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The Quadruple-Tank Process: A Multivariable
Laboratory Process with an Adjustable Zero

Karl Henrik Johansson, Member, IEEE

Abstract—A novel multivariable laboratory process that con-
sists of four interconnected water tanks is presented. The linearized
dynamics of the system have a multivariable zero that is possible
to move along the real axis by changing a valve. The zero can be
placed in both the left and the right half-plane. In this way the
quadruple-tank process is ideal for illustrating many concepts in
multivariable control, particularly performance limitations due to
multivariable right half-plane zeros. The location and the direc-
tion of the zero have an appealing physical interpretation. Accu-
rate models are derived from both physical and experimental data
and decentralized control is demonstrated on the process.

Index Terms—Education, laboratory process, multivariable con-
trol, multivariable zeros.

I. INTRODUCTION

M ULTIVARIABLE control techniques have received in-
creased industrial interest [31]. It is often hard to tell

when these methods are needed for improved performance in
practice and when simpler control structures are sufficient. A
key issue is the functional limits of the system: what design
specifications are reasonable? It was already pointed out by
Bode [6] that nonminimum-phase characteristics of a system
impose limitations for linear feedback designs. Still it happens
that unrealistic specifications are made, as pointed out in [3],
[11], and [33]. Performance limitations in control systems have
received extensive interest recently. Several new results, partic-
ularly for scalar and multivariable linear systems, have been pre-
sented. Bode’s original result together with extensions are cov-
ered in the textbooks [10], [30]. Zames and Francis [9], [36],
[38] showed that right half-plane zeros impose restrictions on
the sensitivity function: if the sensitivity is forced to be small
in one frequency band, it has to be large in another, possibly
yielding an overall bad performance. They also showed that if
the system does not have any right half-plane zeros, then theo-
retically it can be arbitrarily well controlled. The latter result has
been generalized to decentralized control structures [19], [20],
[37].

This paper describes a new laboratory process, which was
designed to illustrate performance limitations due to zero lo-
cation in multivariable control systems. The process is called
the quadruple-tank process and consists of four interconnected
water tanks and two pumps. The system is shown in Fig. 1. Its
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inputs are the voltages to the two pumps and the outputs are the
water levels in the lower two tanks. The quadruple-tank process
can easily be build by using two double-tank processes, which
are standard processes in many control laboratories [4], [5]. The
setup is thus simple, but still the process can illustrate several
interesting multivariable phenomena. The linearized model of
the quadruple-tank process has a multivariable zero, which can
be located in either the left or the right half-plane by simply
changing a valve. Both the location and the direction of a multi-
variable zero are important for control design. They have direct
physical interpretations for the quadruple-tank process, which
make the process suitable to use in control education.

Few multivariable laboratory processes have been reported
in the literature. Mechanical systems such as the helicopter
model [1], [24] and the active magnetic bearing process [35]
have been developed at ETH, Zürich, Switzerland. Davison
has developed a water tank process, where multivariable water
level control and temperature-flow control can be investigated
[8]. Some multivariable laboratory processes are commercially
available, for example from Quanser Consulting in Canada, Ed-
ucational Control Products in the United States, and Feedback
Instruments and TecQuipment in the United Kingdom. There
does not, however, seem to exist any laboratory processes that
demonstrate multivariable zero location and direction in an
illustrative way. This was one of the main motivations for the
development of the quadruple-tank process [15].

The outline of this paper is as follows. A nonlinear model for
the quadruple-tank process based on physical data is derived in
Section II. It is linearized and the linear model is validated using
experimental data. The location and the direction of a multivari-
able zero of the linearized model are derived in Section III. It is
shown that the valve positions of the process uniquely deter-
mine if the system is minimum phase or nonminimum phase.
The relative gain array is also derived. Section IV discusses the
nonlinear model of the quadruple-tank process. Properties of the
nonlinear zero dynamics and of the stationary point of the non-
linear model are given. In Section V linear models are estimated
from experimental data and they are compared to the physical
model. Decentralized proportional integral (PI) control of the
quadruple-tank process is presented in Section VI, where perfor-
mance losses due to right half-plane zeros are illustrated. Some
concluding remarks are given in Section VII. Early versions of
this paper have been presented as [15], [18].

II. PHYSICAL MODEL

In this section we derive a mathematical model for the
quadruple-tank process from physical data. The section ends
with some further comments on the construction of the process.

1063–6536/00$10.00 © 2000 IEEE
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Fig. 1. The quadruple-tank process shown together with a controller interface running on a PC.

A schematic diagram of the process is shown in Fig. 2. The
target is to control the level in the lower two tanks with two
pumps. The process inputs areand (input voltages to the
pumps) and the outputs areand (voltages from level mea-
surement devices). Mass balances and Bernoulli’s law yield

(1)

where
cross-section of Tank;
cross-section of the outlet hole;
water level.

The voltage applied to Pumpis and the corresponding flow
is . The parameters are determined from
how the valves are set prior to an experiment. The flow to Tank 1
is and the flow to Tank 4 is and similarly
for Tank 2 and Tank 3. The acceleration of gravity is denoted.
The measured level signals are and . The parameter
values of the laboratory process are given in the following table:

The model and control of the quadruple-tank process are studied
at two operating points: at which the system will be shown to

Fig. 2. Schematic diagram of the quadruple-tank process. The water levels
in Tanks 1 and 2 are controlled by two pumps. The positions of the valves
determine the location of a multivariable zero for the linearized model. The zero
can be put in either the left or the right half-plane.

have minimum-phase characteristics andat which it will be
shown to have nonminimum-phase characteristics. The chosen
operating points correspond to the following parameter values:
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Fig. 3. Validation of the minimum-phase modelG . The outputs from the model (dashed lines) together with the outputs from the real process (solid lines) are
shown.

Introduce the variables and . The
linearized state-space equation is then given by

(2)

where the time constants are

(3)

The corresponding transfer matrix is

(4)

where and . Note the way
and enter the matrix.

For the two operating points and we have the fol-
lowing time constants:

The dominating time constants are thus similar for both oper-
ating conditions. The physical modeling gives the two transfer
matrices

(5)
and

(6)
Figs. 3 and 4 show simulations of these two models com-

pared to real data obtained from the identification experiments
discussed in Section V. The inputs are pseudorandom binary se-
quences (PRBS’s) with low amplitudes, so that the dynamics
are captured by a linear model. The model outputs agree well
with the responses of the real process.

The quadruple-tank process is simple to build. The four tanks
are made out of plexiglas tubes. The height of each tank is 20 cm
and the diameter is about 6 cm. The pumps are gear pumps with
a capacity of min. Capacitive electrodes are used for mea-
suring the water levels. The tanks and the pumps are connected
by flexible tubings, each with a diameter of 6 mm. The equip-
ment is of the same type as used for the double tank process
described in [5] and [4].

III. I NTERPRETATION OFMULTIVARIABLE ZERO

The zero locations and their directions of the transfer matrix
are derived in this section. It is shown that they have intuitive

physical interpretations in terms of how the valvesand are
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Fig. 4. Validation of the nonminimum-phase modelG . Same variables as in Fig. 3 are shown.

set. A simple expression for the relative gain array of the model
is also derived.

A. Zero Location

The zeros of the transfer matrix in (4) are the zeros of the
numerator polynomial of the rational function

(7)

The transfer matrix thus has two finite zeros for
. One of them is always in the left half-plane, but the other

can be located either in the left or the right half-plane, as follows
from the following root-locus argument. Introduce a parameter

as

If is small, the two zeros are close to and ,
respectively. Furthermore, one zero tends to and one zero
tends to as . If one zero is located at the
origin. This case corresponds to . It follows that the
system is nonminimum phase for

and minimum phase for

Recall that for and
for . Fig. 5 shows the location of the two operating points
and . For operating points above the solid line the system is
minimum phase and below it is nonminimum phase.

The multivariable zero being in the left or in right half-plane
has a straightforward physical interpretation. Letdenote the
flow through Pump and assume that . Then the sum of
the flows to the upper tanks is and the sum
of the flows to the lower tanks is . Hence, the flow

Fig. 5. Depending on the values of the valve parameters
 and
 the system
is minimum or nonminimum phase. Above the straight line between(0; 1) and
(1; 0) the system is minimum phase and below it is nonminimum phase. The
two cases studied in this paper corresponds to the two dots.

to the lower tanks is greater than the flow to the upper tanks if
, i.e., if the system is minimum phase. The flow to

the lower tanks is smaller than the flow to the upper tanks if the
system is nonminimum phase. It is intuitively easier to control

with and with , if most of the flows goes directly
to the lower tanks. The control problem is particularly hard if
the total flow going to the left tanks (Tanks 1 and 3) is equal
to the total flow going to the right tanks (Tanks 2 and 4). This
corresponds to , i.e., a multivariable zero in the
origin. There is thus an immediate connection between the zero
location of the model and physical intuition of controlling the
quadruple-tank process.

B. Zero Direction

An important difference between scalar systems and multi-
variable systems is that not only the location of a multivariable
zero is important but also its direction. We define the (output)
direction of a zero as a vector of unit length such as

. If is parallel to a unit vector, then the zero is
only associated with one output. If this is not the case, then the
effect of a right half-plane zero may be distributed between both



460 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 3, MAY 2000

outputs. See [30] for further discussions. For the transfer matrix
in (4), the zero direction for is given by

(8)
Note that it follows from this equation that , so the
zero is never associated with only one output. If we solve (8) for

and simplify, it is easy to show that

(9)

From this equation it is possible to conclude that ifis small,
then is mostly associated with the first output. If is close to
one, then is mostly associated with the second output. Hence,
for a given zero location, the relative size of and deter-
mines which output the right half-plane zero is related to.

C. Relative Gain Array

The relative gain array (RGA) was introduced by Bristol [7]
as a measure of interaction in multivariable control systems. The
RGA is defined as , where the asterisk
denotes the Schur product (element-by-element matrix multipli-
cation) and inverse transpose. It is possible to show that the
elements of each row and column ofsum up to one, so for a
2 2 system the RGA is determined by the scalar . The
RGA is used as a tool mainly in the process industry to decide on
control structure issues such as input–output pairing for decen-
tralized controllers [27]. See [13] for a summary of closed-loop
properties predicted from the RGA. McAvoy [25] proposed that
one should strive for a pairing with . The
system is particularly hard to control if .

The RGA of the quadruple-tank process is given by the simple
expression

(10)

Note that the RGA is only depending on the valve settings and
no other physical parameters of the process. Fig. 6 shows a con-
tour plot of as a function of and . The edges of the box

corresponds to and as is shown
in the figure. The magnitude of increases as becomes
close to one. There are no such that .
From (10) we see for instance that if , which
corresponds to the nonminimum-phase setting discussed previ-
ously.

If the valves of the quadruple-tank process are set such that
, then the RGA analysis suggests that another

input–output pairing for decentralized control should be chosen.
Let

Fig. 6. Contour plot of the RGA� as a function of the valve parameters

and
 . The plot is drawn for� = �10; �9; . . . ; 10. We have� � 0 below
the straight line between(0; 1) and(1; 0) and� � 1 above the line. Close to
the line,j�j is large.

be the linearized model with and permuted. The RGA for
is

Hence, if then so a decentralized con-
trol structure corresponding to is preferable according to the
RGA. This is intuitive from physical considerations.

D. Data for the Laboratory Process

We sum up the physical interpretations of the zero as well
as of the RGA and give the corresponding values for the real
process. One zero of is always in the left half-plane. The other
can be located anywhere on the real axis. The location is deter-
mined by how the valves corresponding to the parameters
and are adjusted. If then the zero is in the
right half-plane, while if the zero is in the left
half-plane. The relative size of and gives the zero direc-
tion, i.e., tells which output the effect of the zero is associ-
ated to. If is small, then the zero is associated with output
one and vice versa. The RGA of the quadruple-tank process is
given by and is thus only dependent on the
valve settings.

For the two operating points and we have the fol-
lowing zeros:

Zeros

Hence, has a zero in the right half-plane, which (as we
will see in Section VI) deteriorate the performance con-
siderably. The direction of the zero is given by

. The RGA for is given by
and for by . RGA analysis indicates that
the nonminimum-phase system is harder to control than the
minimum-phase system. For the system( with permuted
outputs) the RGA is for the minimum-phase
setting and for the nonminimum-phase setting. There
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exist results that connect the RGA and the zero location, for
example, see [32].

IV. PROPERTIES OFNONLINEAR MODEL

The characteristics of the nonlinear model (1) of the
quadruple-tank process is studied in this section. The nonlinear
zero dynamics are derived and features of the stationary
operating points are given.

A. Nonlinear Zero Dynamics

It is possible to choose an input and an initial state
for the system (1) such that

for all . The constrained dynamics are called the zero
dynamics [14]. The zero dynamics of (1) are

(11)

The characteristic equation for the linearized dynamics of (11)
is

where and are the time constants defined in (3). The solu-
tions of this equation are equal to the zeros of, compare (7).
In particular, it follows that the nonlinear system is nonmin-
imum phase for and minimum phase for

. This is not surprising since the operations of
taking a linear approximation and calculating the zero dynamics
commute [14].

Some nonlinear design methods like feedback linearization
techniques require that the zero dynamics are stable. Modifica-
tions to these have been proposed to extend the applicability to
nonminimum-phase systems. The nonlinear zero dynamics of
the quadruple-tank process can be made stable or unstable by
simply changing a valve. The process is thus suitable to illus-
trate how sensitive a nonlinear design method is to the stability
of the zero dynamics.

B. Steady-State Conditions

For a stationary operating point , the differential
equations in (1) give that

and thus

It follows that there exists a unique constant input
giving the steady-state levels if and only if the matrix

is nonsingular, i.e., if and only if . The singularity
of this matrix is natural. In stationarity, the flow through Tank 1
is and the flow through Tank 2 is

, where is the flow through Pump. If , these
flows equal and , respectively. The
stationary flows through Tanks 1 and 2 are thus dependent, and
so must the levels also be. Note that the condition
is equivalent to that in (4) has a zero in the origin.

V. SYSTEM IDENTIFICATION

Estimation of models based on experimental data is described
next. Standard system identification techniques are used [23]. It
is shown that the identified models are accurate and agree well
with the physical model described previously.

Both single input–multiple output (SIMO) and multiple
input–multiple output (MIMO) identification experiments
were performed with PRBS signals as inputs. The levels of the
PRBS signals were chosen so that the process dynamics were
approximately linear.

Black-box and gray-box identification methods were tested
using Matlab’s System Identification Toolbox [22]. Linear
single input–single output (SISO), multiple input–single
output (MISO), and MIMO models were identified in ARX,
ARMAX, and state-space forms. All model structures gave
similar responses to validation data. Here we only present some
examples of the results. We start with a black-box approach.
Fig. 7 shows validation data for the minimum-phase setting
together with a simulation of a state-space model derived with
the subspace algorithm N4SID [22], [34]. The state-space
model has three real poles corresponding to time constants
8, 41, and 113. It has one multivariable zero in0.99. The
simulation of the nonminimum-phase model is shown in Fig. 8.
This model is of fourth order and has time constants 11, 31,
140, and 220. Its two zeros are located in0.288 and 0.019.
The validation results are of similar quality as the result for
the physical models shown in Figs. 3 and 4. Note that the
minimum-phase setting gives an identified model with no right
half-plane zero, whereas the nonminimum-phase setting gives
a dominating right half-plane zero, i.e., a right half-plane zero
close to the origin compared to the time scale given by the time
constants. This agrees with the physical model.

Gray-box models with structure fixed to the linear state-space
equation (2) gave similar validation results as the ones previ-
ously shown. Because of the fixed structure, the number of poles
and zeros are the same as for the physical model. For the min-
imum-phase setting we have time constants

and zeros at and , whereas for
the nonminimum-phase setting we have

and zeros at and . The zeros
agree very well with the ones derived from the physical model.
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Fig. 7. Validation of identified state-space model for the minimum-phase setting. Outputs from model (dashed) together with the outputs from the real process
(solid) are shown.

Fig. 8. Validation of identified state-space model for the nonminimum-phase setting. Same variables as in Fig. 7 are shown.

The conclusion of this section is that the quadruple-tank
process is also suitable to illustrate multivariable system
identification techniques.

VI. DECENTRALIZED PI CONTROL

The decentralized control law diag in
Fig. 9 is in this section applied to the real process as well as to
nonlinear and linear process models. PI controllers of the form

are tuned manually based on simulations of the linear physical
models (5) and (6).

For the minimum-phase setting it is easy to find controller
parameters that give good performance. The controller settings

and give the
responses shown in Fig. 10. The responses are given for a step
in the reference signal . The top four plots show control of
the simulated nonlinear model in (1) (dashed lines) and control
of an identified linear state-space model (solid). The four lower
plots show the responses of the real process. The discrepancies
between simulations and the true time responses are small.

Manually tuning to find controller parameters that give good
closed-loop performance is difficult for the nonminimum-phase
setting. This is, of course, due to that the nonminimum-phase

Fig. 9. Decentralized control structure with two PI controllersC andC .

process is generically harder to control than the minimum-phase
process. The controller parameters and

stabilize the process and give rea-
sonable performance, see Fig. 11. They give, however, much
slower responses than in the minimum-phase case. Note the dif-
ferent time scales compared to Fig. 10. The settling time is ap-
proximately ten times longer for the nonminimum-phase set-
ting. (The control signal seems to be noiseless in Fig. 11,
which is due to the low gain .) Note that the closed-loop per-
formance will be better if and are permuted in the control
structure in Fig. 9, as was suggested by the RGA analysis in
Section III. Recall that the RGA is given by for the
original pairing and if the process outputs are per-
muted. The permutation, however, does not change the location
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Fig. 10. Results of PI control of minimum-phase system. The upper four plots show simulations with the nonlinear physical model (dashed) and the identified
linear model (solid). The four lower plots show experimental results.

of the right half-plane zero, and experiments have shown that the
settling times are still much larger than for the minimum-phase
setting [29].

Centralized multivariable control has also been tested on the
quadruple-tank process [12]. These experiments indicate that
for the minimum-phase system it is not possible to achieve
much faster response than with the decentralized PI controller
in this section. For the nonminimum-phase case, however, a
multivariable controller based on design methods gave
30–40% faster settling time than the responses shown here.
Note that this is still several times slower than the response
time of the minimum-phase system. An interesting property of
the controller for the nonminimum-phase system is that it
happens to get an dominating antidiagonal structure, contrary
to the diagonal controller described in this section. This is intu-
itive and agrees also with the RGA analysis, which suggested

a permutation of and . Multivariable controller-tuning
method based on relay feedback experiments have also been
investigated on the quadruple-tank process [17], [29]. It was
shown in [29] that several of the methods proposed in the
literature cannot handle automatic control design for both the
minimum-phase and the nonminimum-phase setting.

The minimal achievable settling times for the step responses
are important characteristics of the system. A lower bound on
the settling time for multivariable control systems is derived in
[16] by generalizing scalar results by Middleton [26]. It is shown
that given a fixed undershoot in and a fixed interaction to ,
then, if the right half-plane zero is close to the origin, the step re-
sponse will necessarily have a large settling time with any linear
controller. The bound also takes the direction of the zero into ac-
count. Using the lower bound in [16], it is possible to show that
the nonminimum-phase system must have a settling time that
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Fig. 11. Results of PI control of nonminimum-phase system. Same variables are shown as in Fig. 10. Note the ten times longer time scales.

is considerably larger than the minimum-phase response shown
in this paper. The minimum-phase setting of the quadruple-tank
process can theoretically be arbitrarily tight controlled with a
decentralized controller [15].

VII. CONCLUSIONS

A new multivariable laboratory process that consists of four
interconnected water tanks has been described. A motivation for
developing this process was to illustrate concepts in multivari-
able control or as stated in [21]:

[The control laboratory’s] main purpose is to provide
the connection between abstract control theory and the real
world. Therefore it should give an indication of how con-
trol theory can be applied and also an indication of some
of its limitations.

It was shown that the quadruple-tank process is well suited to il-
lustrate performance limitations in multivariable control design
caused by right half-plane zeros. This followed from that the lin-
earized model of the process has a multivariable zero that in a
direct way is connected to the physical positions of two valves.
The positions are given by two parameters . It
was shown that determines the location of the zero, so
that if the system is nonminimum phase and if

the system is minimum phase. The quotient
gives the zero direction.

Models from physical data and experimental data were de-
rived and they were shown to have responses similar to the real
process. Decentralized PI control showed that it was much more
difficult to control the process in the nonminimum-phase setting
than in the minimum-phase setting.

The quadruple-tank process is used today in several courses
in the control education at LTH, Lund, Sweden, and at KTH,
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Stockholm, Sweden. The experiments described in this paper
have been performed using the PC interface shown in Fig. 1 [28]
which has been developed in the man–machine interface gener-
ator InTouch from Wonderware Corporation. The interface is
connected to the real process as well as to a real-time kernel [2].
This gives a flexible experimental platform where controllers
can be designed in Matlab, loaded into the interface, simulated
with the nonlinear model, and finally tested on the real process.
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