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Abstract 

A novel multivariable laboratory process that consists 
of four interconnected water tanks is presented. The 
linearized dynamics of  the system have a multivari- 
able zero that is possible to move along the real axis by 
changing a valve. The zero can be placed in both the 
lefr and the right half-plane. I n  this way the quadruple- 
tank process is ideal for illustrating many concepts in 
multivariable control, particularly performance limita- 
tions due to multivariable right halfplane zeros. Accu- 
rate models are derived from both physical and exper- 
imental data and multi-loop control is illustrated. 

1. Introduction 
There is an increased industrial interest in the use 
of multivariable control techniques. They are needed 
to  achieve improved performance of complex indus- 
trial processes [16]. Therefore, it is important to in- 
clude multivariable methods in the control curriculum. 
Of course, true understanding and engineering skills 
are only obtained if these concepts are illustrated in 
laboratory exercises. However, few multivariable lab- 
oratory processes have been reported in the litera- 
ture. Mechanical systems such as the helicopter model 
[ll, 11 and the active magnetic bearing process [19] 
have been developed at ETH in Zurich. Davison has 
developed a water tank process, where multivariable 
water level control and temperature-flow control can 
be investigated [3]. Some multivariable laboratory pro- 
cesses are commercially available, for example from 
Quanser Consulting in Canada, Educational Control 
Products in US., and Feedback Instruments and Tec- 
Quipment in U.K. 
This paper describes a new laboratory process that 
consists of four interconnected water tanks and two 
' The laboratory process was built at the Department of Automatic 
Control in Lund by Rolf Braun. His workis gratefully acknowledged 
as well as comments from Karl Johan Astrom and Per Hagander. 
The project was supported by the Swedish Research Council for 
Engineering Science under contract 95-759. 

Figure 1 The quadruple-tank laboratory process shown 
together with a new controller interface running on a 
Pentium PC. 

pumps. The system is shown in Figure 1. Its inputs 
are the voltages to the two pumps and the outputs 
are the water levels in the lower two tanks. This 
quadruple-tank process is a simple interconnection of 
two double-tank processes, which are standard pro- 
cesses in many control laboratories [2]. The setup is 
thus simple, but still the process can illustrate inter- 
esting multivariable phenomena. The linearized model 
of the quadruple-tank process has a multivariable zero, 
which can be located in either the left or the right 
half-plane by simply changing a valve. Control perfor- 
mance limitations due to  zero locations can be derived 
from complex analysis [4, 151. These illustrate funda- 
mental restrictions on the possible choice of closed-loop 
system. For example, right half-plane zeros impose re- 
strictions on the sensitivity function: if the sensitivity 
is forced to be small in one frequency band, it has to be 
large in another, possibly yielding an overall bad per- 
formance. The fundamentals for what can be achieved 
with linear control have also received industrial inter- 
est and application [17, 51. 

The outline of the paper is as follows. A nonlinear 
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model for the quadruple-tank process based on phys- 
ical data is derived in Section 2. It is linearized and 
some properties of the linear model is emphasized. In 
Section 3 linear models are estimated from experimen- 
tal data and they are compared to  the physical model. 
Simple multi-loop PI control of the quadruple-tank 
process is performed in Section 4 and some conclud- 
ing remarks are given in Section 5. See [6] for a thor- 
ough description of the quadruple-tank process and its 
properties. 

(h?,hg) [cm] 
( h k h 3  [cml 
(.:,U;) [VI 
( k l ,  kz) [cm3/Vs] 
(Yl ,  Y z )  

2. Physical Model 

(12.4,12.7) (12.6,13.0) 
(1.8,1.4) (4.8,4.9) 

(3.00,3.00) (3.15,3.15) 
(3.33,3.35) (3.14,3.29) 
(0.70,0.60) (0.43,0.34) 

In this section we derive a mathematical model for 
the quadruple-tank process from physical data. A 
schematic diagram of the quadruple-tank process is 
shown in Figure 2. The target is to  control the level 
in the lower two tanks with two pumps. The process 
inputs are u1 and u2 (input voltages to  the pumps) 
and the outputs are y1 and yz (voltages from level 
measurement devices). Mass balances and Bernoulli's 
law yield 

Al,A? Icm'l 
A2,A4 [cm'] 
al,a3 [cm'] 
az,a4 [cm'] 

h, [V/cm] 
g [cm/s2] 

d t  A1 

28 
32 

0.071 
0.057 
0.50 
981 

where Ai is the cross-section of Tank i, a, the cross- 
section of the outlet hole, and hi the water level. The 
voltage applied to  Pump i is U, and the corresponding 
flow is k,uL. The parameters y1, yz E [0,1] are deter- 
mined from how the valves are set. The flow to Tank 1 
is ylhlul and the flow to  Tank 4 is ( 1  - y1)klul and 
similarly for Tank 2 and Tank 3. The acceleration of 
gravity is denoted g .  The measured level signals are 
k,hl and K,hz. The parameter values of the laboratory 
process are given in the following table: 

The model and control of the quadruple-tank pro- 
cess are studied at  two operating points: P- at which 
the system will be shown to have minimum-phase 
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Figure 2 The quadruple-tank laboratory process. The 
water levels in Tank 1 and Tank 2 are controlled by two 
pumps. When changing the position of the valves, the 
location of a multivariable zero for the linearized model is 
moved. 

characteristics and P+ at which it will be shown to  
have nonminimum-phase characteristics. The operat- 
ing points correspond to the following parameter val- 
ues: 

I p- I p ,  

Multivariable zeros 
Linearization of (1) gives the transfer matrix 

riel ( l -yz)c1 

l-y1)cz y2c2 l 7  l+sTi (l+sT3) (l+sTi) 

(I+ST4) (1+S Tz) I+sTz 

G(s) = 

where T,  = A L a ; ' J m ,  cl = Tlk l k , /A l ,  and c2 = 
T2k2kC/A2. The multivariable zeros are in our case 
the zeros of the numerator polynomial of the rational 
fimction 



The transfer matrix G thus has two finite zeros for 
y1, y2 E (0,1]. A root-locus argument gives that one of 
them is always in the left half-plane, but the other 
can be located either in the left or the right half-plane. 
Introduce the parameter 17 :I= (1 - y l ) ( l -  y2)/y1y2. 

If 77 is small, the two zeros are close to -1/T3 and 
-l/T4, respectively. Furthermore, one zero tends to 
-00 and one zero tends to +CO as 77 + 00. If 77 = 1 one 
zero is located at  the origin. This case corresponds to 
y1+ y2 = 1. It follows that the system is nonminimum 
phase for 0 < y1 + y2 5 1 and minimum phase for 
1 < y1 + y2 5 2. Recall that y1 + y2 = 1.30 > 1 for P- 
and y1 + y2 = 0.77 < 1 for P+. 

The multivariable zero being in the left or in right half- 
plane has a straightforward physical interpretation. 
For simplicity assume that q1 = q 2 .  Then the sum of 
the flows to the upper tanks is [2 - (y1 + y2)lql and 
the sum of the flows to the lower tanks is (y1+ y2)ql. 

Hence, the flow to the lower tanks are greater than 
the flow to the upper tanks if and only if the system 
is minimum phase. It is intuitively easier to control y1 

with u1 and y2 with u2 if most of the flows goes directly 
to the lower tanks. This gives an immediate physical 
interpretation of the control limitations imposed by the 
multivariable zero. 

For the two operating points P- and P+ we have the 
following time constants and zeros: 

(23,301 (39,561 
(Tl, T2) 

(T3, T4) 

The dominating time constants are thus similar in 
both operating conditions. The physical modeling gives 
the two transfer matrices 

2.6 1.5 
1+62s (1+23s)( 1+62s) 

2.8 
l+90s 

G-(s) = [ 1.4 
(1+30s)(1+90s) 
1.5 2.5 
1+63s (1+39s)(1+63s) 

1.6 
l+91s 

G+(s) = [ 2.5 
(1+56s)(1+91s) 

Figure 3 shows the response of the minimum-phase 
model G- compared to real data obtained from an iden- 
tification experiment discussed in next section. The 
inputs are pseudo-random binary sequences (PRBSs) 
with low amplitudes, so that the dynamics are cap- 
tured by a linear model. The model outputs agree 
very well with the responses of the real process. The 
nonminimum-phase model G+ shows similar accuracy. 

Figure 3 Validation of the linear physical model G-. The 
outputs from the model (dashed lines) together with the 
outputs from the real process (solid lines) are shown in the 
minimum-phase setting. 

Figure 4 Validation of state-space model for the mini- 
mum-phase setting. Outputs from identified model (dashed) 
together with the outputs from the real process (solid) are 
shown. 

3. System Identification 
The physical model derived in previous section is now 
compared to a model estimated using standard system 
identification techniques [9, 81. 

Both SIMO and MIMO identification experiments were 
performed with PRBS signals as inputs. The levels 
of the PRBS signals were chosen so that the process 
dynamics were approximately linear. 

Black-box and gray-box identification methods were 
tested using Matlab's System Identification Toolbox 
[lo]. Linear SISO, MISO, and MIMO maps were identi- 
fied in ARX, ARMAX, and state-space forms. All model 
structures gave similar responses to validation data. 
Here we only present some examples of the results. We 
start with a black-box approach. Figure 4 shows val- 
idation data for the minimum-phase setting together 
with a simulation of a state-space model derived with 
the sub-space algorithm N4SID [U, 101. The state- 
space model has three real poles corresponding to time 
constants 8,41, and 113. It has one multivariable zero 
in -0.99. The simulation of the nonminimum-phase 
model is of similar accuracy. This model is of fourth 
order and has time constants 11, 31, 140, and 220. Its 
two zeros are located in -0.288 and 0.019. The vali- 
dation result in Figures 4 is of similar quality as the 
result for the physical model shown in Figures 3. Note 
that the minimum-phase setting gives an identified 
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model with no RHP zero, whereas the nonminimum- 
phase setting gives a dominating RHP zero (i.e., a RHP 
zero close to the origin compared to the time scale 
given by the time constants). 

Gray-box models with structure fixed to a linear state- 
space equation gave similar validation results as the 
previously shown. Because of the fixed structure, the 
number of poles and zeros are the same as for the 
physical model. For the minimum-phase setting we 
have time constants (TI, T2, T3, T4) = (96,99,32,39) 
and zeros at  -0.045 and -0.012, whereas for the 
nonminimum-phase setting we have (TI, Tz, T3, T4) = 
(77,112,53,55) and zeros 0.014 and -0.051. The zeros 
agree very well with the ones derived from the physical 
model. 

4. Multi-Loop Control 
The control law U = diag(C1, C , } ( r  - y )  is in this 
section applied to the real process as well as to 
nonlinear and linear process models. PI controllers of 
the form 

are tuned manually based on the linear physical 
models (2) and (3). 

For the minimum-phase setting P- the controller pa- 
rameters (K1, Til) = (3.0,30) and (K2, Ti2) = (2.7,40) 
are easily obtained. They give reasonable perfor- 
mances as shown in Figure 5, where the responses 
are given for a step in the reference signal r1. The 
top four plots show control of the simulated nonlinear 
model in (1) (dashed lines) and control of the identified 
linear state-space model (solid). The four lower plots 
show the responses of the real process. The discrepan- 
cies between simulations and the true time responses 
are small. 

It is hard to find good controller parameters for the 
nonminimum-phase setting P, . The controller param- 
eters ( K I ,  Til) = (1.5,llO) and (Kz ,  Ti2) = (-0.12,220) 
stabilize the process, but give much slower responses 
than for the minimum-phase setting, see Figure 6. 
Note the different time scales compared to  Figure 5. 
The settling time is approximately ten times longer 
for the nonminimum-phase setting. The control signal 
u2 seems to be noiseless. This is due to the low gain 
K2. It is no coincidence that Kz is chosen negative. 
Because det G+(O) < 0, there exists no multi-loop PI 
controller with K1 = K2 > 0 that stabilizes the system, 
see Theorem 14.3-1 in [12]. Even if the controller gains 
are small the closed-loop system will be unstable. 
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Figure 5 Results of PI control of minimum-phase system. 
The upper four plots show simulations with the nonlinear 
physical model (dashed) and the identified linear model 
(solid). The four lower plots show experimental results. 

5. Conclusions 
A new multivariable laboratory process that consists 
of four interconnected water tanks has been described. 
It was shown that the quadruple-tank process is 
well suited to illustrate performance limitations in 
multivariable control design caused by RHP zeros. 
This followed from that the linearized model of the 
process has a multivariable zero that in a direct way 
is connected to  the physical position of two valves. 
Models from physical data and experimental data were 
derived and they were shown to have responses similar 
to the real process. Decentralized PI control showed 
that it was much more difficult to control the process 
in the nonminimum-phase case than in the minimum- 
phase case. 

2048 



output “1 OUtDUt v2 

I 
to00 2000 3000 

Time [SI 

5* 

low 2000 3000 
Time [SI 
Input “2 

3 1  1 

OUIPUl y1 output y2 

I 
1000 2000 3000 

Time [SI 
Input u1 

”I 1 

2.5/ , , { 
1000 2000 3000 

Time [si 

J 
1000 2000 3000 

Time [SI 
Input UZ 

2.51 , , , I 
1000 2000 3000 

Time [SI 

Figure 6 Results of PI control of nonminimum-phase 
system. Same variables are shown as in Figure 5. Note the 
ten times longer time scale. 

The experiments described in this paper have  been 
performed using a PC interface developed in the man-  
machine interface generator InTouch from Wonder- 
ware Corporation [13]. Ongoing work includes multi- 
variable controller design for the quadruple-tank pro- 
cess. Multivariable controller-tuning method based on 
relay feedback experiments have  been investigated on 
the process [7, 141. 
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