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Abstract: In this paper, we propose a framework for the safe teleoperation of connected vehicles by
remote human operators. The proposed framework combines model-checking, reachability analysis, and
human factor design into a unified approach that checks the feasibility of linear temporal logic (LTL)
specified teleoperation tasks, guarantees safety throughout the execution of the tasks, and keeps the
remote operator as the primary decision maker in the control loop. We apply the general approach to
a remote parking example to illustrate the framework. Then, to evaluate the framework’s benefits and
usability, we conduct a user study on an experimental remote control operator’s room and a 1/10th scale
vehicle. In the user study, we validate the approach’s ability to ensure the completion of LTL-specified
tasks and gain initial insight into whether human users find the teleoperation system intuitive.

Keywords: teleoperation, human-centered design, linear temporal logic, reachability analysis, safety,
automated vehicles

1. INTRODUCTION

Ever since the DARPA Grand and Urban challenges, re-
searchers and engineers have rapidly developed the automated
capabilities of road vehicles. Nowadays, it’s even possible to
see several initial deployments of automated vehicles on pub-
lic roads, e.g., Nobina (2019) and Einride (2019). However,
as outlined in Koopman and Wagner (2017), even though the
automation capabilities of vehicles continue to improve, there
are several safety challenges lying ahead of us that are complex
and nontrivial.

One solution that several automated vehicle companies are cur-
rently pursuing to address the complexities of deploying auto-
mated vehicles into society is remote teleoperation, e.g. Davies
(2017) and Einride (2020). In most cases, remote teleoperation
serves as a semi-automated mode that is used in situations
where it is decided, either a priori or during operation, that a
human operator should carry out a task instead of an automated
driving system. As is prescribed in SAE On-Road Automated
Vehicle Standards Committee (2018), remote teleoperation is
used in situations that are outside of the operating design do-
main of an automated driving system.

There is a variety of literature that contributes to improving the
design of remote teleoperation systems. In particular, Gnatzig
et al. (2013) provides an early overview of the requirements on
different components of remote teleoperation for road vehicles.
In Neumeier and Facchi (2019) and Hosseini and Lienkamp
(2016), authors propose different approaches for improving the
safety of remote teleoperation in the presence of communica-
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tion delay and network uncertainty. In the robotics community
several approaches for shared autonomy are proposed by, for
example, Dragan and Srinivasa (2013), Javdani et al. (2018),
and Jeon et al. (2020), which employ different algorithms for
goal inference and policy blending for improving teleoperation
safety, efficiency, and experience. Moreover, in Ghasemi et al.
(2019) and Muslim and Itoh (2019), authors design shared
control schemes for vehicles that decrease the cognitive load
on human users and encourage collaboration between human
operators and automated driving systems. These approaches
provide important solutions to different aspects of remote tele-
operation. However, to the extent of the authors’ knowledge,
most approaches for remote teleoperation focus on handling
communication delay and human intent prediction, and do not
focus on providing strong feasibility and safety guarantees.

The main contribution of this paper is the design and empirical
evaluation of a unified framework for safe, remote teleopera-
tion of connected vehicles. Specifically, we will take a set of
linear temporal logic (LTL) specified teleoperation tasks and
use reachable sets to construct sets of control inputs that ensure
one of the tasks is completed as specified. We allow for a set
of tasks, as opposed to just a single task, to allow for multi-
objective missions. Furthermore, this framework is designed to
keep the human operator as the primary decision maker; this
is important in real world deployments of connected vehicles,
because human operators will typically be asked to teleoperate
a vehicle in exceptional situations that require human situa-
tional awareness and decision-making. In this work, we extend
the work in Gao et al. (2020b) with the use of temporal logic
trees and Hamilton-Jacobi reachability analysis for both model-
checking and control synthesis. Since we use Hamilton-Jacobi
reachability analysis, our framework is able to handle nonlinear
vehicle dynamics and non-convex safety-constraints. By using
temporal logic trees, as opposed to automaton, we are able to



Fig. 1. Experimental setup in the Smart Mobility Lab at KTH
Royal Institute of Technology.

perform verification over any LTL formula (in this work we do
not use the “next” operator, since we have a continuous-time
system) for infinite, uncertain systems (e.g. with bounded dis-
turbance) and can update the control policy in real-time when
the LTL-specified objective changes; these characteristics are
presented in more detail in Gao et al. (2020a). Specifically, the
contributions of this paper are as follows:

(1) We introduce a safe teleoperation framework for con-
nected vehicles using Hamilton-Jacobi reachability anal-
ysis and temporal logic trees.

(2) We develop and illustrate an application of our framework
using multi-objective remote parking tasks.

(3) We evaluate the validity and benefits of our approach by
performing user studies in an experimental operator room
and a 1/10th scale vehicle.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce an illustrative remote parking example to
contextualize our problem. In Section 3, we outline our design
approach to safe, remote teleoperation and apply our framework
to the remote parking example. In Section 4, we detail our
experimental setup and report results from our user study on the
teleoperation framework. In Section 5, we conclude the paper
with a discussion about the possible implications of our work
and future directions.

2. MOTIVATING EXAMPLE AND PROBLEM
STATEMENT

As is reported in Davies (2017), the need for remote teleoper-
ation became more apparent when companies started to realize
that there are scenarios (especially in environments shared by
humans and human-driven vehicles) that are hard to handle
with automation. In experimental deployments of automated
vehicles, this issue is addressed by having a fallback human
driver in the vehicle during operation. However, since having a
human driver in each vehicle is not a scalable solution, remote
teleoperation has gradually become an attractive alternative.

The motivating example we will use to study our safe teleop-
eration framework is remote parking. An experimental setup
for remote parking is shown in Fig. 1. INRIX (2017) reports
that parking vehicles costs drivers significant time and money
annually, which is why the automation of vehicle parking is
well-motivated. Moreover, since many parking lots are difficult
to maneuver within and involve both pedestrians and human-

Fig. 2. Illustration of our parking scenario.

driven vehicles, parking in a parking lot is not a task that is
easy to fully automate from start to finish without high-fidelity
models of human behavior. Despite this automation challenge,
parking in a parking lot is a task that many ordinary human
drivers are able to handle on a daily basis, further motivating the
remote connection of a human operator throughout a parking
task.

In a remote parking scenario, a remote operator needs to safely
guide a vehicle to a parking spot of her choice. For example,
in Fig. 2, an operator will remotely guide the vehicle outside of
the parking lot into one of the free blue parking spots, while
avoiding collision with the walls of the parking lot and the
parked vehicles. Often, this parking task is both a safety-critical
task and a dynamically challenging task (the maneuvering
space is tight and there is a requirement to park accurately).
To make matters worse, even though the remote operation
of vehicles allows for scalable human support for automated
vehicles, remote parking is more dangerous and difficult than
in-person parking due to latency in the communication channel
and the possible lack of embodiment.

Thus, to safely take advantage of the scalability benefits of a re-
mote parking setup, we need to somehow ensure the feasibility
and safety of remote parking, even when the human operator is
in control, which leads us the following problem statement:
Problem 2.1. Given a vehicle and a multi-objective plan as a
set of LTL specifications, design a teleoperation framework that
checks whether the plan itself is feasible and guarantees the
vehicle satisfies the feasible plan during operation, even under
the control of a human operator.

When the human operator is in control of the remote vehicle,
we can expect that incorrect control inputs will be given to the
system due to issues such as latency, lack of embodiment, and
human error; in the next section, we will outline how we have
designed our framework to be robust to these issues.

3. SAFE TELEOPERATION FRAMEWORK

To address Problem 2.1, we first overview our safe remote
teleoperation framework and then detail how the framework
guarantees feasibility and safety under a set of LTL-specified
teleoperation tasks. In particular, we will exemplify the frame-
work by using the remote parking example.



Fig. 3. A diagram overviewing the full deployment of remote teleoperation starting from the initial proposal Φ to the evaluation of
the resulting blending policy.

3.1 Framework Overview

We propose a remote teleoperation framework (depicted in
Fig. 3) that combines model-checking and reachability analysis
to check the feasibility of tasks before operation and filter
control inputs to guarantee recursive feasibility of the task
during operation.

The framework in Fig. 3 is split into three stages: planning, op-
eration, and evaluation. In the planning stage, the teleoperation
task is formalised and checked for feasibility. If the formalised
plan is valid, then the operation begins. The remote operator
(block H) begins communicating her decisions about how the
vehicle (block P) should be operated to the local automated
driving system’s guiding controller (block GC). Upon receiving
the remote operator’s input and the vehicle’s state information,
the guiding controller implements the remote operator’s input
as long as the input will not violate the plan made in the
planning stage. If the operator’s input violates the plan, then
the guiding controller will correct the input to guarantee the
plan remains feasible. Finally, after operation, the deployment
is reviewed in the evaluation stage.

Before we further detail our framework, we first introduce the
vehicle model and task plans we use in our work.

Vehicle Model (P) Let x = [px, py, θ, v] be the state, where
px, py , θ, and v are Vego’s x-position, y-position, heading,
and velocity, respectively. Then, let u = [δ, a] be the input,
where δ and a are the steering and acceleration inputs into Vego,
respectively. Explicitly, we write the dynamics as

f(x, u, w) =

ṗxṗy
θ̇
v̇

 =

v cos θ
v sin θ
v tan δ
L
a

+ w, (1)

where L is the wheel-base length of Vego. Here, x ∈ R4,
u ∈ U ⊂ R2, and w ∈ W ⊂ R4. f is uniformly con-
tinuous, bounded, and Lipschitz continuous in x for fixed u
and w. As shown in Coddington and Levinson (1955), given
a measurable control and disturbance functions u(·) and w(·),
there exists a unique trajectory solving (1). We denote by
ζ(·;x0, t0, u(·), w(·)) the trajectory starting from an initial state
ζ(t0;x0, t0, u(·), w(·)) = x0 under u(·) and w(·). For the rest

of the paper, we will sometimes write ζ(·) to denote a trajectory
for notational simplicity.

Task Planning (Φ) When planning the teleoperation, the
first step is to define the plan as a set of LTL formulae. LTL
is a convenient way to express tasks with spatial and temporal
requirements, such as obstacle avoidance or stability. For details
about LTL, we refer the readers to Huth and Ryan (2004), Baier
and Katoen (2008), and Belta et al. (2017). Moreover, in Gao
et al. (2020b) and Guo et al. (2018), LTL has been shown to
be a particularly useful formalism for shared-autonomy tasks.
Next, let us show how to use a set of LTL formulae to define
the parking task.

In the remote parking example, we consider a similar parking
scenario used in Jiang et al. (2020). We ask users to remotely
park the vehicles into a parking lot, as is depicted by Fig. 1. On a
high-level, the teleoperation task we want the users to complete
is to (1) enter the parking lot, (2) do not collide with the parking
lot walls or any full parking spots (3) eventually park in any
empty parking spot accurately. To define the parking task of the
vehicle, we introduce notation for the domain and subdomains
of the parking scenario, as shown in Fig. 2. Let the full set of
possible states in our problem domain be dom ⊂ R4. We call
the set of possible states in the parking lot P ⊂ R4, which
excludes the block in the middle of the parking lot. We denote
the parking spots as ps ⊂ R4. Denote full parking spots as
psj∈F and empty parking spots as psi∈E , and the set of states
within every psi∈E that correspond to an accurate and correct
parking job as acci∈E ⊂ R4.

Now, we can use LTL operators to formalize the high-level
teleoperation task we described earlier. Namely, we can write
the “enter the parking lot” part of the task as the stability
formula: ♦2P . Note, this also encodes collision avoidance
with the walls or boundary of the parking lot. Then, we can
write the “do not collide with any full parking spots” part of the
task as the safety formula: ∧j∈F 2¬psj . Finally, we can write
the “eventually park in any empty parking spot accurately” part
of the task as: dom U psi U2 acci Explicitly, we can formalize
the full teleoperation parking task for an empty parking spot
i ∈ E as

ϕi = ♦2P ∧ (∧j∈F 2¬psj) ∧ (dom U psi U 2 acci). (2)



Then, we use (2) to write the set of specified tasks as Φ =
{ϕi}∀i∈E .

Framework Design After modeling the dynamics of the
vehicle and planning the LTL tasks, we will show the function
of each module in the safe teleoperation framework, as shown
in Fig. 3. With the inputs of a set of LTL formulae Φ, a model-
checking module (M) is used to check whether the planned
tasks are valid and possible for the teleoperated vehicle to
satisfy by transforming the LTL formulae into a set of temporal
logic trees (TLT), denoted by T LT . The TLT is a useful tool
proposed in our recent work, Gao et al. (2020a), for LTL model
checking and control synthesis.

If the tasks are found to be possible for the vehicle to satisfy,
then we begin the teleoperation. At each time instant t, the
human operator makes a decision uh(t) based on the output
of a user interface module (UI), which visualizes the status of
the vehicle to the human operator.

The human’s decision uh(t) is then communicated to the guid-
ing controller module (GC) running locally on the vehicle.
Within GC the control set synthesis module (CS in Fig. 3) takes
the state of the vehicle and uses the TLTs computed in the
planning phase to synthesize the set of feasible control inputs
for each LTL task ϕi ∈ Φ. These control sets are passed,
along with the human operator’s decided control input, to the
inference module (I in Fig. 3), which then infers a belief about
which task the human operator is trying to complete. The con-
trol sets from CS , the belief from I, and the control input from
the human operator are passed to the policy blending module
(PB in Fig. 3). PB takes in all the available information and
decides a final control input to implement on the vehicle that
best reflects the human operator’s decided control input, while
guaranteeing the satisfaction of the inferred LTL-specified task.

In the framework, M and CS are the two modules that guar-
antee the feasibility of the teleoperation tasks and the safety of
the vehicle. Since module CS runs on-board the vehicle, the
feasibility and safety guarantees it provides is unaffected by
communication latency. The other two modules, I and PB,
handle the interaction between the human operator and the
automated driving system via a shared autonomy approach. In
the rest of this section, we will walk through each module and
apply the safe teleoperation framework to the parking scenario
used in Jiang et al. (2020).

3.2 Model Checking (M)

Given a set of desired LTL-specified tasks Φ, the model check-
ing module checks if Vego, starting at an initial state x(0), is
able to satisfy ϕi,∀ϕi ∈ Φ. To do this, we first use reachable
sets to construct a TLT for each ϕi ∈ Φ. Specifically, a TLT
is a tree structure that consists of state set nodes and operator
nodes. TLTs provide a work flow for tracking state trajectories
satisfying LTL formulae. The construction procedure of such
TLTs is recursive in the definition of the LTL formulae. Note
that the constructed TLT under-approximates the corresponding
LTL formula ϕi, which is shown in Gao et al. (2020a). We
denote the set of constructed TLTs for Φ as T LT . The model
checking can be performed by using these TLTs. A sufficient
condition on the feasibility of ϕi ∈ Φ for Vego is if the initial
state x(0) belongs to the root node of the TLT for ϕi. For more
details on construction of TLTs and the approximation relation

Fig. 4. An example TLT corresponding to taskϕi, where taskϕi
is to safely park in an available empty parking spot i ∈ E .

between TLT and LTL formulae, we refer readers to Gao et al.
(2020a).

Next, we will show how to build the T LT for the remote park-
ing example. We first introduce some definitions for reachable
sets for Vego.
Definition 3.1. For Vego, the reachable set from Ω1 ∈ R4 to
Ω2 ∈ R4 is defined as

R(Ω1,Ω2) = {x : ∃u(·) ∈ U ,∀w(·) ∈ W,

∃s > 0, ζ(s;x, 0, u(·), w(·)) ∈ Ω2, x ∈ Ω1}. (3)

For Vego, Ωf ⊆ R4 is said to be a robust control invariant set
(RCIS) if for any x ∈ Ωf at time t there exists a u(·) ∈ U such
that ∀w(·) ∈ W and ∀s > t, ζ(s;x, t, u(·), w(·)) ∈ Ωf . For a
set Ω ⊆ R4,RCI(Ω) ⊆ R4 is the largest RCIS in Ω if every
RCIS Ωf ⊆ Ω satisfies Ωf ⊆ RCI(Ω).

We can compute reachable sets and RCIS’s with Hamilton-
Jacobi reachability analysis. We start by defining two state sets
Ω1 and Ω2 as the zero superlevel sets of bounded, Lipschitz
continuous functions hΩ1

: R4 → R and hΩ1
: R4 → R.

Namely, Ω1 = {x | hΩ1
(x) ≥ 0} and Ω2 = {x | hΩ2

(x) ≥ 0}.
Then, we solve for the value function VΩ1,Ω2

(x, τ) that satis-
fies the following Hamilton-Jacobi-Isaacs variational inequality
(HJI VI):

min{∂VΩ1,Ω2(x, τ)

∂τ
+H(VΩ1,Ω2

(x, τ), f(x, u, w)),

hΩ1
(x)− VΩ1,Ω2

(x, τ)} = 0, (4)

VΩ1,Ω2
(x, 0) = hΩ2

(x), τ ≤ 0, (5)
where the Hamiltonian is given by

H(VΩ1,Ω2(x, τ), f(x, u, w)) =

max
u∈U

min
w∈W

∇VΩ1,Ω2(x, τ) · f(x, u, w). (6)

Once the value function VΩ1,Ω2
(x, τ) is computed, let V ∗Ω1,Ω2

(x)

= limτ→−∞ VΩ1,Ω2(x, τ). After recalling Definition 3.1, we
can compute theR(Ω1,Ω2) as

R(Ω1,Ω2) = {x | V ∗Ω1,Ω2
(x) ≥ 0}. (7)

As a special case where Ω1 = Ω2 = Ω, the reachable
set R(Ω,Ω) is the largest RCIS within Ω, i.e., RCI(Ω) =



R(Ω,Ω); to see this, please refer to Proposition 2.5 in Fernan-
dez Fisac (2019).

Recall the parking scenario in Fig. 2. For the LTL parking task
ϕi = ♦2P∧(∧j∈F 2¬psj)∧(dom U psi U2 acci) in (2), we
can compute RCI(P), Ȳ = R(dom,RCI(P)), RCI(¬psj),
∀j ∈ F , Y2,i = R(psi,RCI(acci)), Y1,i = R(dom,Y2,i),
and RCI(acci), ∀i ∈ E . Following Gao et al. (2020a), we
can construct T LT for Φ (we show an example TLT for a task
ϕi ∈ Φ in Fig. 4). If the initial state x(0) belongs the root node
of the corresponding TLT, then the parking task ϕi is feasible.

3.3 Control Set Synthesis (CS)

Given the state x(t) of Vego, CS utilizes the T LT computed
in M to synthesize least-restrictive control sets for Vego that
ensures the recursive feasibility (and safety) from x(t) for each
ϕi ∈ Φ. The control sets are least-restrictive in the sense
that they permit any control inputs that do not violate Φ. We
denote the least-restrictive control sets as {Ui(x)}i=1,...,ns

. For
simplicity, we refer to these control sets as {Ui}. The algorithm
performed for CS is as follows: (1) check if x(t) belongs to
the state set node and replace each state set node in the TLT
with a corresponding control set according to the semantics of
the operators; (2) compress this new tree and backtrack starting
from a single control set through a bottom-up traversal. Note,
this control set collects all the feasible control inputs such that
the LTL specification is recursively feasible. This control set is
useful in the policy blender for filtering the human operator’s
decision. For more details, we refer the readers to Gao et al.
(2020a).

Next, we show how to compute the control set in the remote
parking example. Denote our set nodes as X ∈ {RCI(P), Ȳ,
RCI(¬psj),∀j ∈ F , Y2,i, Y1,i,RCI(acci),∀i ∈ E}. Now, let
the corresponding value functions to the set nodes be G∗Ȳ(x) =

V ∗Ȳ,RCI(P)
(x), G∗RCI(P)(x) = V ∗P,P(x), G∗RCI(¬psi)(x) =

V¬psi,¬psi(x, τ), G∗Y1,i
(x) = V ∗Y1,i,Y2,i

(x), G∗Y2,i
(x, τ) =

V ∗Y2,i,RCI(acci)
(x), and G∗RCI(acci)

(x) = V ∗acci,acci(x). Given
the state x at the time instant t, for each set node X, the
corresponding control set is as follows

UX(x) = {u ∈ U | G∗X(x)−min
w∈W

δ∇G∗X(x)·f(x, u, w) ≥ 0},

where δ is a small sampling period. Instead of computing the
control set based on the current time step, we compute it based
on the next sampled time step. This ensures that the chosen
control input will guarantee the specification set is not violated
in consequence of that input.

Following the control synthesis algorithm in Gao et al. (2020a),
we can compute the feasible feedback control sets ∀i ∈ E :

Ui(x) =
(
URCI(P)(x) ∪ UȲ(x)

)
∩
(
∩j∈FURCI(¬psj)(x)

)
∩
(
UY1,i(x) ∪ UY2,i(x) ∪ URCI(acci)(x)

)
. (8)

In a slight abuse of notation, we will sometimes write Ui(x) as
Ui. As mentioned previously, (8) is a least restrictive control set
that guarantees Vego satisfies (2).

3.4 Inference (I)

Given the control sets {Ui} computed in CS , I infers beliefs
about which ϕi ∈ Φ the operator is intending to complete. We

denote the inferred beliefs as b(t). There are many inference
strategies that can be used in the Inference module I in the
existing literature. We refer readers to the extensive survey
presented by Brown et al. (2020).

In our parking example, we consider an inferred belief based
on time optimality. For each i ∈ E , let Πi = {(Ȳ,RCI(P)),
(Y1,i,Y2,i), (Y2,i,RCI(acci))} be state set pairs we will use
to define our time-optimal controller. Assuming the vehicle has
not parked yet (i.e. x(t) 6∈ RCI(acci)), then, the minimal time-
to-reach (TTR) for parking spot i ∈ E is

τ∗i (x) = max
(Ω1,Ω2)∈Πi

{τ | τ < 0, VΩ1,Ω2
(x, τ) ≥ 0}. (9)

Let the minimal TTR for all parking spots be τ∗(x) =
mini∈E τ

∗
i (x) and the corresponding optimal state set pair to

τ∗(x) be (Ω∗1,Ω
∗
2). Then, a time-optimal control policy that the

automated vehicle could use to park can be computed as
u∗(x) = arg max

u∈Uf (x)
min
w∈W

∇VΩ∗
1 ,Ω

∗
2
(x, τ∗(x)) · f(x, u, w).

(10)

Then, we define the inferred belief of the human operator’s
preference over the specifications i ∈ E as

bi(t) =

{
1, if i = argmini∈E τ

∗
i (x(t)),

0, otherwise.
(11)

Let b(t) be the set of beliefs for every empty parking spot, in
other words, b(t) = {bi(t)}∀i∈E .

3.5 Policy Blender (PB)

Our proposed policy blender module is depicted in Fig. 5. PB
takes in beliefs b(t) computed by I, least-restrictive control sets
{Ui} from CS and a decision from the remote human operator
in the form of uh(t) and α(t), then outputs a control input u(t)
that will be implemented on Vego.

The first step in PB is to compute an automated driving input.
In Fig. 5, we denote this step as C. C corresponds to the input
an automated driving system would compute to complete the
inferred task ϕi ∈ Φ. Let the control input computed by
the automated driving system be ua(t). Then, we blend the
automated driving input with the human input in B. We take the
weighted sum of ua(t) and the control input from the human,
uh(t) using the weight α(t), as follows:

Fig. 5. Breakdown of policy blending module. The remote
human operator inputs their control input and blending
policy into B to be combined with the automated driving
system’s control input.



Fig. 6. Snapshots of an example trial of the proposed remote teleoperation system, starting from the start of the trial (on the left)
until the satisfaction of one of the LTL-specified parking tasks (on the right).

û(t) = (1− α(t)) · uh(t) + α(t) · ua(t). (12)
Changing α(t) gives the operator the ability to change the
balance between the automated driving system and her control
over Vego. In other words, α(t) allows the human operator to
decide the level of automation the task is completed at.

Finally, we filter the control input in module F to enforce the
satisfaction of the inferred task ϕi.

u(t) =

û(t) if ∃i, û(t) ∈ Ui(x(t))

argmin
u∈Ui(x(t)),∀i

‖u−uh(t)‖
bi(t)

, otherwise.

(13)
Using (13), we can ensure that the resultant control input closest
reflects the inferred belief of the human operator’s objective
while guaranteeing Φ is still satisfied.
Remark 3.1. Automated control module C can be replaced by
any automated control policy of interest. We will choose an
time-optimal controller in the remote parking scenario, but,
for example, this could easily be replaced by a controller
that compensates for communication delay or optimizes other
objectives such as passenger comfort or fuel efficiency.

For the remote parking example, we can assist the human
operator using the control set given by (8). As an example, we
assign the automated driving policy that we use for assisting the
human operator to be the time optimal control policy (10):

ua(t) = u∗(x(t)). (14)

We emphasize that our framework gives the remote human
operator the freedom to decide on both the control of the
vehicle (using uh(t)) and how much control they have over
the automated driving system (using α(t)), as long as the
vehicle is still guaranteed to satisfy the teleoperation task. This
level of freedom is designed to give the operator both the
freedom and the automation she needs to efficiently complete
the teleoperation task. In the next section, we will perform the
experiments to show the effectiveness of the remote parking in
the safe framework and to evaluate the interaction between the
human operator and the automated driving system.

4. EXPERIMENTAL EVALUATIONS

In Section 3, we have defined a safe teleoperation framework
that allows the deployment of a parking teleoperation task with
guarantees on its feasibility and safety. Moreover, we defined an
automated driving policy (14) that the remote operator can use
for assistance by controlling their desired blending policy. In
this section, we validate an experimental implementation of this
remote parking system and evaluate how real human operators
interact with the system through user studies.

4.1 Experimental Setup

Shown in Fig. 1, we evaluate the human users in an experi-
mental control operator room, where they are able to teleop-
erate a remote 1/10th scale vehicle. The 1/10th scale vehicles
used in the experiment are the Small Vehicles for Autonomy
(SVEA) platform developed in the Smart Mobility Lab at the
KTH Royal Institute of Technology. All of the computations in
GC in Fig. 3 are performed on the SVEA vehicle’s on-board
NVIDIA TX2. The communication link between the vehicle
and the control operator room is performed by a WebRTC-
based protocol over a 5G link. To visualize the status of the
vehicle to the operator, we simply stream video from a forward-
facing 4K camera. Additionally, we have integrated Logitech’s
G29 steering wheel and pedals into the system for the human
operator to give both uh(t) and α(t). By communicating high
resolution video and control inputs over a low-latency wireless
channel, we are able to experiment with similar communication
conditions utilized in deployments such as Einride (2020).

4.2 Experimental Design

We set up a parking lot with a similar layout to Fig. 2 and ask
human users to park the SVEA into an empty parking spot of
their choice from the control operator room. We evaluate the
subjects under two conditions: (1) without the optimal control
policy, (2) with assistance from the optimal control policy.
While validating the safe teleoperation framework, this will
also allow us to evaluate how human users utilize the optimal
control policy when it is available. Before the trials begin, we
introduce the test users to the controls and the task and allow the
users to operate the system until they state they feel comfortable
with the system.

Throughout the trials, we collect three types of objective mea-
sures on the test users. First, we count the number of times
Vego needs to be corrected by F . Second, we compute the sub-
optimality of the users compared to the globally optimal control
policy. Third, we record the blending policy of the users. With
these measures we will be able to evaluate both the ensuring
and the assistive capabilities of the framework.

In addition to the objective data, we also collect subjective data
on the test users. Using a survey, we ask the users whether they
think the system is intuitive, felt safe, and whether they felt in
control.

4.3 Results

In this section, we show the results of evaluating our framework
on two human users. The first human user (referred to as



”Human 1”) is an inexperienced user who has not previously
used our teleoperation system. The second human user (referred
to as ”Human 2” is an experienced user who has used our
teleoperation system before. Both users are experienced drivers
with driving licenses. A video of an example trial can be seen
at [https://youtu.be/TJhnQ3URrho].

We illustrate the trajectories of the two human users in each trial
in Fig. 7. As a baseline, we run the system with full automation
and visualize the trajectory alongside the the trajectories of the
human users. Furthermore, we also visualize the number of
times module F corrects the human users when they are about
to violate Φ. We can see that both users are able to safely park
into their chosen parking spot.

In Fig. 8 and Fig. 9, we visualize a comparison between the time
optimality of the automated system and the human users with
and without assistance. In Fig. 8, since the user starts outside of
theRCI of the parking lot, the time-to-reach reaches zero twice
in each trial: once for reaching the RCI of the parking lot and
again for reaching the parking spot. When compared to the fully
automated optimal controller, we see that the human users are
less optimal. Among all of the driving, the least optimal driving
was by Human 1 without any assistance. Furthermore, both
Human 1 and Human 2 exhibit a blending policy that favors
automation in the middle of the parking task and at the end of
the parking task. Human 2 additionally opted to start the task
using the full automation.

Fig. 7. The collective trajectories from our preliminary user
study. We have included the trajectory of a fully automated
vehicle completing the task to serve as a baseline for
evaluating the human performance. Note, when looking at
the trajectories, that the state of the vehicle corresponds to
the center point of the rear axle of the vehicle.

Fig. 8. We illustrate the change of the minimal TTR over all
empty parking spots over time for each trial.

Fig. 9. We show the blending policy used by the two human
users when the driving assistance is active.

Both humans were asked, on a scale from 1-7 whether the sys-
tem is intuitive, feels safe, and whether the users felt in control.
Human 1 responded with {4, 6, 5} and Human 2 responded
with {5, 6, 6}, respectively. These results are preliminary, but
give initial indication that the system feels intuitive, safe, and
controllable.

5. CONCLUSION

In order to allow the deployment of automated vehicles, we
need to ensure they are performing tasks that are feasible and
safe. In this paper, we present an approach for the planning
and deployment of a safe remote teleoperation of a connected
vehicle that may have varying levels of automation. We assume
that the vehicle has the minimal capability of avoiding static
obstacles and parking itself into a parking spot in a time-optimal
fashion. Since, in the near future, vehicles will often require
the situational awareness and exception-handling capabilities
of human operators, we formulate our approach for remote
teleoperation that gives the human operator decision-making
freedom while guaranteeing the teleoperation task will still
be satisfied. Furthermore, we present preliminary experiments
validating the approach’s ability to ensure the completion of
LTL-specified teleoperation tasks.

In future work, we will continue to conduct experiments on
human users, to find a statistically significant blending policy
preference or strategy. Furthermore, we will extend this frame-
work to include more complex tasks and a richer inference
approach for better estimating the human’s preference over the
different driving tasks.
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