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The Quadruple-Tank Process: A Multivariable
Laboratory Process with an Adjustable Zero

Karl Henrik JohanssqriMember, IEEE

Abstract—A novel multivariable laboratory process that con- inputs are the voltages to the two pumps and the outputs are the
sists of four interconnected water tanks is presented. The linearized water levels in the lower two tanks. The quadruple-tank process
dynamics of the system have a multivariable zero that is possible can easily be build by using two double-tank processes, which

to move along the real axis by changing a valve. The zero can be . .
placed in both the left and the right half-plane. In this way the are standard processes in many control laboratories [4], [5]. The

quadruple-tank process is ideal for illustrating many concepts in  S€tup is thus simple, but still the process can illustrate several
multivariable control, particularly performance limitations due to  interesting multivariable phenomena. The linearized model of

multivariable right half-plane zeros. The location and the direc- the guadruple-tank process has a multivariable zero, which can
tion of the zero have an appealing physical interpretation. ACCU- hq |gcated in either the left or the right half-plane by simply
rate models are derived from both physical and experimental data . . . . 4
and decentralized control is demonstrated on the process. Cha.lnglng a valve..Both the location and th? direction ofa m'ultl-
variable zero are important for control design. They have direct
physical interpretations for the quadruple-tank process, which
make the process suitable to use in control education.
Few multivariable laboratory processes have been reported
I. INTRODUCTION in the literature. Mechanical systems such as the helicopter

ULTIVARIABLE control techniques have received in_model [1]. [24] and the active magn_etic be"f‘“”g process .[35]
. gave been developed at ETH, Zirich, Switzerland. Davison

Index Terms—Education, laboratory process, multivariable con-
trol, multivariable zeros.

creased industrial interest [31]. It is often hard to te o
when these methods are needed for improved performanc developed a water tank process, where multw_anablg water
practice and when simpler control structures are sufficient. vel control aqd tgmperature-flow control can be |nvest|ga}ted
key issue is the functional limits of the system: what desi .'Some multivariable laboratory processes are commercially
specifications are reasonable? It was already pointed out D |I'able,forexamplefr0m Quanserponsultlng in Canada, Ed-
Bode [6] that nonminimum-phase characteristics of a syst ational Control Produpts o th_e United _States_, and Feedback
impose limitations for linear feedback designs. Still it happe struments and Techpment.ln the United Kingdom. There
that unrealistic specifications are made, as pointed out in [ ,es hot, howe"er: seem to exist anyllaboratory_ Processes that
[11], and [33]. Performance limitations in control systems ha mongtrate mul'uyanable Z€ero Iocat|or_1 and _dlrgcnon n an
received extensive interest recently. Several new results, par gstrative way. This was one of the main motivations for the
ularly for scalar and multivariable linear systems, have been p _velopme_nt of th_e quadru_ple-tank process [15]'
sented. Bode's original result together with extensions are cov-The outline of this paper is as follows. A n.onllnear .modell for .
ered in the textbooks [10], [30]. Zames and Francis [9], [36 he quadruple-tank process based on physical data is derived in

[38] showed that right half-plane zeros impose restrictions ction Il. Itis linearized and the linear model is validated using
the sensitivity function: if the sensitivity is forced to be Smaﬁexperlmental data. The location and the direction of a multivari-

in one frequency band, it has to be large in another, possil&\gle Ze;ﬁ otftt::e I|n|ear|zed_tr_nodel ?rtf] derived in Septlonl I”d Itt's
yielding an overall bad performance. They also showed thatfOWN that the valve positions of the process uniquely deter-

the system does not have any right half-plane zeros, then th ne if the system is minimum phase or nonminimum phase.

retically it can be arbitrarily well controlled. The latter result ha € _relatlve gain array is also derived. Section IV dlscu_s ses the
Enlmear model of the quadruple-tank process. Properties of the
n

been generalized to decentralized control structures [19], [28 . . . :
[37]. nlinear zero dynamics and of the stationary point of the non-
This paper describes a new laboratory process, which V\}g@ar modgl are given. In Section V linear models are estlmated
Br_om experimental data and they are compared to the physical

designed to illustrate performance limitations due to zero | del. D iralized tional int | (Pl trol of th
cation in multivariable control systems. The process is callddP de. Ie(;enkra|ze propor |on::1 én egra t'( )V(I:onhro 0 fe
the quadruple-tank process and consists of four interconnecietfidrUPie-1ank process is presentedin Section Vi, where pertor-
water tanks and two pumps. The system is shown in Fig. 1 nce losses due to right half-plane zeros are illustrated. Some

concluding remarks are given in Section VII. Early versions of
this paper have been presented as [15], [18].
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Fig. 1.
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A schematic diagram of the process is shown in Fig. 2. The
target is to control the level in the lower two tanks with two
pumps. The process inputs areandwv, (input voltages to the
pumps) and the outputs age andy, (voltages from level mea-
surement devices). Mass balances and Bernoulli's law yield

where
A;
a;

h;

%: —Z—z 29hl—i—f;—?]’L 2ghs +
%: —Z—Z 29h2+Z—Z 2ghs +

cross-section of Tank
cross-section of the outlet hole;
water level.

The quadruple-tank process shown together with a controller interface running on a PC.

Tank 3

k1 v
A "
L v
A ( %—l
Tank 1
Pump 1
W "G

U1

The voltage applied to Pumips »; and the corresponding flow
is k;v;. The parameters;, v» € (0, 1) are determined from

how the valves are set prior to an experiment. The flow to Tanl{;'f’T'

hinaddn kil

2. Schematic diagram of the quadruple-tank process. The water levels
anks 1 and 2 are controlled by two pumps. The positions of the valves

Tank 4

—

Tank 2

Y1 Y2

@_}_)ump 2

U2

is v1k1v1 and the flow to Tank 4 i$1 — 1 )k, v, and similarly  determine the location of a multivariable zero for the linearized model. The zero
for Tank 2 and Tank 3. The acceleration of gravity is dengted can be put in either the left or the right half-plane.

The measured level signals drgh,; andk.ho. The parameter
values of the laboratory process are given in the following tablgave minimum-phase characteristics dhdat which it will be
shown to have nonminimum-phase characteristics. The chosen
operating points correspond to the following parameter values:

The model and control of the quadruple-tank process are studied
attwo operating points?_ at which the system will be shown to

Al, Ag [CIHQ] 28
Ay, Ay [em?] 32
ai, a3 [em?]  0.071
az, ay  [cm?] 0.057
ke [V/cm] 0.50
g [cm/s?]  981.

pP_ P,
(h?, 1Y)  [cm] (12.4,12.7) (12.6, 13.0)
(h9, hY)  [cm] (1.8, 1.4) (4.8, 4.9)
(02, v9)  [V] (3.00, 3.00) (3.15, 3.15)
(ki, ko) [cm®/Vs] (3.33, 3.35) (3.14, 3.29)
(71, 72) (0.70, 0.60) (0.43, 0.34)
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Fig. 3. Validation of the minimum-phase modgl . The outputs from the model (dashed lines) together with the outputs from the real process (solid lines) are

shown.

Introduce the variables; := h; — Y andu; := v; — v?. The
linearized state-space equation is then given by

- 1 As 0 -
Tl Ang
0 1 -
d_-T _ T2 A2T4 T
dt 1
0 0 - 0
I
1
0 0 0 ——
L T, |
Y1k1 0 T
Ay
yoko
0
A
T, Gk |
Az
(1 =)k 0
L Ay J
k. 0 0 O
v [ 0 ke O 0} * @
where the time constants are
A; [2h9
a; g
The corresponding transfer matrix is
Y161 (1—y2)er
G(s) = 4)
(1 - 71)02 Y2C2

wherec; = lelkc/Al andc; = TQkaC/AQ. Note the wayy
and~, enter the matrix.

For the two operating point®_ and P, we have the fol-
lowing time constants:

P_ P,
(T17 TQ) (627 90) (637 91) '
(15, 7o) (23,30) (39, 56)

The dominating time constants are thus similar for both oper-
ating conditions. The physical modeling gives the two transfer
matrices

2.6 1.5
14 62s (1+23s)(1 4 62s)
G-(s)= 14 2.8
(1+ 30s)(1 4 90s) 1+90s
)
and
1.5 2.5
1+ 63s (1+39s)(1 + 63s)
Gils) = 2.5 16
(1 + 565)(1 + 91s) 1+91s ©

Figs. 3 and 4 show simulations of these two models com-
pared to real data obtained from the identification experiments
discussed in Section V. The inputs are pseudorandom binary se-
guences (PRBS’s) with low amplitudes, so that the dynamics
are captured by a linear model. The model outputs agree well
with the responses of the real process.

The quadruple-tank process is simple to build. The four tanks
are made out of plexiglas tubes. The height of each tank is 20 cm
and the diameter is about 6 cm. The pumps are gear pumps with
a capacity oR.5 £/min. Capacitive electrodes are used for mea-
suring the water levels. The tanks and the pumps are connected
by flexible tubings, each with a diameter of 6 mm. The equip-
ment is of the same type as used for the double tank process
described in [5] and [4].

Ill. | NTERPRETATION OFMULTIVARIABLE ZERO

The zero locations and their directions of the transfer matrix
( are derived in this section. It is shown that they have intuitive
physical interpretations in terms of how the valyesand-~; are
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Fig. 4. Validation of the nonminimum-phase model . Same variables as in Fig. 3 are shown.

set. A simple expression for the relative gain array of the model 72 A
is also derived.

A. Zero Location

The zeros of the transfer matrix in (4) are the zeros of the
numerator polynomial of the rational function

C1Co
vz [lim (1 + 5T3)

X (1 =+ STg)(l =+ 8T4) —

det G(s)=

(1 —y) =)
Y172

()

4>
bt

The transfer matrixG@ thus has two finite zeros foy;, v2 €
(0, 1). One of them is always in the left half-plane, but the other
can be located either in the left or the right half-plane, as follows

from the following root-locus argument. Introduce a parametgfg- 5. Depending on the values of the valve parameteendy, the system
IS minimum or nonminimum phase. Above the straight line betwé@er ) and

n € (0, 00) as (1, 0) the system is minimum phase and below it is nonminimum phase. The
two cases studied in this paper corresponds to the two dots.

I
1

n:=(1-y)(1 =)/
) to the lower tanks is greater than the flow to the upper tanks if
If # is small, the two zeros are close tal/T3 and ~1/T4, ., |, > 1 ie., if the system is minimum phase. The flow to
respectively. Furthermore, one zero tends-t and one zero e ower tanks is smaller than the flow to the upper tanks if the
tends to+oc asy — oc. If 7 = 1 one zero is located at thegysiem is nonminimum phase. It is intuitively easier to control
origin. This case correspondsto+ - = 1. It follows that the y1 With u; andy, with u., if most of the flows goes directly

system is nonminimum phase for to the lower tanks. The control problem is particularly hard if
the total flow going to the left tanks (Tanks 1 and 3) is equal
O<m+7<l1 to the total flow going to the right tanks (Tanks 2 and 4). This
corresponds te; + v = 1, i.e., a multivariable zero in the
and minimum phase for origin. There is thus an immediate connection between the zero
location of the model and physical intuition of controlling the
1<y +7 <2 quadruple-tank process.

Recall thaty; ++v2 = 1.30 > 1 for P_ andy; +v2 = 0.77 < 1
for P, . Fig. 5 shows the location of the two operating poifts
and P, . For operating points above the solid line the system is An important difference between scalar systems and multi-
minimum phase and below it is nonminimum phase. variable systems is that not only the location of a multivariable
The multivariable zero being in the left or in right half-planeero is important but also its direction. We define the (output)

has a straightforward physical interpretation. getlenote the direction of a zera: as a vector) € R? of unit length such as
flow through Pump and assume that = ¢». Then the sum of %? G(») = 0. If v is parallel to a unit vector, then the zero is
the flows to the upper tanks |8 — (71 + v2)]g1 and the sum only associated with one output. If this is not the case, then the
of the flows to the lower tanks i8y; + v2)q1. Hence, the flow effect of a right half-plane zero may be distributed between both

B. Zero Direction
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outputs. See [30] for further discussions. For the transfer matrix 10 ' —
G in (4), the zero direction fog > 0 is given by
0.8}
Y1c1 (1=y2)er 7 A=t
w1t 1+2T} (1+2T5)(1+211) | [0]” o8 | /)
L/}J (1=71)co Y2C2 B [0} ' ”
(+210) (11213 14215 04
(8) A=0
Note that it follows from this equation that;, ¢» # 0, so the 0.2
zero is never associated with only one output. If we solve (8) for
72 and simplify, it is easy to show that or | . ‘ : ‘ :
0 0.2 0.4 0.6 0.8 1
Y 1-m c2(1 +277) ©) b
thy Y1 (14 2T0) (1 + 213)° Fig. 6. Contour plot of the RGA as a function of the valve parameters
and~y.. The plot is drawn fon = —10, —9, ..., 10. We have\ < 0 below

the straight line betweef®), 1) and(1. 0) andA > 1 above the line. Close to

From this equation it is possible to conclude that;ifis small, the fine, A| is large.

thenz is mostly associated with the first output~f is close to
one, there is mostly associated with the second output. Hence, ) . .

for a given zero location, the relative sizeaf and~, deter- D€ the linearized model witfy andy, permuted. The RGA for
mines which output the right half-plane zero is related to. Gis

5o G- —)

C. Relative Gain Array L= — o

The relative gain array (RGA) was introduced by Bristol [7 ) ~ .

as a measure of interaction in multivariable control systems. Thgnce, ify1 + 72 < 1then) > 0 so a decentralized con-
RGA A is defined as\ = G(0) x G~7(0), where the asterisk trol struc’Fur.e _corr_e.spondmg 1G] |_s preferaple ac_cordlng to the
denotes the Schur product (element-by-element matrix multipRGA- This is intuitive from physical considerations.

cation) and-T" inverse transpose. It is possible to show that the

elements of each row and columnfsum up to one, so for a D. Data for the Laboratory Process

2 x 2 systemthe RGA is determined by the scalas A;;. The We sum up the physical interpretations of the zero as well
RGA is used as a tool mainly in the process industry to decide as of the RGA and give the corresponding values for the real
control structure issues such as input—output pairing for decgiocess. One zero 6f is always in the left half-plane. The other
tralized controllers [27]. See [13] for a summary of closed-loogan be located anywhere on the real axis. The location is deter-
properties predicted from the RGA. McAvoy [25] proposed thamnined by how the valves corresponding to the parameters
one should strive for a pairing with.67 < A < 1.50. The and~, are adjusted. Ify, + > € (0, 1) then the zerois in the

system is particularly hard to control X < 0. right half-plane, while ify; + 2 € (1, 2) the zero is in the left
The RGA of the quadruple-tank process is given by the simphalf-plane. The relative size ofi and~» gives the zero direc-
expression tion, i.e.,v1 /- tells which output the effect of the zero is associ-
ated to. Ify; /2 is small, then the zero is associated with output
_ nyz (10) one and vice versa. The RGA of the quadruple-tank process is
Mty -1 given byv;v2/(v1 + 2 — 1) and is thus only dependent on the

. . _ vglve settings.
Note that the RGA is only depending on the valve settings anaFOr the t\?vo operating point&®_ and P, we have the fol-
no other physical parameters of the process. Fig. 6 shows a el jing zeros: B *

tour plot of A as a function ofy; and-~,. The edges of the box

0 < ~1, v < 1corresponds td = 0 andX\ = 1 as is shown P P,
in the figure. The magnitude dfincreases as; + 2 becomes .
close to one. There are ng, v2 € (0, 1) such thatx € (0, 1). Zeros (—0.060, —0.018) (—0.057, 0.013)

From (10) we see for instance that 0 if v, +~v2 < 1, which ) ) )

corresponds to the nonminimum-phase setting discussed pré&{gnce, G+ has a zero in the right half-plane, which (as we

ously. will see in Section VI) deteriorate the performance con-
If the valves of the quadruple-tank process are set such tRiterably. The direction of the zero = 0.013 is given by

v + 72 < 1, then the RGA analysis suggests that anoth&n/¥2 = —0.85. The RGA for P_is given by A = 1.40

input—output pairing for decentralized control should be choseild for Py by A = —0.64. RGA analysis indicates that
Let the nonminimum-phase system is harder to control than the

minimum-phase system. For the systéin(G with permuted
~ {Gﬂ GQQ} outputs) the RGA is\ = —0.40 for the minimum-phase

G = Gi1 Goo setting and\ = 1.64 for the nonminimum-phase setting. There
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exist results that connect the RGA and the zero location, firfollows that there exists a unique constant inguf, vJ)
example, see [32]. giving the steady-state leve(s?, 29) if and only if the matrix

IV. PROPERTIES OANONLINEAR MODEL
- . Mk (1 —72)k2
The characteristics of the nonlinear model (1) of the (1 =)k Yoko
quadruple-tank process is studied in this section. The nonlinear

zero dynamics are derived and features of the stationasynonsingular, i.e., if and only #f; + 72 # 1. The singularity

operating points are given. of this matrix is natural. In stationarity, the flow through Tank 1
isy1q1 + (1 —2)g2 and the flow through Tank 2 i g2 + (1 —
A. Nonlinear Zero Dynamics 71)q1, Whereg; is the flow through Pump If 5, ++2 = 1, these

. . . I flows equahy; (g1 +g2) and(1 —~1)(q1 +g2), respectively. The
Itis possible to choose an inpliy, v2) and an initial state stationary flows through Tanks 1 and 2 are thus dependent, and

(hY, ---, hY) for the system (1) such that (t) = ha(t) = " o
for all ¢ > 0. The constrained dynamics are called the zerso0 must the levels also be. Note that the conditiort v = 1

dynamics [14]. The zero dynamics of (1) are IS equivalent to thaf7 in (4) has a zero in the origin.

dh 1-—
3 _ B foghs — (A =)ay /2gha V. SYSTEM IDENTIFICATION

% Ag ’72A3 . i . . .
Estimation of models based on experimental data is described

dh 1—m)a a
dhy _ (1= m)as V29hs — <*/2ghs.  (11) next. Standard system identification techniques are used [23]. It
dt ’ylA4 A4 . . .
is shown that the identified models are accurate and agree well
The characteristic equation for the linearized dynamics of (1%jth the physical model described previously.
is Both single input—-multiple output (SIMO) and multiple
input—-multiple output (MIMO) identification experiments
(1 —v)(1 —2) -0 were performed with PRBS signals as inputs. The levels of the
Y172 PRBS signals were chosen so that the process dynamics were

. . . approximately linear.
whereT; andZ}, are the time constants defined in (3). The Solu-' gjack-box and gray-box identification methods were tested

tions of this equation are equal to the zerogbitompare (7). sing Matlab’s System Identification Toolbox [22]. Linear
_In particular, it follows that the nonlmear_ s_ystem is no”m'”éingle inputsingle output (SISO), multiple input—single
imum phase fo0 < 7 + 7, < 1 and minimum phase for o,in,t (MISO), and MIMO models were identified in ARX,

1 <1 + 72 < 2. This is not surprising since the operations oAr\AX, and state-space forms. All model structures gave

taking a linear approximation and calculating the zero dynamiggyjjar responses to validation data. Here we only present some

commute [14]. _ _ ~_ _examples of the results. We start with a black-box approach.
Some nonlinear design methods like feedback linearizatigt, 7 shows validation data for the minimum-phase setting

techniques require that the zero dynamics are stable. Modifigggether with a simulation of a state-space model derived with
tions t_o .these have been proposed to e>§tend the appllcabl_ht)ﬂgg subspace algorithm N4SID [22], [34]. The state-space
nonminimum-phase systems. The nonlinear zero dynamicsofye| has three real poles corresponding to time constants
the quadruple-tank process can be made stable or unstablggbyq and 113. It has one multivariable zero-i9.99. The
simply changing a valve. The process is thus suitable 10 illugmjation of the nonminimum-phase model is shown in Fig. 8.
trate how sensitive a nonlinear design method is to the stabilif}is model is of fourth order and has time constants 11. 31

(1 —|— STg)(l —|— 8T4) —

of the zero dynamics. 140, and 220. Its two zeros are located-if.288 and 0.019.
The validation results are of similar quality as the result for
B. Steady-State Conditions the physical models shown in Figs. 3 and 4. Note that the
For a stationary operating poirfh?, +°), the differential Minimum-phase setting gives an identified model with no right
equations in (1) give that half-plane zero, whereas the nonminimum-phase setting gives

a dominating right half-plane zero, i.e., a right half-plane zero
close to the origin compared to the time scale given by the time

as 2]0_(1 12)k2 o _ _ _
As 3T A, V2 constants. This agrees with the physical model.
ay (1— )k Gray-box models with structure fixed to the linear state-space
AL 2gh8 = T4 equation (2) gave similar validation results as the ones previ-
4 4 )
ously shown. Because of the fixed structure, the number of poles
and thus and zeros are the same as for the physical model. For the min-
imum-phase setting we have time constdfits 7», 73, 74) =
o foo k1 0 (1 —y2)ko L0 (96, 99, 32, 39) and zeros at-0.045 and—0.012, whereas for
A VT Ay 2 the nonminimum-phase setting we ha{ , 1, 13, 7)) =
a2 foro (1—v)k n voko (77, 112, 53, 53) r_;md zeros a0.01.4 and —0.051. Thg zeros
Ay gha = A, Y1 Ay Y2 agree very well with the ones derived from the physical model.
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Output y1 Qutput y2
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Fig. 7. Validation of identified state-space model for the minimum-phase setting. Outputs from model (dashed) together with the outputs ft@rotessea
(solid) are shown.

Output y1 Cutput y2

[Volt]
[Volt)

0 500 1000 1500 0 500 1000 1500
Time [s] Time [s]

Fig. 8. Validation of identified state-space model for the nonminimum-phase setting. Same variables as in Fig. 7 are shown.

The conclusion of this section is that the quadruple-tank
process is also suitable to illustrate multivariable system

identification techniques. oo c " u
1
VI. DECENTRALIZED Pl CONTROL G
. . . r U

The decentralized control law = diag{C1, C2}(r — ) in : o ’ v
Fig. 9 is in this section applied to the real process as well as tc B
nonlinear and linear process models. PI controllers of the form

Cels) = Ko <1 - Tigs> ’ t=1,2 Fig. 9. Decentralized control structure with two Pl controli€ksandC.

are tuned manually based on simulations of the linear physigabcess is generically harder to control than the minimum-phase
models (5) and (6). process. The controller parametéts,, 7;;) = (1.5, 110) and

For the minimum-phase setting it is easy to find controllelK,, T;2) = (—0.12, 220) stabilize the process and give rea-
parameters that give good performance. The controller settirgmable performance, see Fig. 11. They give, however, much
(K1, Tih) = (3.0, 30) and (K>, T;2) = (2.7, 40) give the slower responses than in the minimum-phase case. Note the dif-
responses shown in Fig. 10. The responses are given for a $egpnt time scales compared to Fig. 10. The settling time is ap-
in the reference signat . The top four plots show control of proximately ten times longer for the nonminimum-phase set-
the simulated nonlinear model in (1) (dashed lines) and conttalg. (The control signak, seems to be noiseless in Fig. 11,
of an identified linear state-space model (solid). The four lowerhich is due to the low gaik’,.) Note that the closed-loop per-
plots show the responses of the real process. The discrepanfiemance will be better if;, andy, are permuted in the control
between simulations and the true time responses are small. structure in Fig. 9, as was suggested by the RGA analysis in

Manually tuning to find controller parameters that give goo8ection Ill. Recall that the RGA is given by= —0.64 for the
closed-loop performance is difficult for the nonminimum-phaseriginal pairing and\ = 1.64 if the process outputs are per-
setting. This is, of course, due to that the nonminimum-phasaited. The permutation, however, does not change the location



JOHANSSON: THE QUADRUPLE-TANK PROCESS: A MULTIVARIABLE LABORATORY PROCESS WITH AN ADJUSTABLE ZERO 463
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Fig. 10. Results of PI control of minimum-phase system. The upper four plots show simulations with the nonlinear physical model (dashed) aifi¢the ident
linear model (solid). The four lower plots show experimental results.

of the right half-plane zero, and experiments have shown that thgpermutation ofy; and .. Multivariable controller-tuning
settling times are still much larger than for the minimum-phaseethod based on relay feedback experiments have also been
setting [29]. investigated on the quadruple-tank process [17], [29]. It was
Centralized multivariable control has also been tested on tileown in [29] that several of the methods proposed in the
quadruple-tank process [12]. These experiments indicate thirature cannot handle automatic control design for both the
for the minimum-phase system it is not possible to achiemsinimum-phase and the nonminimum-phase setting.
much faster response than with the decentralized PI controlleiThe minimal achievable settling times for the step responses
in this section. For the nonminimum-phase case, howeverame important characteristics of the system. A lower bound on
multivariable controller based of ., design methods gavethe settling time for multivariable control systems is derived in
30-40% faster settling time than the responses shown hdf] by generalizing scalar results by Middleton [26]. Itis shown
Note that this is still several times slower than the respontiet given a fixed undershoot i and a fixed interaction tg,,
time of the minimum-phase system. An interesting property tien, if the right half-plane zero is close to the origin, the step re-
the H,,, controller for the nonminimum-phase system is that &ponse will necessarily have a large settling time with any linear
happens to get an dominating antidiagonal structure, contragntroller. The bound also takes the direction of the zero into ac-
to the diagonal controller described in this section. This is intgount. Using the lower bound in [16], it is possible to show that
itive and agrees also with the RGA analysis, which suggestid@® nonminimum-phase system must have a settling time that
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Fig. 11. Results of PI control of nonminimum-phase system. Same variables are shown as in Fig. 10. Note the ten times longer time scales.

is considerably larger than the minimum-phase response shdtwuas shown that the quadruple-tank process is well suited to il-
in this paper. The minimum-phase setting of the quadruple-takistrate performance limitations in multivariable control design
process can theoretically be arbitrarily tight controlled with eaused by right half-plane zeros. This followed from that the lin-
decentralized controller [15]. earized model of the process has a multivariable zero that in a
direct way is connected to the physical positions of two valves.
The positions are given by two parameteis v. € (0, 1). It
VII. CONCLUSIONS was shown that; + - determines the location of the zero, so
that if v1 + v2 < 1 the system is nonminimum phase and if
A new multivariable laboratory process that consists of fo | +2 > 1 the system is minimum phase. The quotientys
interconnected water tanks has been described. A motivation §@fes the zero direction.
developing this process was to illustrate concepts in multivari- podels from physical data and experimental data were de-
able control or as stated in [21]: rived and they were shown to have responses similar to the real
[The control laboratory’s] main purpose is to provide process. Decentralized Pl control showed that it was much more
the connection between abstract control theory and the readlifficult to control the process in the nonminimum-phase setting
world. Therefore it should give an indication of how con- than in the minimum-phase setting.
trol theory can be applied and also an indication of some The quadruple-tank process is used today in several courses
of its limitations. in the control education at LTH, Lund, Sweden, and at KTH,



JOHANSSON: THE QUADRUPLE-TANK PROCESS: A MULTIVARIABLE LABORATORY PROCESS WITH AN ADJUSTABLE ZERO

465

Stockholm, Sweden. The experiments described in this papgrs] K.H. Johansson and J. L. R. Nunes, “A multivariable laboratory process
have been performed using the PC interface shown in Fig. 1 [28]
which has been developed in the man-machine interface gengyy,
ator InTouch from Wonderware Corporation. The interface is
connected to the real process as well as to a real-time kernel [2§0)
This gives a flexible experimental platform where controllers[21]
can be designed in Matlab, loaded into the interface, simulated
with the nonlinear model, and finally tested on the real proces%.ZZ]
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