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Abstract— It is known that for single-input neutrally stable
planar systems, there exists a class of saturated globally
stabilizing linear state feedback control laws. The goal of this
paper is to characterize the dynamic behavior for such a system
under arbitrary locally stabilizing linear state feedback control
laws. On the one hand, for the continuous-time case, we show
that all locally stabilizing linear state feedback control laws are
also globally stabilizing control laws. On the other hand, for
the discrete-time case, we first show that this property does not
hold by explicitly constructing nontrivial periodic solution for
a particular system. We then show for an example that there
exists more globally stabilizing linear state feedback control
laws than well known ones in the literature.

I. INTRODUCTION

Linear systems subject to actuator saturation are common
in almost every physical application and have been the
subject of extensive study, e.g., [1], [2]. Internal stabilization
for this class of systems has a long history. It was established
in e.g., [3]–[5] that global stabilization of linear systems
subject to actuator saturation can be achieved if and only if
the system is asymptotically null controllable with bounded
controls (ANCBC), i.e., the linear system in the absence of
actuator saturation is stabilizable, and has all its open-loop
poles in the closed left-half plane in the continuous-time
setting and strictly within or on the unit circle in the discrete-
time setting. The seminal work of [6] established that a
chain of integrator with order equal to or greater than three
cannot be globally asymptotically stabilized by any saturated
linear static state feedback control law. The results implies
that for achieving global stability of the closed-loop system,
one has to design nonlinear feedback control laws. Teel [7]
proposed a nonlinear combination of saturation functions of
linear state feedback control laws that globally stabilizes a
chain of integrators of arbitrary order.

There is limited knowledge regarding which linear systems
subject to actuator saturation allow for global stabilization
via linear state feedback control laws. In the continuous-time
setting, it is known that any linear static state feedback law
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which locally stabilizes the double integrator4, also globally
stabilizes the system in the presence of actuator saturation,
e.g., [8]–[12]. For open-loop neutrally stable5 systems, it
is known that there exist linear state feedback control laws
which globally stabilize systems in the presence of actuator
saturation, e.g., [13], [14]. Some extensions to continuous-
time linear systems consisting of a mixture of neutrally stable
dynamics and double integrators have been established in
[8], [15], where the authors designed globally stabilizing
linear state feedback control laws for this class of systems.
Recently, for continuous-time single-input planar ANCBC
systems in the controllable canonical form, [12] showed
that the saturated linear state feedback control laws whose
feedback gains are negative globally stabilize such a system.

The goal of our on-going research is to identify which
locally stabilizing linear state feedback control laws yield
globally asymptotic stability of the closed-loop system in
the presence of actuator saturation and which ones do not.
In a recent paper [16], for the discrete-time double integrator,
we have established that the class of locally stabilizing linear
state feedback control laws splits into two parts. Although
one part yields global asymptotic stability of the closed-
loop system, the other part does not yield global stability
of the closed-loop system, which was shown by explicitly
constructing nontrivial periodic solutions.

This paper may be viewed as a further step towards our
goal. Here we consider single-input neutrally stable planar
systems. On the one hand, for continuous-time systems,
we show that any locally stabilizing linear state feedback
control law is also a globally stabilizing control law. On the
other hand, for discrete-time systems, we first show that this
property does not hold by providing a particular example
for which the closed-loop system exhibit nontrivial periodic
solutions. We then present for another example and show that
there exists another globally stabilizing linear state feedback
control law other than well known ones in the literature.

II. PROBLEM FORMULATION

Consider a neutrally stable system subject to actuator
saturation described by

ρx = Ax+Bσ(u), (1)

4Note that a linear state feedback law with arbitrary negative feedback
gains stabilizes the double integrator in the absence of actuator saturation.

5A linear system is said to be open-loop neutrally stable if, for a
continuous-time system, all its open-loop poles are in the closed left-half
complex plane with those on the imaginary axis being simple, or for a
discrete-time system, all its open-loop poles are strictly within or on the
unit circle with those on the unit circle being simple.
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where ρ is an operator indicating the time derivative d
dt for

continuous-time systems and a forward unit time shift for
discrete-time systems, x∈Rn is the state, u∈Rm is the input,
and σ(u) =

[
σ1(u1), . . . ,σ1(um)

]T, where each σ1(ui) is the
standard saturation function σ1(ui) = sgn(ui)min{1, |ui|}.

Assumption 1: The pair (A,B) is stabilizable.
Under Assumption 1, in a suitable basis we have:

A =

[
Ac 0
0 As

]
, B =

[
Bc
Bs

]
,

where Ac is such that Ac + AT
c = 0 for continuous-time

systems, and AT
cAc = I for discrete-time systems, As is

asymptotically stable, and the pair (Ac,Bc) is controllable.
Without loss of generality, we can ignore the asymptotically
stable subsystem, and make the following assumption.

Assumption 2: The pair (A,B) is controllable, A+AT = 0
for continuous-time systems, and ATA = In for discrete-time
systems.
We note that for the system (1) which satisfies Assumption 2,
controllability of the pair (A,B) is equivalent to stabilizability
of the pair (A,B).

As mentioned in the introduction, it is known that if the
system is open-loop neutrally stable and stabilizable, then
there exist globally stabilizing linear state feedback control
laws in the presence of actuator saturation. The above result
is recapped in the following lemma.

Lemma 1: Consider the system given by (1), and let
Assumption 2 hold. Then

• for continuous-time systems, the linear state feedback
control law

u =−κBTx, (2)

where κ > 0 globally stabilizes the system (1).
• for discrete-time systems, the linear state feedback con-

trol law
u =−κBTAx, (3)

where κ > 0 and κBTB < 2Im, globally stabilizes the
system (1).

Our goal is to characterize the dynamic behavior of the
system with other locally stabilizing linear state feedback
control laws, that is, the ones which are not of the form
(2) for continuous-time systems or not of the form (3) for
discrete-time systems. As a first step, this paper considers
the planar system with a single input.

III. CONTINUOUS-TIME CASE

In the continuous-time setting, the planar system under
Assumption 2 can be represented by the following dynamical
equation

ẋ = Ax+Bσ(u), (4)

where
A =

[
0 b
−b 0

]
, and B =

[
b1
b2

]
,

with b,b1,b2 ∈ R such that the pair (A,B) is controllable,
which is equivalent to b #= 0 and b2

1 +b2
2 #= 0.

We will consider the linear state feedback control law of
the form

u = Fx := f1x1 + f2x2. (5)

Remark 1: The planar system (4) under Assumption 2 can
always be transformed into a controllable canonical form via
a suitable state transformation, i.e.,

˙̃x =
[

0 1
−b2 0

]
x̃+

[
0
1

]
σ(u). (6)

It is clear that the linear state feedback control law

u =
[

f̃1 f̃2
]

x̃, (7)

with feedback gains f̃1 < b2 and f̃2 < 0 locally stabilizes the
system (6). Also note that it follows from [12, Theorem 1]
that the linear state feedback control law (7) with feedback
gains f̃1 < 0 and f̃2 < 0 globally stabilizes such a system. The
following theorem shows that arbitrary locally stabilizing
linear state feedbacks also globally stabilize such a system.

Theorem 1: Consider the system given by (4). Any locally
stabilizing linear state feedback control law, i.e., (5) with F
chosen such that A+BF is Hurwitz stable, also globally sta-
bilizes the system (4) in the presence of actuator saturation.

Proof: Without loss of generality, we assume that the
system (4) has the following form,

[
ẋ1
ẋ2

]
= A

[
x1
x2

]
+Bσ(u), (8)

where
A =

[
0 b
−b 0

]
and B =

[
0
1

]
,

since if this is not the case, we can always find a non-singular
state transformation x̄ := Tsx, where

Ts =
1

b2
1 +b2

2

[
b2 −b1
b1 b2

]
,

such that Ā = TsAT−1
s and B̄ = TsB are of the form

Ā =

[
0 b
−b 0

]
and B̄ =

[
0
1

]
.

From Routh-Hurwitz criteria, we see that in order to achieve
the local stability of the closed-loop system of (8) and (5),
it is required that

b(b− f1)> 0, f2 < 0. (9)

The condition (9) is equivalent to the following conditions:
• Case I: b > 0, in this case, f1 < b and f2 < 0,
• Case II: b < 0, in this case, f1 > b and f2 < 0.

From Lemma 1, we know that the control laws (5) with f1 =
0 and any f2 < 0 globally stabilize the system (8). Hence,
we assume f1 #= 0 in the rest of the proof.

Consider the following Lyapunov candidate

V = |b|
2 (x2

1 + x2
2)−

sgn(b)
f1

∫ f1x1

0
σ(y)dy. (10)

We shall only consider Case I, i.e., b> 0 since Case II where
b < 0 then follows easily due to symmetry. Let us first show

2729



that V defined by (10) is positive definite. For Case I, we
consider two different cases:

Case I.a f1 < 0. In this case, note that

2
∫ f1x1

0
σ(y)dy = 2σ( f1x1) f1x1 −σ2( f1x1)≥ σ2( f1x1).

Therefore,

V = b
2 (x

2
1 + x2

2)− 1
f1

∫ f1x1

0
σ(y)dy

≥ b
2 (x

2
1 + x2

2)− 1
2 f1

σ2( f1x1)≥ 0,

where we have used the fact that f1 < 0. Moreover, V = 0 if
and only if x1 = x2 = 0.

Case I.b: 0 < f1 < b. In this case, we show that V is
positive definite by considering three cases:

Case I.b.1: f1x1 > 1, in this case, we have

V = b
2 (x

2
1 + x2

2)− 1
f1
( f1x1 − 1

2 )

= b
2 (x1 − 1

b )
2 + b

2 x2
2 +

b− f1
2 f1b > 0,

where we have used the fact that 0 < f1 < b.
Case I.b.2: | f1x1|≤ 1, in this case, we have

V = b
2 (x

2
1 + x2

2)−
f1
2 x2

1 =
b− f1

2 x2
1 +

b
2 x2

2 ≥ 0,

where we have used the fact that 0< f1 < b, and the equality
holds if and only if x1 = x2 = 0.

Case I.b.3: f1x1 <−1, in this case, we have

V = b
2 (x

2
1 + x2

2)+
1
f1
( f1x1 +

1
2 )

= b
2 (x1 +

1
b )

2 + b
2 x2

2 +
b− f1
2b f1

> 0,

where we have used the fact that 0 < f1 < b.
Hence we have shown that V ≥ 0 and V = 0 if and only

if x1 = x2 = 0, thus, V is positive definite. Next, let us show
that V̇ ≤ 0. With some algebra, we obtain that

V̇ = bx1ẋ1 +bx2ẋ2 −σ( f1x1)ẋ1

= bx2[σ( f1x1 + f2x2)−σ( f1x1)].

Let f1x1 + f2x2 = v1 and f1x1 = v2, then we get

V̇ = b
f2
(v1 − v2)[σ(v1)−σ(v2)]. (11)

Note that (v1 − v2)[σ(v1)−σ(v2)] ≥ 0 since σ(·) is a non-
decreasing function. Then V̇ ≤ 0 since f2 < 0 and b > 0.
Moreover, V̇ = 0 if and only if

• Case 1: v1 > 1 and v2 > 1,
• Case 2: |v1|≤ 1, |v2|≤ 1, and v1 = v2,
• Case 3: v1 <−1 and v2 <−1.

We shall show that the trajectory cannot stay for Case 1 and
Case 3. Let us only consider the Case 1, since Case 3 then
follows easily due to the symmetric property. Assume that
there exists a trajectory x(t) for all t ≥ 0 which stays in Case
1, then for all t ≥ 0, the following inequalities hold:

f1x1(t)> 1,
f1x1(t)+ f2x2(t)> 1.

We then consider two cases depending on the value of f1:

Case 1.a: f1 < 0, in this case, we have x1(t)< 0 for all t ≥ 0
since f1x1(t)> 1. Therefore ẋ2 =−bx1+σ( f1x1+ f2x2)> 0,
and thus there exists a finite time T1 > 0, such that ẋ1(t) =
bx2(t) > 0 for t ≥ T1. This yields that eventually x1(t) > 0,
that is, there exists a finite time T2 > 0 such that x1(t) > 0
for t ≥ T2, which contradicts with the fact that x1(t)< 0 for
all t ≥ 0.

Case 1.b: 0 < f1 < b, in this case, we have x1(t)> 1
b for

all t ≥ 0 since f1x1(t)> 1. Therefore ẋ2 =−bx1 +σ( f1x1 +
f2x2) < 0, and thus there exists a finite time T3 > 0, such
that ẋ1(t) = bx2(t)< 0 for t ≥ T3. This yields that eventually
x1(t)< 0, that is, there exists a finite time T4 > 0 such that
x1(t) < 0 for t ≥ T4, which contradicts with the fact that
x1(t)> 1

b for all t ≥ 0.
Therefore, there exists no trajectory which can stay in Case

1 and Case 3. By continuity of the trajectory, we see that
the trajectory whose initial condition satisfy the conditions
of Case 1 or Case 3 will eventually move to the region where
|v1|≤ 1 and |v2|≤ 1. In order to keep V̇ = 0 in this region, we
need that v1(t) = v2(t) for all t ≥ 0, i.e., Case 2. It is easy to
see that x2(t)≡ 0 for all t ≥ 0 since f2x2(t)= v1(t)−v2(t)= 0
and f2 < 0. Also note that ẋ2(t)≡ 0 for all t ≥ 0. However,

ẋ2(t) =−bx1(t)+σ(v1(t)) = ( f1 −b)x1(t).

Hence x1(t) ≡ 0 for t ≥ 0 since f1 < b. Therefore, the only
trajectory which can stay in Case 2 is the origin. The global
asymptotic stability of the closed-loop system of the system
(4) and (5) where f1 and f2 satisfy (9) and f1 #= 0 then
follows from LaSalle’s Invariance Principle.

IV. DISCRETE-TIME CASE

In Section III, we have shown that for continuous-time
single-input neutrally stable planar systems, any locally sta-
bilizing linear static state feedback also globally stabilizes the
system in the presence of actuator saturation. In this section,
we first investigate whether this nice property still holds
in the discrete-time setting. The following theorem shows
that this property does not hold in general by considering a
particular example.

Theorem 2: Consider the following system
[

x1(k+1)
x2(k+1)

]
=

[ 3
5

4
5

− 4
5

3
5

][
x1(k)
x2(k)

]
+

[
0
1

]
σ(u(k)), (12)

and a linear static state feedback control law

u(k) = Fx(k) := f1x1(k)+ f2x2(k). (13)

There exist feedback gains f1 and f2 which locally stabilize
the system (12), however, do not globally stabilize the system
(12) in the presence of actuator saturation.

Proof: From Jury’s test [17], we see that any feedback
control law (13), where f1 and f2 satisfy the following
conditions

2 f1 + f2 −2 < 0 (14a)
2 f2 − f1 +4 > 0, (14b)

−10 < 3 f2 −4 f1 < 0, (14c)
|(1+ 3

5 f2 − 4
5 f1)

2 −1|> |( 6
5 + f2)(

3
5 f2 − 4

5 f1)|, (14d)
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stabilizes the system (12) in the absence of actuator satura-
tion. Note that the condition (14d) is automatically satisfied
if the conditions (14a), (14b) and (14c) are satisfied. This
result is illustrated by Fig. 1. That is, whenever the feedback
gains f1 and f2 take their values within the triangular ABC,
the closed-loop system is locally stable; otherwise unstable.

We shall prove the theorem by establishing non-zero
periodic solution with period of T = 4 for a subset of locally
stabilizing linear state feedbacks. The periodic solution with
period of T = 4 that we will construct is such that the system
is always in saturation, and the saturated input sequence is
composed of 1 for first two steps, followed by −1 for the next
two steps. In order to have x(4) = x(0), from the dynamical
equation (12), we must have that x1(0) = 2

3 and x2(0) =− 4
3 .

Clearly, this will yield the required periodic solution if
x(0), f1, and f2 are such that u(k)≥ 1 for k = 0,1 and u(k)≤
−1 for k = 2,3, i.e.,

Fx(0)≥ 1,
F(Ax(0)+B)≥ 1,

F(A2x(0)+AB+B)≤−1,
F(A3x(0)+A2B+AB−B)≤−1.

Plugging the initial condition x(0) = [ 2
3 ,−

4
3 ]

T into the above
equations yields

2
3 f1 − 4

3 f2 ≥ 1,
− 2

3 f1 − 1
3 f2 ≥ 1,

which is a subset of f1 and f2 satisfying the Jury’s condition
(14), i.e., triangular ADE in Fig. 1.

Remark 2: It follows from Lemma 1 that the system (12)
is globally stabilized via linear state feedback control law
(13) with f1 = 4k

5 and f2 = − 3k
5 where 0 < k < 2, i.e., the

line BF in Fig. 1.
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f 2
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B

C

D

E

F

Fig. 1. Stability characteristics as a function of f1 and f2

We have seen in the proof of Theorem 2 that the closed-
loop system of (12) and (13) has a periodic solution with
period of 4 if the feedback gains are chosen within the
triangular ADE in Fig. 1. This is illustrated in the following
example.

Example 1: Consider the system (12) with a linear state
feedback control law (13), where f1 =−1.6 and f2 =−2.5,
and the initial condition x(0) = [ 2

3 ,−
4
3 ]

T. In Fig. 2, we clearly
see the period orbit with period T = 4.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Periodic orbit

Fig. 2. Periodic orbit of period 4

Theorem 2 provides an example which shows that for
discrete-time single-input neutrally stable planar systems,
unlike in the continuous-time setting, not all locally stabi-
lizing linear state feedbacks globally stabilize the system in
the presence of actuator saturation by explicit constructing
nontrivial periodic solution. However, the question whether
there exist more locally stabilizing linear state feedbacks than
well known ones of the form (3) presented in Lemma 1 also
globally stabilize the discrete-time system in the presence of
actuator saturation still remains open. The rest of this section
answers this question by considering the following example.

[
x1(k+1)
x2(k+1)

]
=

[
0 1
−1 0

][
x1(k)
x2(k)

]
+

[
0
1

]
σ(u(k)). (15)

Remark 3: It follows from Lemma 1 that a family of
linear state feedback control laws

u(k) =−κBTAx(k) = κx1(k), (16)

where 0 < κ < 2 globally stabilize the system (15) in the
presence of actuator saturation.

The following theorem shows that for the system (15),
there exists another globally stabilizing linear state feedback
control law, which is not of the form (16).

Theorem 3: The linear state feedback

u(k) = f1x1(k)+ f2x2(k) := x1(k)+
1
2

x2(k). (17)

globally stabilizes the system (15).
Proof: Consider the following Lyapunov candidate

V = 1
2 (x

2
1 + x2

2)−
∫ x1

0
σ(y)dy. (18)

We first note that V defined by (18) is positive semidefinite,
which follows from the analysis for the positive definiteness
of V defined by (10) with b = 1 and f1 = 1 in Theorem 1
for the case 0 < f1 < b. Also note that V = 0 if and only if
|x1|≤ 1 and x2 = 0.
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Next, let us show that ∆V (k) =V (k+1)−V (k)≤ 0. With
some algebra, we obtain that

V (k+1) = 1
2 [x

2
1(k+1)+ x2

2(k+1)]−
∫ x1(k+1)

0
σ(s)ds

= 1
2 [x

2
2 +(−x1 +σ(u))2]− 1

2 [2σ(x2)x2 −σ2(x2)].

Therefore,

∆V (k) = 1
2 [−2x1σ(u)+σ2(u)]− 1

2 [2σ(x2)x2 −2σ(x1)x1

+σ2(x1)−σ2(x2)].

We will show that ∆V ≤ 0 by partitioning R2 into 12 regions.
Due to the symmetric property, we can only consider 6
regions, and show that ∆V ≤ 0 in each region.

Region 1: R1 =
{
(x1,x2) ∈ R2|x1 ≥ 1,x2 ≥ 1

}
. Clearly, in

this case, we have u = f1x1+ f2x2 = x1+
1
2 x2 > 1. Therefore,

∆V = 1
2 (−2x1 +1)− 1

2 (2x2 −2x1) =−x2 +
1
2 <− 1

2 < 0.

Region 2: R2 =
{
(x1,x2) ∈ R2|x1 ≥ 1,x2 ≤−1

}
. For this

case, we need further partition R2 into three regions depend-
ing on whether σ(u) is saturated or not.

Region 2a: R2a = {(x1,x2) ∈ R2|x1 ≥ 1,x2 ≤ −1,x1 +
1
2 x2 ≥ 1}. In this case, we get

∆V = 1
2 (−2x1 +1)− 1

2 (−2x2 −2x1) = x2 +
1
2 <− 1

2 < 0.

Region 2b: R2b = {(x1,x2) ∈ R2|x1 ≥ 1,x2 ≤ −1, |x1 +
1
2 x2|≤ 1}. In this case, we get

∆V =−x1(x1 +
1
2 x2)+

1
2 (x1 +

1
2 x2)

2 + x2 + x1

=− 1
2 x2

1 +
1
8 x2

2 + x1 + x2.

Since d∆V
dx1

=−x1+1 ≤ 0, thus ∆V decreases as x1 increases.
Hence, ∆V attains its maximum for minimal x1. We then
further partition Region 2b as follows:

Case 2b.1: The minimal x1 is equal to 1, that is −4 < x2 <
−1. we then get that

∆Vmax =
1
8 (x2 +4)2 − 3

2 <− 3
8 < 0.

Case 2b.2: The minimal x1 is attain at x1 =− 1
2 x2 −1, we

then obtain that ∆Vmax =− 3
2 < 0.

Region 2c: R2c = {(x1,x2)∈R2|x1 ≥ 1,x2 ≤−1,x1+
1
2 x2 ≤

−1}. In this case, we get

∆V = 1
2 (2x1 +1)− 1

2 (−2x2 −2x1) = 2x1 + x2 +
1
2 <− 3

2 < 0.

Region 3: R3 = {(x1,x2) ∈ R2|x1 ≥ 1, |x2| ≤ 1}. For this
case, we need further partition R3 into two regions depending
on whether σ(u) is saturated or not.

Region 3a: R3a = {(x1,x2)∈R2|x1 ≥ 1, |x2|≤ 1,x1+
1
2 x2 ≥

1}. In this case, we get

∆V = 1
2 (−2x1 +1)− 1

2 (2x2
2 −2x1 +1− x2

2) =−1
2

x2
2 ≤ 0,

where the equality holds if and only if x2 = 0.
Region 3b: R3b = {(x1,x2) ∈ R2|x1 ≥ 1, |x2| ≤ 1,0 ≤ x1 +

1
2 x2 ≤ 1}. In this case, we get

∆V =−x1(x1 +
1
2 x2)+

1
2 (x1 +

1
2 x2)

2

− 1
2 (2x2

2 −2x1 +1− x2
2)

=− 1
2 x2

1 − 3
8 x2

2 + x1 − 1
2 .

Since d∆V
dx1

=−x1+1 ≤ 0, thus ∆V decreases as x1 increases.
Hence, ∆V attains its maximum for minimal x1, that is x1 = 1.
We then obtain that ∆Vmax = − 3

8 x2
2 ≤ 0, where the equality

holds if and only if x2 = 0.
Region 4: R4 = {(x1,x2)∈R2|0 ≤ x1 ≤ 1,x2 ≥ 1}. For this

case, we need further partition it into two regions depending
on whether σ(u) is saturated or not.

Region 4a: R4a = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,x2 ≥ 1,x1 +
1
2 x2 ≥ 1}. In this case, we get

∆V = 1
2 (−2x1 +1)− 1

2 (2x2 −2x2
1 + x2

1 −1)
= 1

2 x2
1 − x1 − x2 +1

= 1
2 (x1 −1)2 − x2 +

1
2 ≤−x2 +1 < 0,

where we have used that (x1 −1)2 ≤ 1.
Region 4b: R4b = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,x2 ≥ 1,0 ≤

x1 +
1
2 x2 ≤ 1}. In this case, we get

∆V =−x1(x1 +
1
2 x2)+

1
2 (x1 +

1
2 x2)

2 − 1
2 (2x2 − x2

1 −1)
= 1

8 (x2 −4)2 − 3
2 ≤− 3

8 < 0,

where we have used that 1 < x2 < 2 to get the second last
inequality.

Region 5: R5 = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,x2 ≤−1}.
For this case, we need further partition R5 into two regions

depending on whether σ(u) is saturated or not.
Region 5a: R5a = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,x2 ≤−1,x1 +

1
2 x2 ≤−1}. In this case, we get

∆V = 1
2 (2x1 +1)− 1

2 (−2x2 −2x2
1 + x2

1 −1)
= 1

2 x2
1 + x1 + x2 +1.

Since d∆V
dx1

= x1 +1 > 0, thus ∆V decreases as x1 decreases.
Hence, ∆V attains its maximum for maximal x1. We then
further partition Region 5a as follows:

Region 5a1: The maximal x1 is attains at x1 =− 1
2 x2 −1,

that is −4 < x2 < −2, we then obtain that ∆Vmax =
1
8 (x2 +

4)2 − 3
2 <−1 < 0.

Region 5a2: The maximal x1 is equal to 1, that is x2 ≤−4,
we then get that

∆Vmax = x2 +
5
2 ≤− 3

2 < 0.

Region 5b: R5b = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,x2 ≥ 1,0 ≤
x1 +

1
2 x2 ≤ 1}. In this case, we get

∆V =−x1(x1 +
1
2 x2)+

1
2 (x1 +

1
2 x2)

2

− 1
2 (2x2 −2x2

1 + x2
1 −1)

= 1
8 (x2 +4)2 − 3

2 <− 3
8 < 0,

where we have used that −4 < x2 < −1 to get the second
last inequality.

Region 6: R6 = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}.
For this case, we need further partition R6 into two regions
depending on whether σ(u) is saturated or not.

Region 6a: R6a = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,−1 ≤ x2 ≤
1,x1 +

1
2 x2 ≥ 1}. In this case, we get

∆V = 1
2 (−2x1 +1)− 1

2 (2x2
2 −2x2

1 + x2
1 − x2

2)

= 1
2 x2

1 − 1
2 x2

2 − x1 +
1
2 .
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Note that d∆V
dx1

= x1 − 1 ≤ 0. Therefore, ∆V attains its max-
imum for minimal x1, that is, x1 = 1− 1

2 x2, we then obtain
that ∆Vmax =− 3

8 x2
2 ≤ 0, where the equality holds if and only

if x2 = 0.
Region 6b: R6b = {(x1,x2) ∈ R2|0 ≤ x1 ≤ 1,−1 ≤ x2 ≤

1, |x1 +
1
2 x2|≤ 1}. In this case, we get

∆V =−x1(x1 +
1
2 x2)+

1
2 (x1 +

1
2 x2)

2 − 1
2 (x

2
2 − x2

1)

=− 3
8 x2

2 ≤ 0,

where the equality holds if and only if x2 = 0.
The above six regions are visualized by Fig. 3. Due to

symmetry, we have omitted the symmetric counterparts of
these six regions.
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Fig. 3. Part of the partition for R2

Hence, we have shown that for the above six regions ∆V ≤
0, and ∆V = 0 if and only if x1 ≥ 0 and x2 = 0. Again due to
symmetry, we conclude that ∆V ≤ 0 and ∆V = 0 if and only
if x2 = 0. From (15), it is easy to see that in order to keep
x2(k) ≡ 0 for all k ≥ 0, we need |x1| ≤ 1. Hence, solutions
which can stay in the set {(x1,x2) ∈ R2|x2 = 0} must stay
in the set Z := {(x1,x2)||x1|≤ 1,x2 = 0}. Since ∆V ≤ 0, we
conclude that V (k) is non-increasing. Thus, limk→∞ V (k) =
V∗ for some V∗ ≥ 0. This implies that ∆V (k)→ 0 as k → ∞
and hence x(k)→ Z as k → ∞ as shown above. This implies
that

x(k+1) =
[

x2(k)
−x1(k)+σ(x1(k)+ 1

2 x2(k))

]
→ 0 as k → ∞.

Hence, we have shown that the closed-loop system of (15)
and (17) is globally attractive. Then global asymptotic stabil-
ity of the closed-loop system then follows from the locally
stability of the closed-loop system.

V. CONCLUSION

This paper considers single-input neutrally stable planar
systems via saturated linear state feedback control laws. On
the one hand, we show that for continuous-time systems,
any locally stabilizing linear state feedback also globally
stabilizes the system in the presence of actuator saturation.

On the other hand, for discrete-time systems, we show this
property does not hold in general and there exist more
globally stabilizing linear state feedback than well known
ones in the literature. This is a further step towards our future
goal, that is, to identify which locally stabilizing linear state
feedback control laws yield globally asymptotic stability of
the closed-loop system in the presence of actuator saturation
and which ones do not.
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