ẋ(t) = F(x(t), t), (2)

with x ∈ Rn, f : R
n → R

n , F : R
n × R → R

n. The solu-
tion of (1) or (2) at time t with initial condition (x0, t0) is
denoted by x(t, t0, x0) where the equation will be clear from
the context. The following definitions are used throughout this
letter [9]–[11].

Definition 1 (Positive Systems): System (1), (2) is positive
iff R

n+ is forward invariant.
Lemma 1: The following property is a necessary and suffi-

cient condition for positivity of system (1),

∀x ∈ bd(Rn+) : xi = 0 ⇒ fi(x) ≥ 0. (3)

Definition 2: A matrix An×n is Metzler if its off-diagonal
entries ai,j,∀i 	= j are non-negative. Similarly, A(t) is Metzler
if ai,j(t),∀i 	= j are non-negative.

Definition 3: The map f (x) in (1) is cooperative in R
n+ if

the Jacobian matrix ∂f
∂x is Metzler for all x ∈ R

n+. A similar
definition holds for System (2) (see [12, Definition 2.2]).

Definition 4: Given r = (r1, . . . , rn),∀i, ri > 0, define the
dilation map δ:R+ × R

n → R
n as follows

δ:(s, x) → δ(s, x) = (sr1 x1, . . . , srn xn), (4)

where x = (x1, . . . , xn). A continuous function F:Rn × R →
R

n is r-homogeneous of order τ ≥ 0 if

∀x ∈ R
n,∀t ∈ R,∀s ∈ R+:F(δ(s, x), t) = sτ δ(s, F(x, t)). (5)

Definition 5 (Uniform Boundedness): System (2) is uni-
formly bounded if ∀R1 > 0, there exists an R2(R1) > 0 such
that ∀x0 ∈ R

n,∀t0,∀t ≥ t0

||x0|| ≤ R1 ⇒ ||x(t, t0, x0)|| ≤ R2(R1).

Definition 6 (Uniform Ultimate Boundedness): System (2)
is uniformly ultimately bounded if there exists an R > 0
such that ∀R1 > 0, there exists a T(R1) > 0 such that
∀x0 ∈ R

n,∀t0,∀t ≥ t0 + T(R1)

||x0|| ≤ R1 ⇒ ||x(t, t0, x0)|| ≤ R.

Definition 7 (r-Homogeneous Norm): The r-homogeneous
norm ρ:Rn → R is given by

ρ(x) =
n∑

i=1

|xi|
1
ri

where 0 < ri < 1.

B. Problem Formulation

Consider a power network composed of n busbars and m
power lines. Let the network be modeled as a connected, undi-
rected graph with n nodes and m edges. The nodal reactive
power obeys the AC power flow model [6], i.e.,

Qi = −BiV
2
i +

∑

j∈N i

(Bi,jViVj cos(θi,j) − Gi,jViVj sin(θi,j), (6)

where Qi, Vi and θi are the reactive power, voltage magnitude
and voltage angle of busbar i, respectively. Also, Ni denotes
the set of neighbors of node i. The variable θi,j is the relative
angle, i.e.,θi,j: = θi − θj. Variables Gi,j ≥ 0, Bi,j ≤ 0 are the
conductance and susceptance of the line (i, j), which connects
busbar i to busbar j, Gi,j = Gj,i and Bi,j = Bj,i. Furthermore,
Bi = Bsh

i +∑
j∈Ni

Bi,j where Bsh
i denotes the shunt susceptance.

Notice that Gi,j ≥ 0, Bsh
i ≥ 0 and Bi,j ≤ 0. It is a common

assumption to consider Bsh
i � ∑

j∈Ni
|Bi,j|, hence Bi ≤ 0.

We assume that each node of the network is connected to an
inverter, which is modeled as a controllable voltage source [7].
We assume that nodal voltages are controlled by means of
quadratic droop voltage controllers, designed to incorporate
the quadratic nature of reactive power in a conventional droop
controller as follows

τiV̇i = Vi(−ki(Vi − V∗
i )) − ui, (7)

where τi > 0, ki > 0, ui ∈ R, and V∗
i > 0 are the controller’s

time constant, droop gain, input, and the nominal voltage of
node i, respectively. In [7], the control input, ui, is designed
to be equal to the nodal reactive power of a simplified power
flow model obtained from (6) by imposing the decoupling
assumption θi,j = 0, i.e.,

τiV̇i = Vi(−ki(Vi − V∗
i )) + BiV

2
i −

∑

j∈Ni

Bi,jViVj. (8)

In this letter, we consider the controller in (7) and replace ui

with the general AC reactive power flow as in (6). Thus,

τiV̇i = Vi(−ki(Vi − V∗
i )) − Qi. (9)

This letter first considers the controller (9) and study its
dynamical properties from a positive system point of view.
Second, we study the conditions under which there exists
a stable equilibrium in int(Rn+) for the network with nodal
controllers as in (8) within the framework of positive systems.

III. VOLTAGE DYNAMICS AS A

LOTKA-VOLTERRA SYSTEM

Lotka-Volterra systems are a class of nonlinear positive
systems with the dynamics

ẋ = diag(x)(f (x) + b). (10)
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where x ∈ R
n and b ∈ int(Rn+) [10]. Now, let us consider a

power network with each node connected to a quadratic droop
controller as introduced in the previous section. We consider
the controller (9) (but the results of this section also hold
for (8)). By replacing Qi from (6) in (7), the voltage dynamics
of each node is

τiV̇i = Vi

[
−ki(Vi − V∗

i ) − |Bi|Vi

+
∑

j∈Ni

Vj(Gi,j sin θi,j + |Bi,j| cos θi,j)

]
. (11)

Notice that −Bi,j and Bi in (6) are replaced by |Bi,j| and −|Bi|
in (11) since Bi,j ≤ 0 and Bi < 0. Now, let us rewrite (11) in
the form of (10). We have

τiV̇i = Vi

[ ∑

j∈Ni

Vj(Gi,j sin θi,j + |Bi,j| cos θi,j)

− (ki + |Bi|)Vi + kiV
∗
i

]
. (12)

Denote sin θi,j, cos θi,j by �s
i,j, �c

i,j, respectively. Thus, �s
i,j =

−�s
j,i, �c

i,j = �c
j,i and

�s
i,j ∈ [−1, 1], �c

i,j ∈ [−1, 1].

Writing the equation in (12) for all nodes, we obtain

diag(τ )

⎡

⎢⎢⎢⎣

V̇1

V̇2
...

V̇n

⎤

⎥⎥⎥⎦ = diag(V)

(
⎡

⎢⎢⎢⎣

f1(V, θ)

f2(V, θ)
...

fn(V, θ)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

b1
b2
...

bn

⎤

⎥⎥⎥⎦

)
, (13)

where τ = (τ1, τ2, . . . , τn)
T , V = (V1, V2, . . . , Vn)

T , V̇ =
(V̇1, V̇2, . . . , V̇n)

T , bi = kiV∗
i , and

fi(V, θ) = −(|Bi| + ki)Vi +
∑

j∈Ni

Vj(Gi,j�
s
i,j + |Bi,j|�c

i,j).

Let us rewrite f (V, θ) as f (V, θ) = �(θ(t))V where �(θ(t))
is the following matrix
⎡

⎢⎣
−(|B1| + k1) . . . G1,n�

s
1,n + |B1,n|�c

1,n)

...
...

...

−G1,n�
s
1,n + |B1,n|�c

1,n . . . −(|Bn| + kn)

⎤

⎥⎦.

(14)

In compact form, the network model is

diag(τ )V̇ = diag(V)(�(θ(t)) V + b), (15)

with b = (k1V∗
1 , . . . , knV∗

n )T . Matrix � is called the interac-
tion matrix [13].

Proposition 1: System (15) is positive. That is, ∀V(0) ∈ R
n+

and ∀θi,j ∈ R, V(t) ∈ R
n+.

Proof: The proof is based on the Definition 1. Consider
V(0) ≥ 0. If there exists Vi(0) = 0, it is immediate to see that
V̇i = 0. If Vi(0) > 0, as the system evolves, V̇i could be zero,
positive or negative. If V̇i > 0, Vi grows in R

n+. If V̇i = 0, Vi

stays in R
n+. If V̇i < 0, Vi decreases. Due to the continuity of

V̇i in (13), the decrease lead to Vi = 0, thus Vi cannot decrease

further. Hence, R
n+ is forward invariant for (13) which ends

the proof.
Remark 1: The above is a general result compared with [8]

which has shown the positivity of the linearized system
assuming θ̇i,j = 0 and imposing constraints on Gi,j

Bi,j
ratio.

Properties of Lotka-Volterra systems: A Lotka-Volterra sys-
tem with interaction matrix � is [13]

• cooperative (competitive) if �i,j ≥ 0 (�i,j ≤ 0) for all
i 	= j, (similar to Definition 3),

• dissipative if there exists a diagonal matrix D > 0 such
that, �D ≤ 0, and stably dissipative if it stays dissipative
under small enough perturbation δi > 0 of its non-zero
elements.

In cooperative networks, in contrast to competitive networks,
agents (nodes) benefit from interacting with each other.
Properties of a cooperative system allow us to derive con-
ditions for existence of a unique equilibrium in int(Rn+).
Also, inspired by results of competition of ecological species,
we envision that voltage drop could be studied under the
competitive system assumption. The latter is under our cur-
rent investigations and requires further analysis. Dissipativity
is useful in studying the convergence behavior for a large
scale network specially when the network is heterogeneous.
Although the analysis of this letter do not directly rely on
this property, in Section V, we discuss that the network under
a decoupling assumption is stably dissipative for the sake of
comprehensiveness and future extensions.

IV. ANALYSIS: THE CASE OF LOSSY NETWORK

This Section considers the system in (15) with the interac-
tion matrix � in (14). This section assume a lossy network
with controller in (9), i.e., θ̇i,j 	= 0 and Gi,j 	= 0. We first
assume that V̇∗

i 	= 0, k̇i 	= 0, i.e.,

diag(τ )V̇ = diag(V)�(θ(t))V + diag(k(t))V∗(t)), (16)

where V∗(t) = (V∗
1 (t), . . . , V∗

n (t))T . Our aim is to study
the boundedness of voltage trajectories in a control-theory
sense. We differentiate ultimate boundedness in a control-
theory sense from the voltage stability in a power-system
sense. The former implies that voltage magnitudes are bounded
and ultimately converge to a ball in R

n+ with radius R, while
the latter requires steady desired bounds [6]. Notice that this
letter neither determines the bounds nor guarantees that they
can be made arbitrarily small. We also show the usage of
tools from the positive systems framework in the analysis of
power systems which is interesting from a theoretical point of
view. We first allow no restriction on θi,j and establish a uni-
form boundedness result for voltage trajectories. Notice that
although variations of θi,j depend on voltage magnitudes based
on the physical laws, the results of this section are independent
of these effects. In fact, the variations of the relative angles
will cause variations in �c

1,2 and �s
1,2, which are both bounded

and take a value in the set [−1,+1], in �(θ(t)) (16). Thus,
without making any specific assumption on the dynamics of
θi,j, we can mathematically model the variations of θi,j as a
time varying variable which takes a value in [−1,+1].
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Consider system (16) with the general form

ẋ = f (x(t), t) + g(x(t), t).

To study the boundedness of the system, we adopt the
approach of [11] allowing us to study the time-invariant
‘frozen’ system ẋ = f (x(t), σ ) + g(x(t), σ ), i.e.,

diag(τ )V̇ = diag(V)�(θ(σ ))V + diag(k(σ ))V∗(σ )), (17)

where σ ∈ R is treated as a constant parameter. The approach
in [11] discusses the stability of homogeneous time-varying
systems of a positive order (see Definition 4) as well as a class
of non-homogeneous time-varying systems which possesses a
homogeneous approximation when the system state (e.g., ||V||)
is sufficiently large, i.e., system (16). First let us write �(θ(σ ))

in (14) as � = �s + �c, hence,

� =

⎡

⎢⎢⎢⎣

−(|B1| + k1) |B1,2|�c,σ
1,2 . . . |B1,n|�c,σ

1,n
|B1,2|�c,σ

1,2 −(|B2| + k2) . . . |B2,n|�c,σ
2,n

...
... · · · ...

|B1,n|�c,σ
1,n |B2,n|�c,σ

2,n . . . −(|Bn| + kn)

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

0 G1,2�
s,σ
1,2 . . . G1,n�

s,σ
1,n

−G1,2�
s,σ
1,2 0 . . . G2,n�

s,σ
2,n

...
... · · · ...

−G1,n�
s,σ
1,n −G2,n�

s,σ
2,n . . . 0

⎤

⎥⎥⎥⎦,

(18)

where �
c,σ
i,j is the value of �c

i,j at t = σ and �
c,σ
i,j ∈ [−1,+1]

(a similar definition holds for �
s,σ
i,j ).

We now prove the asymptotic stability of V̇ =
diag(V)�(θ(σ ))V . This result is required in the proof of
boundedness of the time-varying network (16).

Proposition 2: If ∀i : ki > 0, then ∀x ∈ R
n, x 	= 0, it holds

that xT�(θ(σ ))x < 0.
Proof: Consider (18). Observe that �s is skew-symmetric. If

�c is negative definite, then � is Hurwitz and xT�(θ(σ ))x <

0. Applying the Gershgorin Circle Theorem [14], a sufficient
condition for �c to be negative definite is that

∀i ∈ {1, . . . , n} : |Bi| + ki >
∑

j∈Ni

|Bi,j�
c,σ
i,j |.

Recall that |Bi| = Bsh
i + ∑

j∈Ni
|Bi,j| and �

c,σ
i,j ∈ [−1,+1].

Hence, the above is satisfied if ki > 0.
Proposition 3: System V̇ = diag(V)�(θ(σ ))V is positive

and asymptotically stable at the origin.
Proof: From Lemma 1, it is immediate to see that system

V̇ = diag(V)�(θ(σ ))V is positive. Take V = ∑
i |Vi| (where

|.| is the absolute value) as the Lyapunov candidate. Since
V is not differentiable at the origin, we use tools from the
nonsmooth theory, i.e., the Clarke generalized gradient and
set-valued derivative in order to calculate V̇ (see [15]). Define
the Clarke generalized gradient as follows

∂V = {pV s.t. pV
i ∈

{+1 if Vi > 0,

[−1,+1] if Vi = 0
}. (19)

The set-valued derivative is then obtained from ˙̄V = {a ∈
R : a = 〈V̇, pV 〉,∀pV ∈ ∂V} where 〈, 〉 is the inner prod-
uct. Since for Vi = 0, it holds that V̇i = 0, we obtain

˙̄V = {VT�(θ(σ ))V}. Based on Proposition (2), ˙̄V ⊆ (−∞, 0].
Applying (nonsmooth) La Salle’s invariance principle [15], the
system is asymptotically stable at the origin.

Now, we continue with proving uniform ultimate bounded-
ness of system (16).

Assumption 1: For system (16), 1- there exists ck > 0 such
that for all σ ∈ R and for all i, 0 < ki(σ ) < ck holds, (bound-
edness of droop gains) 2- there exists cr > 0 such that for all
σ ∈ R and for all i, |ki(σ )V∗

i (σ )| < cr holds (boundedness of
references).

Proposition 4: If Assumption 1 holds, then the time-
varying system (16) is uniformly and uniformly ultimately
bounded.

Proof: The proof is based on [11, Th. 4.1], which is an
extension of [11, Th. 3.2]. Based on [11, Th. 4.1], the fol-
lowing conditions should hold for fH(V, t) = diag(V)(�s(t)+
�c(t))V ,

• fH(V, t) is homogeneous of order τ > 0: based on the
Definition 4, let us take δr

λ(V) = (λrV1, . . . , λ
rVn)

T , then
fH(V, t) is r-homogeneous of order τ = r > 0,

• fH(V, σ ) is continuously differentiable with respect to V
and σ : this clearly holds,

• there exists a cf > 0 such that for all σ ∈ R, for all
y ∈ R

n with ρ(y) = 1 (see Definition 7), and ∀i, k, the
following hold

|f i
H(y, σ )| ≤ cf , | ∂f i

H
∂xk

(y, σ )| ≤ cf , | ∂f i
H

∂σ
(y, σ )| ≤ cf .

Considering Assumption 1, the above conditions are
satisfied since all elements of �s(σ ) and �c(σ ) are
bounded,

• each frozen system V̇ = fH(V, σ ) is asymptotically stable
at the origin: this holds based on Proposition 3,

• there exists an Rg > 0 and a continuous nonincreasing
function F:R+ → R with lims→∞ F(s) = 0 such that for
all V ∈ R

n with ρ(V) > Rg and ∀t ∈ R,

||δr
ρ(V)−1(diag(V) diag(k(t))V∗(t))|| ≤ ρ(V)τ F(ρ(V)).

To fulfill the above, that is [11, Condition 4.1], take
F(s) =

√
ncr
sr [11], where cr is the upper bound of

ki(t)V∗
i (t) by Assumption 1. Based on the definitions of

δ and ρ (see Preliminaries), this last condition is also
satisfied which ends the proof.

Now, consider the system in (16) assuming V̇∗
i = 0, k̇i = 0.

Denote system (16) under this assumption as system (16′). We
conclude the ultimate boundedness of (16′) based on the above
proposition.

Corollary 1: If ki > 0, V∗
i > 0, bi < cf , then the

system (16′) is uniformly and uniformly ultimately bounded.
Next, we assume boundedness of θi,j and verify the conditions
under which system (16′) is cooperative. This property allows
us to derive conditions under which all voltage trajectories will
converge to a ball in the interior of the positive orthant i.e.,
away from zero.

Assumption 2: The relative voltage angles are bounded,
e.g., θi,j ∈ [−β, β] for some constant β.

Proposition 5: If Assumption 2 holds and ∀i, j : |Gi,j
Bi,j

| <

| cot(θi,j)|, then system (16′) is cooperative.
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Proof: Based on Definition 3 (and [12, Definition 2.2.]), sys-
tem (16)′) is cooperative if the interaction matrix � is Metzler
(see Definition 2. To satisfy this condition, both |Bi,j|�c

i,j −
Gi,j|�s

i,j| and |Bi,j|�c
i,j+Gi,j|�s

i,j| should be non-negative. That

is |Gi,j
Bi,j | ≤ | cot(θi,j)|.

To interpret the above result, consider an example where
Gi,j
Bi,j ≤ 1. The above result implies that system (16′) is
cooperative if θi,j(t) ∈ [−π

4 , π
4 ].

Remark 2: Proposition 5 restricts the variation of angles
based on Gi,j

Bi,j
ratio of power lines. One potential solution to

relax this restriction is to consider the combination of both
active and reactive power, e.g., Pi + Qi, as the control input.
Studying this possible extension is among our future avenues.

V. ANALYSIS: THE CASE OF DECOUPLED POWER FLOW

In this section, we present stability results for system (15)
assuming a decoupled power flow model such that θi,j = 0.
The latter is the assumption behind the design of the controller
in (8) [7]. We also, assume that k̇i = 0, V̇∗

i = 0. Without loss of
generality, we take diag(τ ) as an identity matrix. The network
model in this case is

V̇ = diag(V)(�
 V + b), (20)

where the interaction matrix �
 is as follows

�
 =

⎡

⎢⎢⎢⎣

−(|B1| + k1) |B1,2| . . . |B1,n|
|B1,2| −(|B2| + k2) . . . |B2,n|

...
... · · · ...

|B1,n| |B2,n| . . . −(|Bn| + kn)

⎤

⎥⎥⎥⎦.

(21)

Proposition 6: If ∀i:ki > 0, then matrix �
 in (21) is
negative definite.

Proof: The proof follows a similar trend as the proof of
Proposition 2.

Corollary 2: System (20) is a stably dissipative Lotka-
Volterra system.

Proof: If ki > 0, �
 < 0, hence the system is dissipative.
Moreover, since −(|Bi| + ki) < 0, based on [13, Th. 2.1],
system (20) is stably dissipative.

Now, let us investigate conditions under which the system
is cooperative and provide a sufficient condition for existence
of an equilibrium in int(Rn+).

Proposition 7: If ∀i : kiV∗
i > 0, then system (20) is coop-

erative and there exists an equilibrium point V̄ of system (20)
which is unique in int(Rn+). In particular, if Bsh

i = 0 and
V∗

i = V∗, then V∗ is the unique equilibrium for (20).
Proof: Based on Definition 3, system (20) is cooperative

if the interaction matrix �
 is Metzler (see Definition 2).
Since, |Bi,j| ≥ 0, then �
 is Metzler. Further, based on [16,
Th. 6.5.3], if �
 is Metzler and Hurwitz, then �−
 is Hurwitz
and −�−
 > 0. From Proposition 6, {∀i : ki > 0}, �
 is
Hurwitz. Therefore, the proof is completed if every element
of vector b in (20) is positive, that is kiV∗

i > 0. Considering
the specific case where Bsh

i = 0 and V∗
i = V∗, the proof is

straightforward since |Bi| = ∑
j∈Ni

|Bi,j| holds.
Remark 3 [Monotonicity of system (20)]: The conditions of

Proposition 7 guarantee that system (20) is cooperative, i.e.,�


Fig. 1. Network topology.

Fig. 2. The result of Proposition 4 with time-varying relative angles and
references. As shown the system is bounded.

is Metzler (Definition 3). Hence, the flow of system (20) is
monotone, that is given two initial conditions x0, y0 ∈ int(Rn+),
x0 ≥ y0 (element-wise) implies that x(t, x0) ≥ x(t, y0) for all t.
Notice that for linear time-invariant systems, a positive system
is also cooperative and monotone, however a nonlinear positive
system is not necessarily monotone [9].

Now, we present a Lyapunov-based stability analysis assum-
ing the existence of a positive equilibrium. Compared to [7],
we are presenting a Lyapunov-based analysis (and also
within a positive system frame-work) which is easier to
extend. Compared to [2], the following result uses a different
Lyapunov function considering the positivity of the system.
The latter restricts the stability analysis to the domain of
interest for voltage magnitudes, i.e., the positive orthant.

Proposition 8: The unique equilibrium point V̄ for sys-
tem (20) in int(Rn+) is asymptotically stable with the domain
of attraction equal to int(Rn+).

Proof: Assume V̄ is the unique equilibrium of (20) in
int(Rn+), that is �
V̄ + b = 0. Take V = ∑

i(Vi − V̄i) −
V̄i(ln Vi − ln V̄i) as the Lyapunov candidate. The function V
defined on R

n+ has the following properties: V(0) → +∞,
V(+∞) → +∞, V(V) ≥ 0, and V(V̄) = 0.
Let calculate the derivative of V as follows

V̇ = 1TV̇ − V̄T diag−1(V)V̇

= 1T diag(V) diag−1(V)V̇ − V̄T diag−1(V)V̇

= (V − V̄)T diag−1(V)V̇ = (V − V̄)T(�
V + b). (22)

Recall that �
 < 0. Also, from the definition of the equi-
librium, we have �
V̄ = −b. Hence, V̇ = (V − V̄)T�


(V − V̄) ≤ 0 which ends the proof.

VI. SIMULATION RESULTS

This section presents simulation results for a network of
five nodes as in Figure 1. The initial conditions for the
nodal voltages are V(0) = (1.8, 1.6, 1.4, 1.2, 1)T . We set the
lines’ suceptances and conductances as B1,2 = −1.5, B1,3 =
−1, B2,3 = −0.7, B3,4 = −1.8, B4,5 = −1.2 and Gi,j =
0.5|Bi,j|. Shunt susceptances are set to zero. Figure 2 shows the
result of Proposition 4 with θi,j = θi,j(0)+ π

10 sin(120t) where
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Fig. 3. Nodal voltages with controller (9) with constant gains and
references.

Fig. 4. Nodal voltages with controllers (8). Matrix �
 is Metzler and
Hurwitz, and the network is cooperative.

θ(0) = ( π
20 , π

25 , π
30 , π

35 , π
40 )T . The reference, V∗

i (t), is equal to
2 + 0.2 sin(t) for nodes 1, 3, 5 and equal to 2 + 0.2 cos(t) for
nodes 2, 4. As shown, the time-varying system is bounded.
To verify the results of Proposition 5, we replace ki, V∗

i with
constant values such that ki = 5 and V∗

i = 2. Figure 3 shows
the evolution of nodal voltages with the controller (9) with
constant droop gains and references. As shown, the trajec-
tories are bounded and converging to a ball in the vicinity
of the desired equilibrium. Figure 4 shows the result of the
case where the controller in (8) is used (Proposition 7). The
line conductances are set to zero and θi,j = 0. Similar to the
previous case, ki = 5, and V∗

i = 2. The interaction matrix
�
 is Metzler and Hurwitz. Here, the voltages converge to
the reference V∗

i = 2. Also, the results are shown for two
sets of initial conditions V1(0) = (1.8, 1.6, 1.4, 1.2, 1)T and
V2(0) = (2.8, 2.6, 2.4, 2.2, 2)T to show that the system is
cooperative and monotone (see Remark 3).

VII. CONCLUSION

This letter has studied the stability of a power network
whose nodal voltages are controlled by quadratic droop

controllers with injection of AC reactive power. We have
shown that the nonlinear voltage dynamics is a positive sys-
tem in the form of a Lotka-Volterra system and studied its
stability. For the lossless network with zero relative angles,
the existence and stability of the unique equilibrium have been
proved. For the lossy time-varying network, we have proved
an ultimate uniform boundedness result. Future research
avenues include characterizing the ultimate bound for the time-
varying system and considering a network with heterogeneous
controllers.
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