
Privacy-Preserving Event-Triggered Quantized Average Consensus

Apostolos I. Rikos, Themistoklis Charalambous, Karl H. Johansson, and Christoforos N. Hadjicostis

Abstract— In this paper, we propose a privacy-preserving
event-triggered quantized average consensus algorithm that
allows agents to calculate the average of their initial values
without revealing to other agents their specific value. We assume
that agents (nodes) interact with other agents via directed
communication links (edges), forming a directed communica-
tion topology (digraph). The proposed distributed algorithm
can be followed by any agent wishing to maintain its privacy
(i.e., not reveal the initial value it contributes to the average)
to other, possibly multiple, curious but not malicious agents.
Curious agents try to identify the initial values of other agents,
but do not interfere in the computation in any other way.
We develop a distributed strategy that allows agents while
processing and transmitting quantized information, to preserve
the privacy of their initial quantized values and at the same time
to obtain, after a finite number of steps, the exact average of
the initial values of the nodes. Illustrative examples demonstrate
the validity and performance of our proposed algorithm.

Index Terms— Average consensus, quantized averaging,
event-triggered, privacy preservation.

I. INTRODUCTION

A problem of particular interest in distributed control is
the consensus problem, in which agents communicate locally
with other agents under constraints on connectivity [1]. In
distributed averaging (a special case of the consensus prob-
lem), each agent is initially endowed with a numerical value,
which it updates in an iterative fashion, by sending/receiving
information to/from other neighboring agents, so that, it is
able to eventually compute the average of all initial values.
Average consensus has received significant attention recently
and has been studied extensively in settings where each
agent processes and transmits real-valued states with infinite
precision [2]–[4].

The case where capacity-limited network links can only
allow messages of certain length to be transmitted between
agents, has also received significant attention recently as it
effectively extends techniques for average consensus towards
the direction of quantized consensus. The quantized nature
of processing and communication is better suited to the
available network resources (e.g., physical memories of finite
capacity and/or digital communication channels of limited
data rate); it also exhibits several other advantages, such as

Apostolos I. Rikos and K. H. Johansson are with the Division of Decision
and Control Systems, KTH Royal Institute of Technology, SE-100 44
Stockholm, Sweden. E-mails:{rikos,kallej}@kth.se.

T. Charalambous is with the Department of Electrical Engineer-
ing and Automation, Aalto University, 02150 Espoo, Finland. E-
mail: themistoklis.charalambous@aalto.fi.

C. N. Hadjicostis is with the Department of Electrical and Com-
puter Engineering, University of Cyprus, 1678 Nicosia, Cyprus: E-
mail: chadjic@ucy.ac.cy.

applicability to security/privacy applications where encryp-
tion is desirable [5]. As a result, a large number of works
have studied the quantized average consensus problem and
various probabilistic and deterministic strategies have been
proposed [6]–[11].

Average consensus algorithms require each agent to ex-
change and disclose state information to its neighbors, which
may be undesirable in cases where the state is private or con-
tains sensitive information. In many emerging applications
(e.g., health care and opinion forming/agreement in social
networks) preserving the privacy of participating components
is necessary for enabling cooperation between agents with-
out requiring them to disclose sensitive information. There
have been different approaches for dealing with privacy
preservation in such systems. For example, [12] proposed
a method in which, each node wishing to protect its privacy
adds a random offset value with zero mean to its initial
value, thus ensuring that its value will not be revealed to
curious nodes that might be observing the exchange of
values in the network. The main idea is based upon the
observation that, when a large number of nodes employ the
protocol, the sum of their offsets (independently chosen) will
be essentially zero and therefore the nodes will converge
to the true average value of the network. A related line
of research is based on differential privacy [13], [14], in
which agents inject uncorrelated noise into the exchanged
messages so that the data associated to a particular agent
cannot be inferred by a curious node during the execution
of the algorithm. Nevertheless, the exact average value is
not obtained due to the induced trade-off between enabled
privacy and computational accuracy [14]. To overcome this
trade-off and guarantee convergence to the exact average, the
injection of correlated noise at each time step and for a finite
period of time is proposed in [15], thus allowing a node to
avoid revealing its own initial value as well as the initial
values of other nodes. Once this period of time ends, each
node ensures that the accumulated sum of offsets it added
in the iterative commutation is removed. In [16], the nodes
asymptotically subtract the initial offset values they added
in the computation while in [17] each node masks its initial
value with an offset such that the sum of the offsets of each
agent is zero, thus guaranteeing convergence to the average.
Another approach that guarantees privacy preservation is via
homomorphic encryption [18]–[20]. However, this approach
requires the existence of trusted nodes and imposes heavier
computational requirements on the nodes.

In this paper, we build on the concepts introduced in [15],
[16] and propose a novel distributed mechanism in which,
each agent that would like to protect its privacy, follows

a finite-time event-triggered quantized average consensus
protocol which involves adding and subtracting offsets to
its actual value according to an event-based strategy for
a predefined number of steps. More specifically, when the
token that triggers action arrives at a specific node for the first
time, the node adds a substantial negative quantized offset
to its initial value. Note that this is different from [15], [16]
where the initial offset added is a real number. Then, the
node gradually removes the initial offset, one chunk at a
time (but not asymptotically as done in [16]), ensuring that
by the end of a certain number of predefined steps, the total
(accumulated sum of) offset is cancelled out. Note that unlike
other privacy preserving protocols proposed in the literature
(e.g., [12], [15], [16], [21]), the privacy strategy proposed in
this paper takes full advantage of the algorithm’s finite time
nature. This means that consensus to the exact average of the
initial values is achieved after a finite number of iterations,
while the error, introduced from the offset initially infused
in the network by the nodes following the protocol, vanishes
completely.

II. NOTATION AND PRELIMINARIES

A. Notation

The sets of real, rational, integer, and natural numbers
are denoted by R,Q,Z and N, respectively. The symbols
Z≥0 (Z>0) and Z≤0 (Z<0) denote the sets of nonnegative
(positive) and nonpositive (negative) integers respectively.
Vectors are denoted by small letters whereas matrices are
denoted by capital letters. The transpose of a matrix A is
denoted by AT . For A ∈ Rn×n, Aij denotes the entry at row
i and column j. By 1 we denote the all-ones vector and by
I we denote the identity matrix (of appropriate dimensions).

B. Graph Theory

Consider a network of n (n ≥ 2) agents communicating
only with their immediate neighbors. The communication
topology can be captured by a directed graph (digraph),
called communication digraph. A digraph is defined as Gd =
(V, E), where V = {v1, v2, . . . , vn} is the set of nodes
(representing the agents) and E ⊆ V×V−{(vj , vj) | vj ∈ V}
is the set of edges (self-edges excluded) whose cardinality
is denoted as m = |E|. A directed edge from node vi to
node vj is denoted by mji , (vj , vi) ∈ E , and captures
the fact that node vj can receive information from node vi
(but not the other way around). We assume that the given
digraph Gd = (V, E) is strongly connected (i.e., for each pair
of nodes vj , vi ∈ V , vj 6= vi, there exists a directed path1

from vi to vj). The subset of nodes that can directly transmit
information to node vj is called the set of in-neighbors of vj
and is represented by N−j = {vi ∈ V | (vj , vi) ∈ E}, while
the subset of nodes that can directly receive information
from node vj is called the set of out-neighbors of vj and
is represented by N+

j = {vl ∈ V | (vl, vj) ∈ E}. The
cardinality of N−j is called the in-degree of vj and is denoted

1A directed path from vi to vj exists if we can find a sequence of
vertices vi ≡ vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1

, vlτ) ∈ E for τ =
0, 1, . . . , t− 1.

by D−j (i.e., D−j = |N−j |), while the cardinality of N+
j

is called the out-degree of vj and is denoted by D+
j (i.e.,

D+
j = |N+

j |).

C. Agent Operation

With respect to quantization of information flow, we have
that at time step k ∈ Z≥0 each node vj ∈ V maintains the
state variables ysj [k], z

s
j [k], q

s
j [k], where ysj [k] ∈ Z, zsj [k] ∈ N

and qsj [k] = ysj [k]/z
s
j [k], and the mass variables yj [k], zj [k],

where yj [k] ∈ Z and zj [k] ∈ Z≥0. The aggregate states are
denoted by

ys[k] = [ys1[k] ... y
s
n[k]]

T ∈ Zn,
zs[k] = [zs1[k] ... z

s
n[k]]

T ∈ Zn≥0,
qs[k] = [qs1[k] ... q

s
n[k]]

T ∈ Qn,
y[k] = [y1[k] ... yn[k]]

T ∈ Zn,
z[k] = [z1[k] ... zn[k]]

T ∈ Zn≥0.

Furthermore, each node maintains a privacy value uj [k], the
number of offset adding steps Lj ∈ N, the offset adding
counter lj ∈ N and its transmission counter cj ∈ N.
Transmission Policy. We assume that each node is aware of
its out-neighbors and can directly transmit messages to each
of them. However, it cannot necessarily receive messages
(at least not directly) from them. In the proposed distributed
protocol, each node vj assigns a unique order in the set
{0, 1, ...,D+

j − 1} to each of its outgoing edges mlj , where
vl ∈ N+

j . More specifically, the order of link (vl, vj) for
node vj is denoted by Plj (such that {Plj | vl ∈ N+

j } =

{0, 1, ...,D+
j − 1}). This unique predetermined order is used

during the execution of the proposed distributed algorithm
as a way of allowing node vj to transmit messages to its
out-neighbors in a round-robin2 fashion.

D. Quantized Averaging via Deterministic Mass Summation

The objective of quantized average consensus problems is
the development of distributed algorithms which allow nodes
to process and transmit quantized information, so that they
have short communication packages and eventually obtain,
after a finite number of steps, a fraction qs which is equal to
the exact average of the initial quantized values of the nodes.

Following the recently proposed method in [9], assume
that each node vj in the network has a quantized3 initial value
yj [0] ∈ Z. At each time step k, each node vj ∈ V maintains
its mass variables yj [k] ∈ Z and zj [k] ∈ Z≥0 and its state
variables ysj [k] ∈ Z, zsj [k] ∈ N and qsj [k] = ysj [k]/z

s
j [k]. It

2When executing the deterministic protocol, each node vj transmits to its
out-neighbors, one at a time, by following the predetermined order. The next
time it transmits to an out-neighbor, it continues from the outgoing edge
it stopped the previous time and cycles through the edges in a round-robin
fashion.

3Following [8], [11] we assume that the state of each node is integer
valued. This abstraction subsumes a class of quantization effects (e.g.,
uniform quantization).

updates the values of the mass variables as

yj [k + 1] = yj [k] +
∑

vi∈N−j

1ji[k]yi[k], (1a)

zj [k + 1] = zj [k] +
∑

vi∈N−j

1ji[k]zi[k], (1b)

where

1ji[k] =

{
1, if a message is received at vj from vi at k,

0, otherwise.

If any of the following event-triggered conditions:
(C1): zj [k + 1] > zsj [k],
(C2): zj [k + 1] = zsj [k] and yj [k + 1] ≥ ysj [k],
is satisfied, node vj updates its state variables as follows:

zsj [k + 1] = zj [k + 1], (2a)

ysj [k + 1] = yj [k + 1], (2b)

qsj [k + 1] =
ysj [k + 1]

zsj [k + 1]
. (2c)

Then, it transmits its mass variables yj [k+1], zj [k+1] to an
out-neighbor vl ∈ N+

j chosen according to the unique order
it assigned to its out-neighbors during initialization and sets
its mass variables equal to zero (i.e., yj [k + 1] = 0 and
zj [k + 1] = 0).

Definition 1: The system is able to achieve quantized
average consensus if, for every vj ∈ V , there exists k0 so
that for every k ≥ k0 we have

ysj [k] =

∑n
l=1 yl[0]

α
and zsj [k] =

n

α
, (3)

for some α ∈ N. This means that

qsj [k] =
(
∑n
l=1 yl[0])/α

n/α
=

∑n
l=1 yl[0]

n
=: q, (4)

i.e., for k ≥ k0 every node vj has calculated q as the ratio
of two integer values.

The following result from [9] provides a worst case upper
bound regarding the number of time steps required for
quantized averaging to be achieved.

Theorem 1 ([9]): The iterations in (1) and (2) allow each
node vj ∈ V to reach quantized average consensus (i.e., vj’s
state variables fulfil (3) and (4)) after a finite number of steps
St, bounded by St ≤ nm2, where n is the number of nodes
and m is the number of edges in the network.

III. PROBLEM FORMULATION

Consider a strongly connected digraph Gd = (V, E), where
each node vj ∈ V has an initial quantized value yj [0] (for
simplicity, we take yj [0] ∈ Z). Agents aim to agree on
the average of their initial quantized values in a distributed
way through local exchange of information only, namely the
information exchange takes place only between agents which
are neighbors with respect to Gd representing the system
communication architecture. There exists a set of nodes,
however, that wish to preserve their privacy by not revealing

their initial values to the other nodes. On the other hand,
some nodes are curious and try to identify the initial values
of all or a subset of nodes in the network.

The problem we consider in this paper is to develop a
strategy for the nodes that wish to prevent their privacy (i.e.,
not reveal their initial value to the other nodes) when they
exchange information with neighboring nodes for reaching
consensus to the average. This strategy should work seam-
lessly along with a strategy that is not privacy-preserving.

As aforementioned, we assume that curious nodes try to
identify the initial values of other nodes but do not interfere
in the computation in any other way. We also assume that
curious nodes may collaborate arbitrarily and that they know
the topology of the network and the predefined algorithm,
followed by nodes that would like to preserve their privacy,
but not the actual parameters chosen by these nodes.

Our contribution is a variant of the quantized averaging
strategy (described in Section II-D), followed by nodes that
wish to preserve their privacy (the remaining nodes simply
follow the original strategy in Section II-D).

IV. PROPOSED STRATEGY AND CONVERGENCE
ANALYSIS

In this section, we present and analyze a distributed
iterative strategy that allows nodes (while processing and
transmitting quantized information via available communi-
cation links between nodes) to preserve the privacy of their
initial quantized values and to obtain, after a finite number
of steps, a fraction qs which is equal to the exact average q
of the initial values of the nodes.

A. Initialization for Quantized Privacy Strategy

The primary objective in our system is to calculate the
average of the initial values of the nodes in the network
while preserving the privacy of at least the nodes following
the protocol. Our strategy is based on the event-triggered
deterministic algorithm (1)–(2) with some modifications
(since the event-triggered deterministic algorithm (1)–(2)
is not privacy- preserving). The main difference is that a
mechanism is deployed that incorporates an offset to the
mass variable of each node following the protocol, effectively
preserving the privacy of its initial value.

In previous works (see, for example, [12], [15], [16], [21]
and references therein) node vj sets its initial value to ỹj [0] =
yj [0] + uj , uj ∈ R. However, in this case, we require that
the initial offset uj is a negative integer number, i.e., uj ∈
Z<0, so that the event-triggered conditions (C1) and (C2)
are guaranteed to lead to the calculation of the initial average
after a finite number of time steps. Furthermore, the absolute
value of the initial offset uj and the number of offset adding
steps Lj need to be greater than the number of out-neighbors
D+
j of node vj . Specifically, at initialization, each node vj

chooses the variables Lj , uj , and uj [lj] for lj ∈ [0, Lj], to

satisfy the following constraints.

Lj ≥ D+
j , (5a)

uj = −
Lj∑
lj=0

uj [lj], (5b)

uj [lj] = 0, ∀ lj /∈ [0, Lj], (5c)
uj [lj] > 0, ∀ lj ∈ [0, Lj]. (5d)

Constraints (5a)–(5d) are explicitly analyzed below:
1) In (5a) the offset adding steps Lj of every node vj need to

be greater than or equal to node vj’s out-degree so that
every out-neighbor vi ∈ N+

j will receive at least one
value of uj [lj] from node vj . This has to do with privacy
preservation guarantees as discussed in Section IV-D.

2) Eq. (5b) is imposed to that the accumulated offset infused
in the computation by node vj is equal to zero and
the exact quantized average of the initial values can be
calculated without any error.

3) Eq. (5c) means that node vj does not need to continue
injecting nonzero offsets in the network and the exact
quantized average of the initial values can be calculated
without any error.

4) In (5d) the offset uj [lj], for lj ∈ [0, Lj], which is injected
by each node vj to the network each time its event-
triggered conditions hold, needs to be nonnegative so
that the event-triggered conditions (C1) and (C2) hold for
every node after a finite number of steps and the exact
quantized average of the initial values can be calculated.

As a result of the above choices, the initial offset uj every
node vj injects in the network satisfies uj ≤ −D+

j . This is
important to ensure that, during the operation of the proposed
algorithm, the event-triggered conditions (C1) and (C2) hold
for every node after a finite number of steps. If uj ≥ 0,
the event-triggered conditions (C1) and (C2) may not hold
and the proposed protocol may fail to calculate the correct
average of the initial values.

B. Algorithm Description

The proposed algorithm is a quantized value transfer
process in which every node in a strongly connected di-
graph Gd = (V, E), performs operations and transmissions
according to a set of event-triggered conditions. The intuition
behind the algorithm is as follows. Each node vj that would
like to preserve its privacy performs the following steps:
• As explained in the previous section, it initializes a

counter lj to zero (i.e., lj = 0), and chooses the total
number of offset adding steps Lj such that Lj ≥ D+

j

and the set of (Lj + 1) positive offsets uj [lj] > 0 where
lj ∈ {0, . . . , Lj}. Finally it sets the initial negative offset
uj (uj ≤ −D+

j) that it injects to its initial value yj [0]
to uj = −

∑Lj
lj=0 uj [lj]. For example, suppose that node

vj has four out-neighbors (D+
j = 4). This means that it

can choose Lj = 6, and then set uj [1] = 3, uj [2] = 2,
uj [3] = 4, uj [4] = 1, uj [5] = 2, uj [6] = 5; finally it sets
uj = −17.

• It chooses an out-neighbor vl ∈ N+
j according to the

unique order Plj (initially, it chooses vl ∈ N+
j such

that Plj = 0) and transmits zj [0] and ỹj [0] to this out-
neighbor. Then, it sets ỹj [0] = 0 and zj [0] = 0.

• During the execution of the algorithm, at every step k,
node vj may receive a set of mass variables ỹi[k] and
zi[k] from each in-neighbor vi ∈ N−j . Then, node vj
updates its values according to (1a)–(1b) and checks
whether any of its event-triggered conditions hold. If so,
it injects an offset uj [lj] to the value of yj [k + 1] and
increases its offset increasing counter lj by one. Then, it
sets its state variables ysj [k + 1] and zsj [k + 1] equal to
ỹj [k+1] = yj [k+1]+uj [lj] and zj [k+1], respectively,
and transmits them to an out-neighbor according to the
predetermined unique order. If none of the conditions
(1a)–(1b) hold, then node vj stores yj [k+1] and zj [k+1].
Note that if no message is received from any of the in-
neighbors, the mass variables remain the same.

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Privacy-Preserving Event-Triggered Quantized
Average Consensus
Input: A strongly connected digraph Gd = (V, E) with n =
|V| nodes and m = |E| edges. Each node vj ∈ V has an
initial value yj [0] ∈ Z.
Initialization: Each node vj ∈ V does the following:
1) It assigns a unique order Plj in the set {0, 1, ...,D+

j −1}
to each of its out-neighbors vl ∈ N+

j .
2) It sets counter cj to 0 and priority index ej to cj .
3) It sets counter lj to 0, chooses Lj ∈ N, where Lj ≥ D+

j ,
and uj [k] ≥ 0 for k ∈ {0, . . . , Lj}, and uj [k

′] = 0 for
k′ > Lj . It also sets uj = −

∑Lj
lj=0 uj [lj].

4) It sets ỹj [0] = yj [0] + uj , zj [0] = 1, zsj [0] = 1 and
ysj [0] = ỹj [0] (which means that qsj [0] = ỹj [0]/1).

5) It selects out-neighbor vl ∈ N+
j such that Plj = ej and

transmits zj [0] and ỹj [0] to this out-neighbor. Then, it
sets ỹj [0] = 0 and zj [0] = 0.

6) It sets cj = cj + 1 and ej = cj mod D+
j .

Iteration: For k = 0, 1, 2, . . . , node vj ∈ V , that follows the
protocol, does the following:
• if it receives yi[k] and zi[k] from every in-neighbor vi ∈
N−j then it updates its values according to (1a)-(1b).
◦ if any of conditions (C1) and (C2) hold then

- it sets ỹj [k+1] = uj [lj]+yj [k+1] and lj ← lj+1;
- it sets zsj [k + 1] = zj [k + 1], ysj [k + 1] = ỹj [k + 1]

and qsj [k + 1] = ỹj [k + 1]/zsj [k + 1];
- it transmits zj [k+1] and ỹj [k+1] to out-neighbor
vλ ∈ N+

j for which Pλj = ej and it sets ỹj [k+1] =
0, yj [k + 1] = 0 and zj [k + 1] = 0;

- it sets cj = cj + 1 and ej = cj mod D+
j .

◦ else it stores yj [k + 1] and zj [k + 1].
Output: (3) and (4) hold for every vj ∈ V .

Remark 1: Unlike other privacy preserving protocols pro-
posed in the literature (see, e.g., [12], [15], [16], [21]), the

proposed strategy takes full advantage of the algorithm’s
finite time nature which means that consensus to the average
of the initial values is reached after a finite number of
iterations, while the error, introduced via the offset initially
infused in the network by the nodes following the protocol,
vanishes.

C. Deterministic Convergence Analysis

For the development of the necessary results regarding the
operation of Algorithm 1 let us consider the following setup,
the analysis of which for the non privacy preserving case can
be found in [22].

Setup: Consider a strongly connected digraph Gd = (V, E)
with n = |V| nodes and m = |E| edges. During the execution
of Algorithm 1, at time step k0, there is at least one node
vj′ ∈ V , for which

zj′ [k0] ≥ zi[k0], ∀vi ∈ V. (6)

Then, among the nodes vj′ for which (6) holds, there is at
least one node vj for which

yj [k0] ≥ yj′ [k0], vj , vj′ ∈ {vi ∈ V | (6) holds}. (7)

For notational convenience we will call the mass variables
of node vj for which (6) and (7) hold as the “leading mass”
(or “leading masses”).

Now we present the following two lemmas, which are
helpful in the development of our results. However, due to
space limitations, we do not provide their proofs below; they
will be available in an extended version of this paper.

Lemma 1 ([22]): Under the above Setup, the “leading
mass” or “leading masses” at time step k, will always fulfill
the “Event-Trigger Conditions” (C1) and (C2). This means
that the mass variables of node vj for which (6) and (7) hold
at time step k0 will be transmitted (at time step k0) by vj to
an out-neighbor vl ∈ N+

j .
Lemma 2: Under the above Setup, we have that if the

event-triggered conditions of node vj are fulfilled at least
(Lj + 1) instances then, from (5a)–(5d), we have that the
accumulated amount of offset node vj has injected to the
network becomes equal to zero.

The following theorem states that the proposed algorithm
allows all agents to reach quantized average consensus after
a finite number of steps, for which we provide an upper
bound.

Theorem 2: Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes and m = |E| edges. The execution
of Algorithm 1 allows each node vj ∈ V to reach quantized
average consensus after a finite number of steps, St, bounded
by St ≤ m2(Lmax + 1 + n), where n is the number of
nodes, m is the number of edges in the network and Lmax =
maxvj∈V Lj is the maximum value of offset adding steps
chosen from nodes in the network.

Proof: Let us assume that, at time step k0, the mass
variables of node vj are the “leading mass” and there exists
a set of nodes Vf [k0] ⊆ V which is defined as Vf [k0] =
{vi ∈ V | zi[k0] > 0 but (6) or (7) do not hold} (i.e.,
it is the set of nodes which have nonzero mass variables

at time step k0 but they are not “leading masses”). Note
here that if the “leading mass” reaches a node simultane-
ously with some other (leading or otherwise mass) then it
gets “merged”, i.e., the receiving node “merges” the mass
variables it receives, by summing their numerators and their
denominators, creating a set of mass variables with a greater
denominator. Furthermore, we will say that the “leading
mass”, gets “obstructed” if it reaches a node whose state
variables are greater than the mass variables (i.e., either the
denominator of the node’s state variables is greater than the
denominator of the mass variables, or, if the denominators
are equal, the numerator of the state variables is greater than
the numerator of the mass variables). Note that if the “leading
mass” we started off with at time step k0 gets “obstructed”
then its no longer the “leading mass”, since it will not fulfill
the event-triggered conditions of the corresponding node
(from Lemma 1 we have that the “leading mass” always
fulfills the event-triggered conditions).

Suppose that the “leading mass” at time step k0 is held
by node vj and is given by ỹj [k0] and zj [k0]. Since this
leading mass does not get merged or obstructed, during the
execution of Algorithm 1, it will reach every node vj ∈ V
in at most m2 steps, where m = |E| is the number of edges
of the given digraph Gd (this follows from Proposition 3 in
[23], which actually provides a bound for an unobstructed
“leading mass” to reach every other node). Even if the mass
gets obstructed at some node, this means that it is no longer
the “leading mass”; in fact, the new “leading mass” passed
by this node earlier on and has already followed the same
path that the former “leading mass” was to follow.

Let us assume now that we execute Algorithm 1 for
m2(Lmax + 1) time steps, where Lmax = maxvj∈V Lj .
During the m2(Lmax + 1) time steps each node vj will
receive at least (Lmax + 1) times a set of nonzero mass
variables from its in-neighbors that are equal to the “leading
mass”. Since this set of mass variables is equal to the
“leading mass”, from Lemma 1, we have that the event-
triggered conditions of each node vj will hold for at least
(Lmax + 1) events during these m2(Lmax + 1) time steps.
This means that each node vj adds the offset uj [lj] to its
mass variables for (Lmax + 1) events. Since we have that∑Lj
lj=0 uj [lj] = −uj , from Lemma 2, after m2(Lmax + 1)

time steps, the accumulated amount of offset each node vj
has injected to the network becomes equal to zero. As a
result, we have that∑

vj∈V
ỹj [m

2(Lmax + 1)] =
∑
vj∈V

yj [0],

and ∑
vj∈V

zj [m
2(Lmax + 1)] =

∑
vj∈V

zj [0].

After executing Algorithm 1 for an additional number of time
steps equal to nm2, we have that the convergence analysis of
our protocol becomes identical to the analysis presented in
[22, Proposition 1] where during the additional nm2 we have
that either (a) the “leading masses” never merge (because

they all move simultaneously) or (b) there are at most n− 1
“mergings” of mass variables (each merging occurring after
at most m2 time steps). As a result, we have that after St
iterations, where St ≤ m2(Lmax+1+n), we are guaranteed
that the offset each node has injected to the network has
become equal to zero, and sufficient “mergings” (at most n−
1) have occurred, so that the nodes will be able to calculate
the average of their initial values.

Remark 2: The proof of Theorem 2 shows us that if we
execute the proposed distributed protocol for a finite number
of time steps equal to m2Lmax, then every node in the
network will receive a set of nonzero mass variables that are
equal to the leading mass for at least Lmax instances. This
means that the event-triggered conditions will be fulfilled for
each node in the network for at least Lmax instances and,
from Lemma 2, the accumulated amount of offset injected
in the network from each node in the network is equal to
zero. As a result, by executing the proposed protocol for an
additional number of time steps equal to nm2, we have that
every nonzero mass in the network will merge to one leading
mass (or multiple leading masses that are equal) that is (are)
equal to the average of the initial values, and then this (these)
leading mass (masses) will update the state variables of each
node in the network, setting them equal to the average of the
initial values.

D. Topological conditions for privacy preservation

We establish topological conditions that ensure privacy
for the nodes following the proposed protocol despite the
presence of possibly colluding curious nodes in the network.

Proposition 1: Consider a fixed strongly connected di-
graph Gd = (V, E) with n = |V| nodes. Assume that a set of
nodes P follow the predefined privacy-preserving protocol,
as described in Algorithm 1, with offsets chosen as in (5a)-
(5c). Curious node vc will not be able to identify the initial
value yj [0] of vj ∈ P , as long as vj has
a) at least one other node (in- or out-neighbor) v` ∈ P

connected to it, or
b) has a non-curious in-neighbor vi /∈ P which first trans-

mits to node vj at initialization.
In other words, if one of the conditions in Proposition 1
is satisfied, the network will reach average consensus and
the privacy of the initial values of the nodes following the
privacy-preserving protocol will be preserved.

Proof: Let us assume that node vj follows the privacy-
preserving protocol. We consider the following simple sce-
narios, which constitute the building blocks of the directed
network, due to the token-based nature of the privacy-
preserving protocol.
1) It is easy to observe that if all the in- and out-neighbors

of node vj are curious and they communicate with each
other, it is not possible for this node to keep its privacy.
At initialization, the curious nodes will know ỹj [0]. At
every step, they will know what node vj has received
and they will be able to extract the offset added. Hence,
after (Lj + 1) updates from node vj , the curious nodes
will be able to compute the initial offset, since the initial

offset satisfies (5b); hence, privacy of the initial value is
not preserved. As a result, at least one neighbor that is
not curious is needed.

2) Suppose that there exists at least one in-neighbor, say vi,
that is not curious, but it does not follow the privacy-
preserving protocol; all other in- and out-neighbors of
node vj and node vi are assumed (as a worst-case
assumption) to be curious. If at initialization, node vi first
transmits to node vj , then the curious nodes will not be
able to infer its initial value, since they cannot distinguish
the initial values of vi and vj ; even if at the end the
curious nodes are able to obtain all the offsets, they can
only infer the sum of the initial values of node vj and
node vi, but not their individual values, i.e., both nodes
preserve their privacy. If, however, vj is not contacted
by node vi at initialization, then the curious nodes will
be able to extract the initial condition and know all the
inputs (and hence outputs) of node vi (recall that node vi
does not follow the privacy-preserving protocol). Thus,
curious nodes will be able to infer all the values that
node vi transmits to vj and, as a consequence, none of
the nodes will preserve its privacy. This suggests that,
if a node vi trusts that an out-neighbor vj is not curious
and follows the privacy-preserving protocol, then this out-
neighbor should be prioritized, i.e., Pji = 0.

3) Let us consider the case for which there exists one out-
neighbor of node vj , say vl, that is neither curious nor
following the privacy-preserving protocol, and all other
in- and out-neighbors of both nodes are curious. Since
curious nodes can infer the input of node vl from its
output, then they will be able to extract the messages of
node vj in the same way as if a curious node was directly
connected to node vj . Hence, privacy of node vj cannot
be preserved.

4) If we assume that there exists at least one in-neighbor,
say vi, that follows the privacy-preserving protocol, the
curious nodes will not be able to infer the initial value
of node vj due to the offsets node vi transmits to vj and,
therefore, both vi and vj retain their privacy.

From these discussions, we can deduce that it is sufficient that
conditions a) and b) in Proposition 1 are satisfied. In such
cases, the initial values of both nodes are protected (though
the sum of these values may be exposed). Note that it is
also sufficient if a node that does not follow the privacy-
preserving protocol first selects an out-neighbor that does
follow the protocol to transmit its values; see item 5) in the
initialization stage of Algorithm 1.

Note here that a set of curious nodes could also attempt
to “estimate” the initial values of some other nodes (e.g., by
taking into account any available statistics about the initial
values, uj and Lj). However, in our analysis in this section,
we are interested in whether the curious nodes can exactly
infer the value of another node. The case where curious
nodes attempt to “estimate” the initial value of other nodes
will be considered as a future direction.

V. SIMULATION RESULTS

In this section, we present simulation results to illustrate
the behavior of our proposed distributed protocol. Specifi-
cally, we analyze the cases of:
A) a ring digraph of 20 nodes with the average of the initial

values of the nodes turning out to be equal to q =
191/20 = 9.55,

B) a randomly generated digraph of 20 nodes with the
average of the initial values of the nodes turning out
to be equal to q = 220/20 = 11,

C) 1000 randomly generated digraphs of 20 nodes each
where, for convenience, the initial quantized value of
each node remained the same (for each one of the
1000 randomly generated digraphs); this means that
the average of the nodes initial quantized values also
remained equal to q = 210/20 = 10.5.

For each of the above cases we analyze the scenarios where
each node vj ∈ V (i) initially infuses in the network a
randomly chosen offset uj ∈ [−100,−50] with randomly
chosen offset adding steps Lj ∈ [20, 40] and (ii) initially
does not infuse any offset in the network i.e., uj = 0 (which
means that it does not want to preserve the privacy of its
initial value). Note that for cases B) and C) the digraphs
were randomly generated by creating, independently for each
ordered pair (vj , vi) of two nodes vj and vi (vj 6= vi), a
directed edge from node vi to node vj with p = 0.3.

A. Execution of Algorithm 1 over a Ring Digraph

In Fig. 1, we illustrate Algorithm 1 over a ring digraph of
20 nodes, where the average of the initial values of the nodes
is equal to q = 191/20 = 10.1. We analyze the operation of
our algorithm for the scenarios where each node vj ∈ V: (i)
initially infuses in the network an offset uj ∈ [−100,−50]
with offset adding steps Lj ∈ [20, 40] (see top of Fig. 1) and
(ii) initially does not infuse any offset in the network i.e.,
uj = 0 (see bottom of Fig. 1). Here, we observe that for the
case where each node vj does not attempt to preserve the
privacy of its initial value, Algorithm 1 is able to converge
after 70 time steps. However, for the case where each node vj
wants to preserve the privacy of its initial value (by infusing
the offset uj with offset adding steps Lj as mentioned above)
we observe that Algorithm 1 converges after 400 time steps,
while being able to calculate the exact average of the initial
values of the nodes without introducing any error due to the
utilized privacy preserving strategy.

B. Execution of Algorithm 1 over a Random Digraph of 20
Nodes

In Fig. 2, we present the same cases as in Fig. 1, with the
difference being that Algorithm 1 is executed over a random
directed graph of 20 nodes, where the average of the initial
values of the nodes is equal to q = 205/20 = 10.25. The
main results do not change due to the network structure,
which means that for the case where each node vj preserves
the privacy of its initial value we have that Algorithm 1
requires 450 time steps (in comparison to 95 time steps for
the case where each node vj does not preserve the privacy

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations (k)

-100

-50

0

50

S
t.

V
ar

. (
q

s)

Node State Variables with Privacy Preservation for a Ring Digraph of 20 Nodes

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations (k)

0

5

10

15

20

S
t.

V
ar

. (
q

s)

Node State Variables without Privacy Preservation for a Ring Digraph of 20 Nodes

Fig. 1. Execution of Algorithm 1 for a ring digraph of 20 nodes. Top
figure: Node state variables with privacy preservation plotted against the
number of iterations. Bottom Figure: Node state variables without privacy
preservation plotted against the number of iterations.

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations (k)

-100

-50

0

50

S
t.

V
ar

. (
q

s)

Node State Variables with Privacy Preservation for a Random Digraph of 20 Nodes

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations (k)

0

5

10

15

20

S
t.

V
ar

. (
q

s)

Node State Variables without Privacy Preservation for a Random Digraph of 20 Nodes

Fig. 2. Execution of Algorithm 1 for a random digraph of 20 nodes. Top
figure: Node state variables with privacy preservation plotted against the
number of iterations. Bottom Figure: Node state variables without privacy
preservation plotted against the number of iterations.

of its initial value) to converge to the exact average of the
initial values.

C. Execution of Algorithm 1 Averaged over 1000 Random
Digraphs of 20 Nodes

In Fig. 3 we present the same cases as in Fig. 1 and
Fig. 2 with the difference being that they are averaged
over 1000 randomly generated digraphs of 20 nodes. The
initial quantized value of each node remained the same for
each one of the 1000 randomly generated digraphs (which
means that the average of the initial values of the nodes is
equal to q = 205/20 = 10.25). However, the initial offset
uj ∈ [−100,−50] and the offset adding steps Lj ∈ [20, 40],
of every node vj , were randomly chosen for each digraph.
We can see that the main results resemble those in Fig. 2,
and Algorithm 1 converges after 450 time steps, while being

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations (k)

-100

-50

0

50
S

t.
V

ar
. (

q
s)

Average Node State Var. with Pr. Preservation for 1000 Random Digraphs of 20 Nodes

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations (k)

0

5

10

15

20

S
t.

V
ar

. (
q

s)

Average Node State Var. without Pr. Preservation for 1000 Random Digraphs of 20 Nodes

Fig. 3. Execution of Algorithm 1 averaged over 1000 random digraphs of
20 nodes. Top figure: Average values of node state variables with privacy
preservation plotted against the number of iterations (averaged over 1000
random digraphs of 20 nodes). Bottom Figure: Average values of node
state variables without privacy preservation plotted against the number of
iterations (averaged over 1000 random digraphs of 20 nodes).

able to calculate the exact average of the initial values of
the nodes without introducing any error due to our proposed
privacy preserving strategy.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

In this paper, we proposed an event-triggered quantized
privacy-preserving strategy which allows the agents of a
multi-agent system to calculate the average of their initial
values after a finite number of time steps without revealing
to other agents their initial value. Specifically, our proto-
col consists of initially adding a negative quantized offset
(determined by the node and the number of times certain
conditions are satisfied) and then, for a predetermined num-
ber of events each node injects a set of positive offsets in
the network such that the total offset is canceled out. We
combine our proposed privacy preserving protocol with our
quantized averaging algorithm in [9], and we show that it
takes full advantage of the algorithm’s finite time nature
which means that consensus to the exact average of the initial
values is achieved after a finite number of iterations which
we explicitly calculated, while the error, introduced from the
offset initially infused in the network by the nodes following
the protocol, vanishes completely (a characteristic not present
in [15], [16]). Finally, we have demonstrated the performance
of our proposed protocol via illustrative examples.

B. Future Directions

The point-to-point communication protocol and the quan-
tized nature of the packets used in this algorithm facilitate the
use of cryptographic primitives for setting up secure channels
and preventing eavesdropping, while harvesting the benefits
of event-triggered and finite-time operation of the distributed
privacy-preserving protocol proposed. These are directions
that we plan to exploit further in future work.

REFERENCES

[1] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, September 2004.

[2] C. N. Hadjicostis, A. D. Domı́nguez-Garcı́a, and T. Charalambous,
“Distributed averaging and balancing in network systems, with ap-
plications to coordination and control,” Foundations and Trends® in
Systems and Control, vol. 5, no. 3–4, 2018.

[3] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
and consensus using linear iterative strategies,” IEEE Journal on
Selected Areas in Communications, vol. 26, no. 4, pp. 650–660, May
2008.

[4] J. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, Cambridge, 1984.

[5] A. B. Alexandru, M. S. Darup, and G. J. Pappas, “Encrypted cooper-
ative control revisited,” Proceedings of the IEEE 58th Conference on
Decision and Control (CDC), pp. 7196–7202, 2019.

[6] T. C. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus
using probabilistic quantization,” IEEE/SP Workshop on Statistical
Signal Processing, pp. 640–644, 2007.

[7] J. Lavaei and R. M. Murray, “Quantized consensus by means of Gossip
algorithm,” IEEE Transactions on Automatic Control, vol. 57, no. 1,
pp. 19–32, January 2012.

[8] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, no. 7, pp. 1192–1203, 2007.

[9] A. I. Rikos and C. N. Hadjicostis, “Distributed average consensus
under quantized communication via event-triggered mass summation,”
Proceedings of the IEEE 57th Conference on Decision and Control
(CDC), pp. 894–899, 2018.

[10] M. E. Chamie, J. Liu, and T. Basar, “Design and analysis of distributed
averaging with quantized communication,” IEEE Transactions on
Automatic Control, vol. 61, no. 12, pp. 3870–3884, December 2016.

[11] K. Cai and H. Ishii, “Quantized consensus and averaging on gossip
digraphs,” IEEE Transactions on Automatic Control, vol. 56, no. 9,
pp. 2087–2100, September 2011.

[12] M. Kefayati, M. S. Talebi, B. H. Khalaj, and H. R. Rabiee, “Secure
consensus averaging in sensor networks using random offsets,” in
IEEE International Conference on Telecommunications and Malaysia
International Conference on Communications, May 2007, pp. 556–
560.

[13] J. Cortés, G. E. Dullerud, S. Han, J. L. Ny, S. Mitra, and G. J. Pappas,
“Differential privacy in control and network systems,” Proceedings of
the IEEE 55th Conference on Decision and Control (CDC), pp. 4252–
4272, 2016.

[14] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private
average consensus: Obstructions, trade-offs, and optimal algorithm
design,” Automatica, vol. 81, pp. 221–231, 2017.

[15] N. Manitara and C. N. Hadjicostis, “Privacy-preserving asymptotic
average consensus,” Proceedings of the European Control Conference
(ECC), pp. 760–765, 2013.

[16] Y. Mo and R. M. Murray, “Privacy preserving average consensus,”
IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 753–765,
Feb. 2017.

[17] N. Gupta, J. Katz, and N. Chopra, “Privacy in distributed average
consensus,” IFAC-PapersOnLine, vol. 50, pp. 9515–9520, 2017.

[18] C. N. Hadjicostis, “Privary preserving distributed average consensus
via homomorphic encryption,” in IEEE Conference on Decision and
Control (CDC), Dec. 2018, pp. 1258–1263.

[19] M. Ruan, H. Gao, and Y. Wang, “Secure and privacy-preserving
consensus,” IEEE Transactions on Automatic Control, vol. 64, no. 10,
pp. 4035–4049, Oct. 2019.

[20] C. N. Hadjicostis and A. D. Dominguez-Garcia, “Privacy-preserving
distributed averaging via homomorphically encrypted ratio consensus,”
IEEE Transactions on Automatic Control, vol. 65, no. 9, pp. 3887–
3894, September 2020.

[21] T. Charalambous, N. E. Manitara, and C. N. Hadjicostis, “Privacy-
preserving average consensus over digraphs in the presence of time
delays,” Proceedings of the 57th Annual Allerton Conference on
Communication, Control, and Computing, 2019.

[22] A. I. Rikos and C. N. Hadjicostis, “Event-triggered quantized average
consensus via ratios of accumulated values,” IEEE Transactions on
Automatic Control, April 2020 (early access).

[23] A. I. Rikos, T. Charalambous, and C. N. Hadjicostis, “Distributed
weight balancing over digraphs,” IEEE Transactions on Control of
Network Systems, vol. 1, no. 2, pp. 190–201, June 2014.

