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Abstract—In power system operation, the economic dis-
patch problem (EDP) aims to minimize the total generation
cost while meeting the demand and satisfying generator
capacity limits. This paper proposes an algorithm based
on the gradient push-sum method to solve the EDP in
a distributed manner over communication networks po-
tentially with time-varying topologies and communication
delays. This paper shows that the proposed algorithm is
guaranteed to solve the EDP if the time-varying directed
communication network is uniformly jointly strongly con-
nected. Moreover, the proposed algorithm is also able to
handle arbitrarily large but bounded time-varying delays on
communication links. Numerical simulations are used to
illustrate and validate the proposed algorithm.

Index Terms—Distributed algorithm, economic dispatch,
gradient push-sum method, time-varying delays, time-
varying networks.

I. INTRODUCTION

THE economic dispatch problem (EDP) is one of impor-
tant problems in power system operation. It is essentially

an optimization problem where the objective is to minimize
the total generation cost while meeting total demand and
satisfying individual generator output limits. There exist many
centralized approaches for solving the EDP, such as the
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lambda-iteration method and the gradient search method [1].
The centralized methods require a single control center that
accesses the entire network’s information, and therefore may
be subject to performance limitations, such as high communi-
cation requirement and cost, substantial computational burden,
and limited flexibility and scalability, and disrespect of privacy.
It is thus desirable to develop distributed approaches to over-
come these limitations and accommodate various resources in
the future smart grid.

During the past few years, due to the rising of distributed
control and multi-agent systems research [2]–[6], various
distributed algorithms have been developed for power system
applications [7]–[10]. As for the EDP, various consensus-
based distributed algorithms have been proposed by choosing
the generation incremental cost as the consensus variable.
In these algorithms, each agent maintains a few variables
and updates them through the information exchange with its
neighboring agents. For instance, the authors of [11] propose
a leader-follower consensus-based algorithm where the leader
collects the mismatch between demand and generation, and
then leads the updates of marginal cost in the system. To
avoid the requirement of a leader, a two-level consensus-
based algorithm is proposed in [12], where the upper level
is the consensus and gradient algorithm, and the lower level
executes the classical consensus by choosing the local mis-
match as the consensus variable. In the algorithm proposed
in [13], in addition to consensus part, an innovation term is
introduced to ensure the balance between system generation
and demand. All these three algorithms are only applicable to
undirected communication networks, i.e., the information must
be exchanged bidirectionally. Because directed communication
networks cost less than their undirected counterparts [2], it
is desirable to develop control and coordination algorithms
that only require directed information flow. The capability of
utilizing low-cost communication networks is favorable in the
future smart grid. Realizing such a need, distributed algorithms
have been proposed in [14], [15] to solve the EDP over
both undirected and directed communication networks. In [14],
the authors propose a ratio consensus based algorithm which
relies on two linear iterations. The one in [15] estimates the
mismatch with all the agents being participated. The authors
of [16] propose minimum-time consensus-based algorithm to
solve the EDP in a minimum number of time steps. As for
generation cost functions, most of existing studies assume
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quadratic functions, whereas [17] considers general convex
functions.

One common assumption on communication networks in
the literature is that the communication links are time-invariant
and are not subject to time delays. However, in practice,
communication network topology may vary due to unexpected
loss of communication links. In addition, time delays are
ubiquitous in communication networks [18]. Therefore, it is
desirable to investigate the potential impacts of imperfect
communications on the existing distributed EDP algorithms,
and develop algorithms that are robust to imperfect commu-
nications in the future smart grid. In [19], the authors study
impacts of communication delays on the two-level consensus
algorithm, and find that the algorithm may fail to converge
due to time delays. In [20], the authors investigate the impacts
of communication time delays on the algorithm proposed in
[15]. Several potential negative impacts of time delays have
been found, such as slower convergence rate, convergence to
incorrect value, and divergence. The authors of [21] propose
a nonnegative-surplus based distributed algorithm to solve the
EDP over time-varying directed communication networks but
without time delays.

The existing literature is inadequate to solve the EDP in
imperfect communication networks that are subject to time-
varying topologies and time delays. In order to better handle
these practical restrictions, this paper proposes a distributed
algorithm based on the gradient push-sum method. Compared
with existing EDP studies, the main contributions of this paper
are summarized as follows.

1) We propose a distributed algorithm to solve the EDP
over time-varying directed communication networks that
are uniformly jointly strongly connected. This is a mild
condition on the connectivity of communication topolo-
gies, since the network can be disconnected at any time
instance as long as the joint graph over a period of time is
strongly connected. Therefore, the requirement on network
topologies is more general compared to the fixed strongly
connected topologies considered in the existing studies
[11]–[17], [22].

2) While time-varying communication networks are also con-
sidered in [21], the proposed algorithm in this paper can
handle the EDP with general convex cost functions, which
are more general compared to the quadratic cost functions
considered in [21].

3) The proposed algorithm can also handle arbitrarily large
but bounded time-varying delays in addition to time-
varying directed topologies, which is a distinguishing fea-
ture compared with many existing studies, such as [11],
[12], [15], [16], [21]. To the best of our knowledge, this
is the first algorithm that is capable to solve the EDP
over time-varying directed communication networks with
communication delays.

The remainder of the paper is organized as follows: In
Section II, some preliminaries on graph theory and notations
are introduced. Section III presents the EDP formulation and
the centralized Lagrangian-based approach. In Section IV, a
distributed algorithm based on the gradient push-sum method

is proposed to solve the EDP over communication networks
with imperfections, such as time-varying topologies and time
delays. Case studies are presented in Section V to illustrate and
validate the proposed algorithm. Finally, concluding remarks
are offered in Section VI.

II. PRELIMINARIES AND NOTATIONS

This section first presents some background on graph theory
[23], which is needed to describe the communication network.
Let G = (V, E) denote a directed graph (digraph) with the
set of nodes (agents) V = {1, . . . , N} and the set of edges
E ⊆ V ×V . A directed edge from node i to node j is denoted
by (i, j) ∈ E . For notational simplification, we assume that the
digraph does not have any self loop, i.e., (i, i) /∈ E for all i ∈ V
although each node i has an access to its own information. A
directed path from node i1 to node ik is a sequence of nodes
{i1, . . . , ik} such that (ij , ij+1) ∈ E for j = 1, . . . , k − 1. If
there exists a directed path from node i to node j, then node
j is said to be reachable from node i. A digraph G is said to
be strongly connected if every node is reachable from every
other node.

In this paper, an agent is assigned to each bus in the power
system. The topology of communication network could be
different from the physical network, and is modeled as a time-
varying directed graph G(t) = (V, E(t)), where the edge set
changes over time due to unexpected loss of communication
links. All agents that can transmit information to node i di-
rectly at time t are said to be its in-neighbors and belong to the
set N in

i (t) = {j ∈ V | (j, i) ∈ E(t)}. The nodes which receive
information from agent i at time t belong to the set of its out-
neighbors, denoted by N out

i (t) = {j ∈ V | (i, j) ∈ E(t)}.
The cardinality of N out

i (t) is called its out-degree at time t
and is denoted by di(t) = |N out

i (t)|. The joint graph of G(t)
in the time interval [t1, t2) with t1 < t2 ≤ ∞ is denoted
as G([t1, t2)) = ∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)E(t)). A time-
varying directed network G(t) is said to be uniformly jointly
strongly connected if there exists a constant T > 0 such that
G([t0, t0 + T )) is strongly connected for any t0 ≥ 0.
Notations: In this paper, variables in boldface represent vectors
or matrices. For a matrix A, we use Aij or [A]ij to denote
its (i, j)-th entry and AT to denote its transpose. A matrix is
nonnegative if all its entries are equal to or greater than zero.
A vector is a stochastic vector if all entries are nonnegative
and sum up to 1. For a vector x, we use xi to denote its i-
th entry. 0 and 1 denote the column vectors with all entries
being 0 and 1, respectively. 0 and I denote the matrix with all
entries being 0 and the identity matrix, respectively. The set
of real (integer) numbers is denoted by R (Z) and the set of
nonnegative real (integer) numbers is denoted by R+ (Z+).

III. PROBLEM FORMULATION AND LAGRANGIAN-BASED
APPROACH

This section first presents the mathematical formulation and
then the centralized Lagrangian-based approach for the EDP.
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A. Formulation of EDP
The goal of EDP is to minimize the total generation cost

while meeting total demand and satisfying individual generator
output limits, as formulated in (1):

min
xi

N∑
i=1

Ci(xi) (1a)

subject to
N∑
i=1

xi = D, (1b)

xi ∈ Xi := [xmin
i , xmax

i ], i = 1, . . . , N, (1c)

where N is the number of generators, xi is the power gen-
eration of generator i, Ci(·) : R+ → R+ is the cost function
of generator i, xmin

i and xmax
i are respectively the lower and

upper bounds of the power generation of generator i, and D
is the total demand satisfying

∑N
i=1 x

min
i ≤ D ≤∑N

i=1 x
max
i

in order to ensure the feasibility of problem (1).
Compared to most studies [11]–[16], [21], [24] in the EDP

literature where cost functions are assumed to be quadratic,
this paper considers general convex cost functions that satisfy
Assumption 1.

Assumption 1: For each i ∈ {1, . . . , N}, the cost function
Ci(·) : R+ → R+ is strictly convex and continuously
differentiable.

B. Centralized Lagrangian-based Approach
Since i) each cost function Ci(·) is convex, ii) the constraint

(1b) is affine, and iii) the set X1 × · · · ×XN is a polyhedral
set, if we dualize problem (1) with respect to the constraint
(1b), there is zero duality gap. Moreover, the dual optimal set
is nonempty [25]. Consequently, solutions of the EDP can be
obtained by solving its dual problem.

For convenience, let x = [x1, . . . , xN ]T ∈ RN+ . Then, define
the Lagrangian function

L(x, λ) =
N∑
i=1

Ci(xi)− λ
(

N∑
i=1

xi −D
)
.

The corresponding Lagrange dual problem is

max
λ∈R+

N∑
i=1

Ψi(λ) + λD, (2)

where
Ψi(λ) = min

xi∈Xi

Ci(xi)− λxi. (3)

Under Assumption 1, for any given λ ∈ R+, the right-hand
side of (3) has a unique minimizer given by

xi(λ) = min{max{∇C−1
i (λ), xmin

i }, xmax
i }, (4)

where ∇C−1
i denotes the inverse function of ∇Ci, which

exists over [∇Ci(xmin
i ),∇Ci(xmax

i )] since ∇Ci is continuous
and strictly increasing due to Assumption 1. Furthermore,
there is at least one optimal solution to dual problem (2), and
the unique optimal solution of the primal EDP is given by

x∗i = xi(λ
∗), ∀i = 1, 2, . . . , N, (5)

where λ∗ is any dual optimal solution.

For any given λ ∈ R+, because of the uniqueness of xi(λ),
the dual function

∑N
i=1 Ψi(λ) +λD is differentiable at λ and

its gradient is given by −(
∑N
i=1 xi(λ)−D) [26]. We can then

apply the gradient method to solve the dual problem in (2):

λ(t+ 1) = λ(t)− γ(t)

(
N∑
i=1

xi(λ(t))−D
)
, (6)

where λ(0) ∈ R can be arbitrarily assigned and γ(t) is the
step-size at time step t. When designing a distributed algorithm
based on (6), the main challenge is how to obtain the global
quantity

∑N
i=1 xi(λ(t)) − D in a distributed manner. In this

paper, we will propose a distributed algorithm to avoid the
need of the global quantity.

IV. MAIN RESULTS

This section proposes an algorithm that is capable to solve
the EDP in a distributed fashion over time-varying communi-
cation networks potentially with arbitrarily large but bounded
time delays. In Section IV-A, the dual problem in (2) is first
converted to an agent-based distributed convex optimization
problem. Then a distributed algorithm is proposed for the EDP
based on the gradient push-sum method [27]. Section IV-B
shows that the proposed algorithm is able to solve the EDP
over time-varying directed communication networks. Finally,
Section IV-C shows that the proposed algorithm is also robust
to communication time delays.

A. Distributed Gradient Push-Sum Algorithm
The dual problem in (2) can be converted into

max
λ∈R

N∑
i=1

Φi(λ), (7)

where
Φi(λ) = min

xi∈Xi

Ci(xi)− λ(xi −Di) , (8)

and Di is a virtual local demand at each bus such that∑N
i=1Di = D. The gradient of Φi(λ) is

∇Φi(λ) = − (xi(λ)−Di) . (9)

Motivated by the gradient push-sum method [27], a dis-
tributed algorithm is proposed in Algorithm 1 to solve the
equivalent dual problem (7). In the proposed algorithm, each
agent i maintains scalar variables vi(t), wi(t), yi(t), λi(t),
xi(t), where xi(t) and λi(t) are estimations of the primal and
dual optimal solution, respectively. At each time step t, each
agent i ∈ V updates its variables according to (10).

wi(t+ 1) =
vi(t)

di(t) + 1
+

∑
j∈N in

i (t)

vj(t)

dj(t) + 1
, (10a)

yi(t+ 1) =
yi(t)

di(t) + 1
+

∑
j∈N in

i (t)

yj(t)

dj(t) + 1
, (10b)

λi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
, (10c)

xi(t+ 1) = min{max{∇C−1
i (λi(t+ 1)), xmin

i }, xmax
i },(10d)

vi(t+ 1) = wi(t+ 1)− γ(t+ 1)(xi(t+ 1)−Di). (10e)
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Algorithm 1 Distributed algorithm for the EDP
1: Input: The time-varying graph G(t) = (V, E(t)), the step-

size γ(t), an arbitrarily assigned vi(0), and yi(0) = 1 for
all i ∈ V .

2: Output: The optimal incremental cost λ∗ and the optimal
generation x∗i .

3: repeat
4: for i = 1 to N do
5: Run the update rule (10).
6: Return λi(t+ 1) and xi(t+ 1).
7: end for
8: Update t as t := t+ 1.
9: until |λi(t) − λi(t − 1)| < ε1 and maxi,j∈V |λi(t) −
λj(t)| < ε2.

The step-size γ(t+1) satisfies the following decay conditions:
∞∑
t=1

γ(t) =∞,
∞∑
t=1

γ2(t) <∞,

γ(t) ≤ γ(s) for all t > s ≥ 1. (11)

One typical selection is γ(t) = a
t+b , where a > 0 and b ≥ 0. In

this algorithm, each agent i needs to know its out-degree di(t)
and sends the quantities vi(t)

di(t)+1 and yi(t)
di(t)+1 to all the agents

j in its out-neighbors set. In initialization, vi(0) is assigned
with an arbitrary value and yi(0) = 1 for all i ∈ V .

According to (9), −(xi(t+1)−Di) in (10e) is the gradient
of the function Φi(λ) at λ = λi(t + 1). Without (10d) and
the gradient term in (10e), the algorithm would be reduced
to a particular version of push-sum algorithm [28], or ratio
consensus algorithm [29], [30] for computing the average of
initial values in directed graphs. In this case, all λi(t + 1)
converge to a common value. The inclusion of the gradient
term in the update of vi(t+ 1) is to ensure that all λi(t+ 1)
converge to the optimal incremental cost λ∗.

Remark 1: Note that at each step t, agent i runs the update
rule (10):
• din

i (t) + 1 multiplications are performed in each of (10a)
and (10b), where din

i (t) is the in-degree of agent i at time
t. Note that din

i (t) ≤ N − 1, where N is the size of the
communication network.

• Only one division is performed in (10c).
• For quadratic cost functions Ci(xi) = aix

2
i+bixi+ci where

ai > 0, bi and ci are cost parameters, the update equation
(10d) has a closed form expression

xi(t+ 1) = min{max{λi(t+ 1)− bi
2ai

, xmin
i }, xmax

i },

therefore, only one multiplication is performed in (10d).
For general convex cost functions, the update equation
(10d) may not have a closed form expression. Nevertheless,
its numerical solution can be obtained in a finite number
of time steps by using the bisection method due to the
continuity and strict monotonicity of ∇C−1

i (·).
• Only one multiplication is performed in (10e).
Moreover, it requires a finite number of time steps for the
algorithm to converge based on the stopping criteria. There-

fore, the computational complexity of the proposed algorithm
is O(N).

B. Robustness to Time-Varying Communication Net-
works

In this subsection, we will show that the proposed dis-
tributed Algorithm 1 is capable to solve the EDP over time-
varying directed communication networks which satisfy As-
sumption 2, as stated in Theorem 1.

Assumption 2: The time-varying directed communication
network G(t) is uniformly jointly strongly connected, i.e.,
the jointly communication network G([t0, t0 +T )) is strongly
connected for any t0 ≥ 0 with some constant T > 0.

Theorem 1: Under Assumptions 1 and 2, distributed Algo-
rithm 1 with the step-size γ(t) satisfying conditions in (11)
solves the EDP, i.e., λi(t) → λ∗, and xi(t) → x∗i as t → ∞
for all i ∈ V .

Proof: Note that the equivalent dual problem (7) has the
same form as the optimization problem considered in [27].
The only difference is that the dual problem is a maximization
problem while the problem in [27] is a minimization problem.
In order to apply [27, Theorem 1] to show Theorem 1, we
need to verify that all the conditions are satisfied.
• The condition (a) is that the network is uniformly jointly

strongly connected, which is satisfied in our case as assumed
in Assumption 2.

• The condition (b) is that each function in the minimization
problem is convex and the optimal set is nonempty. This is
also satisfied in our case since each function Φi(λ) in the
maximization problem (7) is concave and the optimal set is
nonempty, which is guaranteed by Assumption 1.

• The condition (c) is that the (sub)gradient of each function
in the problem is uniformly bounded. This is indeed satisfied
in our case since it follows from (9) that the gradient of each
function Φi(λ) is uniformly bounded, i.e.,∣∣∣∇Φi(λi(t+ 1))

∣∣∣ =
∣∣∣−(xi(λi(t+ 1))−Di)

∣∣∣
≤ max

i∈V
xmax
i + max

i∈V
Di. (12)

Therefore, all the conditions are satisfied and the result fol-
lows.

Remark 2: The key result used in the proof of [27, Theo-
rem 1] is [27, Lemma 3]. It shows that the matrix A(t) which
captures the weights used in the update equations (10a) and
(10b), defined as

Aij(t) =

{
1

dj(t)+1 , if j ∈ N in
i (t) ∪ {i},

0 otherwise,
(13)

has the special property under Assumption 2, that is, for each
s ∈ Z+, there is a stochastic vector φ(s) such that for all i, j
and t ≥ s,∣∣∣[AT(t)AT(t− 1) · · ·AT(s+ 1)AT(s)]ij − φj(s)

∣∣∣ ≤ αβt−s,
with

α = 2, β =
(

1− 1

NNT

) 1
NT

, (14)
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where T is the bound on the intercommunication interval given
in Assumption 2.

Remark 3: In the proof of Theorem 1, we have built upon
the recent developed result in [27]. However, our work is
substantially different.
• We consider the EDP, which is a constrained optimization

problem as shown in (1). We have converted the problem
to an equivalent dual problem (7), which has the same form
as the unconstrained problem considered in [27].

• In order to apply the result in [27], there are substantial
details need to be verified as shown in Theorem 1.

• We will show in Theorem 2 that the proposed algorithm
is also robust to arbitrarily large but bounded time-varying
communication delays, which are not considered in [27].
Remark 4: Theorem 1 shows that the proposed distributed

Algorithm 1 solves the EDP over time-varying directed com-
munication networks that are uniformly jointly strongly con-
nected. This is a mild condition on the connectivity of com-
munication topologies, since the network can be disconnected
at any time instance as long as the joint graph over a period
of time is strongly connected. Therefore, the requirement on
network topologies is more general than the existing studies
[11]–[17], [22], where the fixed strongly connected topologies
are required.

C. Robustness to Communication Time Delays

This subsection studies the impact of time delays on the
proposed Algorithm 1. We first model time delays in the
directed communication networks. In particular, the commu-
nication link (j, i) at time step t undergoes a priori unknown
delay τji(t) ∈ Z+. We impose the following assumption on
time-varying delays.

Assumption 3: The time-varying delays are uniformly
bounded at all times, i.e., 0 ≤ τji(t) ≤ τ̄ for all t ∈ Z+

with some finite τ̄ ∈ Z+. Moreover, each agent has access to
its own value without any time delay, i.e., τii(t) = 0 for all
i ∈ V and for all time steps t ∈ Z+.

Note that in the proposed algorithm (10), only the updates
of wi(t + 1) and yj(t + 1) rely on communications among
the agents, while the updates of λi(t + 1), xi(t + 1), and
vi(t + 1) are executed locally without the need of further
communications. When communications are subject to time
delays, each agent i updates the values of wi(t + 1) and
yi(t + 1) by combining its own values and the delayed
information received from its in-neighbors. More specifically,
under time-delays, executing the update rule (10) results in:

wi(t+ 1)=
vi(t)

di(t) + 1
+

∑
j∈N in

i (t)

vj (t− τji(t))
dj(t) + 1

, (15a)

yi(t+ 1)=
yi(t)

di(t) + 1
+

∑
j∈N in

i (t)

yj (t− τji(t))
dj(t) + 1

, (15b)

λi(t+ 1)=
wi(t+ 1)

yi(t+ 1)
, (15c)

xi(t+ 1)=min{max{∇C−1
i (λi(t+ 1)), xmin

i }, xmax
i }, (15d)

vi(t+ 1)=wi(t+ 1)− γ(t+ 1)(xi(t+ 1)−Di). (15e)

The following theorem shows that the proposed Algorithm 1
is able to solve the EDP over time-varying directed commu-
nication networks even when communication links are subject
to arbitrarily large but bounded delays.

Theorem 2: Under Assumptions 1, 2, and 3, distributed Al-
gorithm 1 with the step-size γ(t) satisfying conditions in (11)
solves the EDP even when communication links are subject
to arbitrarily large but bounded delays, i.e., λi(t) → λ∗, and
xi(t)→ x∗i as t→∞ for all i ∈ V .

Proof: We first note that under our modeling on com-
munication time delays, executing the update rule (10) re-
sults in (15). The proof is based on an augmented digraph
representation which allows us to reduce the original system
with bounded delays (15) to a system without delays. More
specifically, for each agent i in the original graph, we introduce
τ̄ virtual agents i(1), i(2), . . ., i(τ̄), where at each time step t,
virtual agent i(r) holds information that is destined to arrive to
node i in r steps. Since time delays are bounded by τ̄ , there
are in total N(τ̄ + 1) agents in the augmented digraph. In the
augmented digraph, we enumerate the agents in the original
digraph first and then the virtual agents. Moreover, the virtual
agents are indexed so that the first N agents model the delay
of 1 time step, the next N agents model the delay of 2 time
steps, and so on.

We now describe how these agents communicate in the
augmented digraph. In particular, at time step t, for each edge
(j, i) in the original network, that edge also exists in the
augmented digraph along with edges (j, i(1)), (j, i(2)), . . .,
(j, i(τ̄)), and edges (i(1), i), (i(2), i(1)), . . ., (i(τ̄), i(τ̄−1)).

For each virtual agent i(r), where r = 1, . . . , τ̄ , we associate
it with the states v(r)

i , y(r)
i and w(r)

i . We then define v(r)(t),
y(r)(t) and w(r)(t) as the column stack vectors of v

(r)
i ,

y
(r)
i and w

(r)
i where i ∈ V , respectively. For example,

v(r)(t) = [v
(r)
1 (t), . . . , v

(r)
N (t)]T. Finally, we define ṽ(t) =

[v(t)T,v(1)(t)T, . . . ,v(τ̄)(t)T]T. Similarly, we define w̃(t) and
ỹ(t). For the agent in the original network i ∈ V , the initial
states are given by vi(0) and yi(0) = 1, while for all the
virtual agents, the initial states are given by v(r)(0) = 0 and
y(r)(0) = 0 for all r = 1, 2, . . . τ̄ .

In the augmented digraph, the original system with delays
(15) can be rewritten in a more compact form without delays
as

w̃(t+ 1) = Ã(t)ṽ(t), (16a)
ỹ(t+ 1) = Ã(t)ỹ(t), (16b)

λi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
, i ∈ V, (16c)

xi(t+ 1) = min{max{∇C−1
i (λi(t+ 1)), xmin

i }, xmax
i }, (16d)

ṽ(t+ 1) = w̃(t+ 1)− γ(t+ 1)[xT(t)− D̃T,0T
Nτ̄ ]T, (16e)

where x(t) = [x1(t), . . . , xN (t)]T, D̃ = [D1, . . . , DN ]T, and

Ã(t) =


A(0)(t) IN×N 0 . . . 0
A(1)(t) 0 IN×N . . . 0

...
...

...
. . .

...
A(τ̄−1)(t) 0 0 . . . IN×N
A(τ̄)(t) 0 0 . . . 0

 .
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Note that in (16), the update equations (16c) and (16d) are only
for the agents in the original graph, which are identical to the
update equations (10c) and (10d), respectively, for the case
without communication delays. Also note that ỹi(t + 1) > 0
for all t ∈ Z+ and for all original agents i ∈ V . This is not
necessarily true for the virtual agents. Therefore, λi(t+1) for
i ∈ V in (16c) is a finite quality for all t ∈ Z+. xi(t + 1)
for i ∈ V is then updated according to (16d). These resulting
values are finally used in the update equations (16e) for the
agents in the original graph, while for the virtual agents, update
equations (16e) reduces to ṽi(t+ 1) = w̃i(t+ 1).

Herein, A(0)(t), A(1)(t), . . ., A(τ̄)(t) are appropriately de-
fined nonnegative matrices that depend on the communication
link delays which are experienced by messages sent at time
step t. Specifically, A(r)(t) for r = 0, . . . , τ̄ is a matrix
associated only with the communication links for which the
message was delayed by r steps at time step t, and satisfies

A
(r)
ij (t) =

{
Aij(t), if τij(t) = r, (i, j) ∈ E(t),
0, otherwise,

with Aij(t) given by (13).
Notice that at time step t, for each edge (j, i), only one of

A
(0)
ij (t), . . ., A(τ̄)

ij (t) is nonzero and is equal to Aij(t). Thus,
the special structure of the matrix Ã(t) allows us to analyze
their products. More specially, it follows from [31, Lemma 5]
that Ã(t) has the special property under Assumptions 2 and 3,
that is, for each s ∈ Z+, there is a stochastic vector φ̃(s) such
that for all i, j ∈ {1, . . . , N(τ̄ + 1)} and t ≥ s,∣∣∣[ÃT(t)ÃT(t− 1) · · · ÃT(s+ 1)ÃT(s)]ij − φ̃j(s)

∣∣∣ ≤ αβ̃t−s,
with

α = 2, β̃ =

(
1− 1

NNB

) 1
NB

,

where B = T + τ̄ , T is the bound on the intercommunication
interval given in Assumption 2 and τ̄ is the upper bound of
the communication time delays in Assumption 3. Therefore,
the special property given in Remark 2 is satisfied with the
matrix Ã.

The rest of the proof follows from the proof of Theorem 1
by noticing that in the update equation (16e), the gradient
of each function Φi(λ) for the original agent is uniformly
bounded as shown in (12) and there is no perturbation for the
virtual agents.

Remark 5: Theorem 2 shows that the proposed distributed
Algorithm 1 also solves the EDP even when time-varying di-
rected communication links are subject to arbitrarily large but
bounded time-varying delays. In the EDP literature, various
distributed algorithms have been proposed for fixed networks
without time delays, e.g., [11], [13], [15], [17]. As shown in
[19], [20], these algorithms fail to converge when the estimate
of the mismatch is subject to time delays and when the
time delays on the estimate of the optimal incremental cost
are large. The authors of [21] propose a nonnegative-surplus
based distributed algorithm to solve the EDP over time-varying
communication networks but without time delays. To the best
of our knowledge, our proposed algorithm is the first algorithm

that is capable to solve the EDP over switching networks with
arbitrarily large but bounded time-varying delays.

Remark 6: Note that the convergence rate of the existing
algorithms for the EDP over fixed topologies in [11]–[13],
[15], [17] depends on the real part of the dominant eigenvalue
of the Laplacian matrix associated with network topology and
the step-size. In our work, we consider switching topologies
with time-varying communication delays, therefore the con-
vergence rate of our proposed algorithm also depends on the
nature of switching sequence and the nature of time delays.
The explicit relationship is thus more complicated and is left
as an interesting future direction.

Remark 7: Although the distributed Algorithm 1 is proposed
to solve the EDP over switching communication networks with
time-varying delays, it can also be applied to solve a particular
type of the optimal resource allocation problem [32], [33],
which can be formulated as (1).

V. CASE STUDIES

In this section, various case studies are presented in order
to illustrate and validate the proposed algorithm. Test systems
have been developed and studied for distributed EDP algo-
rithms in existing works, e.g., the IEEE 14-bus system and the
IEEE-118 bus system for fixed communication networks [13],
[15], [17] and a 4-bus system for time-varying communication
networks [21]. These test systems are adopted to study the
proposed algorithm with the corresponding type of communi-
cation networks, considering both without and with time delay
scenarios.

A. Fixed Communication Networks
First, the IEEE 14-bus system is used to demonstrate the

implementation of the proposed algorithm for a fixed
directed communication network, which is modeled
as a directed graph G = (V, E), with the edge set
E = {(i, i + 1), (i, i + 2)|1 ≤ i ≤ 12} ∪ {(13, 14), (13, 1),
(14, 1), (1, 7), (2, 8), (3, 2), (3, 9), (4, 10), (5, 2), (5, 11), (6, 12)}.
Note that generator buses are {1, 2, 3, 6, 8}, and load buses
are {2, 3, 4, 5, 6, 9, 10, 11, 13, 14}. The generator parameters
including the parameters of the quadratic cost functions
are adopted from [13], [15], [17], which are given in
Table I. When a bus does not contain generators, the power
generation at that bus is set to zero. Thus, the update in
(10d) simply becomes xi(t + 1) = 0 for i /∈ {1, 2, 3, 6, 8}.
The virtual local demands at each bus are given as
D1 = 0 MW, D2 = 9 MW, D3 = 56 MW, D4 = 55 MW,
D5 = 27 MW, D6 = 27 MW, D7 = 0 MW, D8 = 0 MW,
D9 = 8 MW, D10 = 24 MW, D11 = 53 MW, D12 = 46 MW,
D13 = 16 MW, and D14 = 40 MW. The total demand is
D =

∑14
i=1Di = 380 MW, which is unknown to the agent at

each bus.
1) Without delay: This case represents ideal communi-

cation network, where the communication links are time-
invariant and not subject to time delays. This most basic
case has been used in many existing studies, and therefore is
selected as a starting point for testing the proposed algorithm.
The results with a step-size of γ(t) = 0.15

t are plotted in
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TABLE I
IEEE 14-BUS SYSTEM GENERATOR PARAMETERS

Bus ai(MW2h) bi ($/MWh) Range (MW)
1 0.04 2.0 [0,80]
2 0.03 3.0 [0,90]
3 0.035 4.0 [0,70]
6 0.03 4.0 [0,70]
8 0.04 2.5 [0,80]
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Fig. 1. Simulation results for the IEEE-14 bus over fixed communication
networks without time delays.

Fig. 1, where Fig. 1(a) shows the evolution of incremental cost
λi(t), Fig. 1(b) shows the evolution of power generation xi(t),
and Fig. 1(c) shows the evolution of the total generation in
comparison of total demand. As can be seen, the incremental
cost λi(t) computed at each agent converges to the optimal
value λ∗ = 8.52 $/MWh. In particular, at time step t = 300,
the maximum difference between all the λi is 0.0045 $/MWh,
which is quite small. The generation at each generator bus also
converges to their optimal values, which are x∗1 = 80 MW,
x∗2 = 90 MW, x∗3 = 64.65 MW, x∗6 = 70 MW, and
x∗8 = 75.31 MW. As λi(t) and xi(t) converge to their optima,
the total generation meets total demand D = 380 MW.
The proposed algorithm is able to handle the power output
constraints of individual generator and find the correct optimal
solutions. For example, generators 1, 2 and 6 are at the upper
bounds of their power output because they are cheaper than
the other two generators and therefore provide generation as
much as possible.

For this communication network, the proposed algorithm
has also been studied for generators with non-quadratic cost
functions. In particular, we adopt the following case from [17],
where the generator at bus 6 is replaced with a fixed generation

x6 = 100 MW and the cost function of generators at bus 1
and 3 become:

C1(x1) =
(x1 + 25)2

25
+ 50 exp(

x1 + 40

100
),

C3(x3) =
(x3 + 57.14)2

28.58
+ 7× 10−6x4

3.

Using the proposed algorithm, the incremental cost at each
bus converges to 8.85 $/MWh, the generation at each generator
bus respectively converges to x1 = 67.85 MW, x2 = 90 MW,
x3 = 41.47 MW, x6 = 100 MW, and x8 = 79.96 MW, which
agrees with the centralized solution and the one found in [17].

2) With time-varying delays: In this case, the proposed
algorithm is studied using the same communication network
topology but with time delays. While there exist works that
study the impacts of uniform fixed time delays on distributed
EDP algorithm [19], [20], this work considers more general
and challenging cases, where delays could be arbitrary time-
varying with an upper bound. In this case study, we assume
that the upper bound is τ̄ = 20. In particular, at each time
step, the time delay of each link has a probability of 1/21
to be any integer in {0, 1, . . . , 20}. Since time delays are
stochastic, the iteration results at each agent vary from one
simulation to another. Nevertheless, the proposed algorithm
always converges to the optimal solutions. As an example,
Fig. 2 plots the simulation results for a particular run. As can
be seen, even in the presence of communication time delays,
each variable eventually converges to the same value as the
case without time delays. In particular, at time step t = 5000,
the maximum difference between all the λi is 0.0412 $/MWh,
which is only 0.48% of the optimal incremental cost λ∗.
Compared with the results in Fig. 1, the optimal solutions
are obtained with a slower rate.

B. Time-Varying Communication Networks

The test system and the communication topology are
adopted from [21] for comparison purpose. Four generators
are selected from three types, and the power output ranges and
parameters of quadratic cost functions for each generator type
are given in Table II. The communication network is modeled
as a time-varying directed graph G(t) switching among three
fixed topologies G1, G2 and G3 shown in Fig. 3 at each time
step. In particular,

G(t) =


G1, if t ∈ [0, 1) ∪ [3, 4) · · · ∪ [3s, 3s+ 1) · · · ,
G2, if t ∈ [1, 2) ∪ [4, 5) · · · ∪ [3s+ 1, 3s+ 2) · · · ,
G3, if t ∈ [2, 3) ∪ [5, 6) · · · ∪ [3s+ 2, 3s+ 3) · · · ,

where s ∈ Z+. It is easy to check that each of the fixed
topologies G1, G2 and G3 is not strongly connected. For
example, there is no directed path from agent 2 to agent
4 in G1. However, the time-varying directed graph G(t) is
uniformly jointly strongly connected since the joint graph
G([t0, t0 + T )) is strongly connected for any t0 ≥ 0 with
T = 3. Thus, Assumption 2 is satisfied with T = 3. According
to Theorems 1 and 2, the proposed algorithm solves the EDP
over the time-varying communication network without delays
and with delays, respectively. To implement the proposed
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Fig. 2. Simulation results for the IEEE-14 bus over fixed communication
networks with time-varying delays.

TABLE II
GENERATOR PARAMETERS

Type A (Gen. 1&2) B (Gen. 3) C (Gen. 4)
Range (MW) [150,600] [100,400] [50,200]
ai(MW2h) 0.00142 0.00194 0.00482
bi ($/MWh) 7.2 7.85 7.97
ci ($/h) 510 310 78

1 2

43

1 2

43

1 2

43

G2G1 G3

Fig. 3. Time-varying directed communication network.

algorithm, we first choose the virtual local demands at each
bus as D1 = 500 MW, D2 = 500 MW, D3 = 350 MW,
and D4 = 150 MW. The total demand is D =

∑4
i=1Di =

1500 MW, which is unknown to the agent at each bus.
1) Without delay: First, we consider the case where com-

munication links are not subject to delays. With a step-size of
γ(t) = 0.01

t , the simulation results are shown in Fig. 4. As
can be seen, λi(t) converge to the optimal incremental cost
λ∗ = 8.84 $/MWh, and xi converges to the optimal generation
x∗1 = 577.46 MW, x∗2 = 577.46 MW, x∗3 = 255.16 MW, and
x∗4 = 90.25 MW as shown in Fig. 4(b), which agree with the
centralized solution and the one obtained in [21]. In particular,
at time step t = 250, the maximum difference between all the
λi is 0.0126 $/MWh, which is quite small. The total generation
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Fig. 4. Simulation results for the system of four generators over time-
varying communication networks without time delays.

gradually meets the total demand 1500 MW.
2) With time-varying delays: Note that the nonnegative-

surplus based algorithm proposed in [21] cannot handle time
delays since it is build upon the algorithm in [15] which is
not robust to even uniformly constant delays as shown in
[20]. On the other hand, the proposed algorithm in this paper
is robust to time-varying delays in addition to time-varying
topologies as shown in Theorem 2. In order to demonstrate
this distinguishing feature, we herein consider the same time-
varying communication topology but with time delays. In this
case study, we consider the case where time-varying delays are
upper bounded by τ̄ = 3 and the probability mass function of
time delay on any communication link is given by Pτ (τ) = 0.5
for τ = 0, Pτ (τ) = 0.35 for τ = 1, Pτ (τ) = 0.1 for τ = 2,
and Pτ (τ) = 0.05 for τ = 3.

Since time delays are stochastic, the dynamics at each
agent vary from one simulation to another. Nevertheless, the
proposed algorithm always converges to the optimal solutions.
Simulation results for a particular run are plotted in Fig. 5, As
can been seen, even in the presence of communication time
delays, each variable still converges to the same value as the
case without time delays. In particular, at time step t = 600,
the maximum difference between all the λi is 0.0126 $/MWh,
which is quite small. Compared with the results in Fig. 4, the
optimal solutions are obtained with a slower rate.

C. IEEE-118 Bus System

In this case we test our algorithm to the IEEE 118-bus
system to further show the effectiveness of the proposed
algorithm.
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Fig. 5. Simulation results for the system of four generators over time-
varying communication networks with time delays.

1) Fixed topologies without delays: We first assume that the
communication topology is the same as the physical network.
The results with a step size of γ(t) = 0.6

t are plotted in
Fig. 6, where Fig. 6(a) shows the evolution of incremental cost
λi(t), Fig. 6(b) shows the evolution of power generation xi(t),
and Fig. 6(c) shows the evolution of the total generation in
comparison of total demand. As can be seen, the incremental
cost λi(t) computed at each agent converges to the optimal
value λ∗ = 39.38 $/MWh, which agrees with the result
obtained by running the MATPOWER [34]. The generation
at each generator bus also converges to the same optimal
values as obtained by the MATPOWER. As λi(t) and xi(t)
converge to their optima, the total generation meets total
demand D = 4242 MW.

2) Time-varying topologies with time-varying delays: In
this case, the proposed algorithm is evaluated using a time-
varying communication network with time delays. The com-
munication network is modeled as a time-varying graph
switching among two fixed topologies. In particular,

G(t) =

{
G1, if t ∈ [0, 1) ∪ [2, 3) · · · ∪ [2s, 2s+ 1) · · · ,
G2, if t ∈ [1, 2) ∪ [3, 4) · · · ∪ [2s+ 1, 2s+ 2) · · · ,

where s ∈ Z+, G1 is the graph obtained by disconnecting
Zone 1 and Zone 2 in [35, Figure 6], where IEEE 118-bus
system have been partitioned into three different zones, and
G2 is the graph obtained by disconnecting Zone 2 and Zone
3 in [35, Figure 6]. It is easy to check that each of the fixed
topologies G1 and G2 is not connected. However, the time-
varying graph G(t) is uniformly jointly connected since the
joint graph G([t0, t0 + T )) is connected for any t0 ≥ 0 with
T = 2. Thus, Assumption 2 is satisfied with T = 2. According
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Fig. 6. Simulation results for the IEEE 118-bus over fixed networks.

to Theorem 2, the proposed algorithm solves the EDP over
the time-varying communication network with arbitrary time-
varying communication delays with an upper bound. In this
case study, we assume that the upper bound is τ̄ = 3. In
particular, at each time step, the time delay of each link has a
probability of 1/4 to be any integer in {0, 1, 2, 3}. Since time
delays are stochastic, the dynamics at each agent vary from one
simulation to another. Nevertheless, the proposed algorithm
always converges to the optimal solutions. Simulation results
for a particular run are plotted in Fig. 7. As can been seen,
even in the presence of both time-varying communication links
and communication time delays, each variable still converges
to the same value as the case for the fixed communication
network without time delays.

VI. CONCLUSIONS

This paper proposes a distributed algorithm based on the
gradient push-sum method to solve the EDP over time-varying
directed communication networks with time-varying delays.
The cost functions are assumed to be convex rather than
quadratic as in most existing studies. The proposed algorithm
is fully distributed, without requiring global information of the
system. Both theoretical proofs and simulation results showed
that the proposed algorithm can solve the EDP over time-
varying directed communication networks provided that the
network is uniformly jointly strongly connected. Moreover,
the proposed algorithm is also robust to arbitrarily large
but bounded time-varying communication delays. One future
work will focus on the robustness of the proposed distributed
algorithm against unreliable communication links that may
drop packets. Another interesting direction is to extend the
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Fig. 7. Simulation results for the IEEE 118-bus over time-varying
networks with delays.

proposed distributed algorithm to accommodate additional
physical constraints, such as transmission line loss and power
flow and transmission line flow constraints.
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