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Abstract— We consider a cloud-based control framework in
which individual clients own their local plants that must be
controlled by a public authority. Individual clients desire to
keep the local state information as private as possible, as long
as the cloud-based controller can provide a given level of quality
of service. Based on an axiomatic argument, we show that
Kramer’s notion of causally conditioned directed information
from the state random variable to a random variable disclosed
to the public authority is an appropriate measure of privacy
loss. For a special case with the Linear-Quadratic-Gaussian
(LQG) setting, we provide a procedure to construct a “privacy
filter” that attains the optimal trade-off between privacy loss
and control quality.

I. INTRODUCTION

Leveraged by modern cloud computing technologies, the
concept of cloud-based control has attracted much attention
in several industrial contexts. While it enhances conventional
control technologies in various ways, it also introduces new
concerns related to privacy. The purpose of this paper is to
discuss an appropriate privacy notion for cloud-based control
and a framework for privacy protection.

Cloud-based control is a powerful solution in the following
industrial situations.

(i) The clients do not have sufficient computational re-
sources to perform control tasks.

(ii) Control performance is improved by utilizing global
information/sharing operational data with other clients.

(iii) New kind of services become available by mining
large-scale operational data.

Situation (i) occurs when clients are in charge of operating
highly complex plants that requires solving large-scale opti-
mization problems in real-time [1]. Another example of this
category is a virtual server (cloud) providing multiple web
services (clients) with computational resources [2], [3]. In
this example, the assigned computational resource to each
client can be viewed as a control input, by which the state
(e.g., throughput) of the client’s web service is maintained.
An example of cloud-based control in category (ii) is traffic
navigation and management [4]. Since multiple vehicles
(clients) share a common infrastructure, the overall control
performance is drastically improved by “centralizing” the
decision-making mechanisms. Category (iii) contains various
examples, including the concept of predictive manufacturing
[5]. This is an idea of collecting and analyzing large amount
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Fig. 1. Cloud-based control.

of operational data from machines in production lines, tar-
geting at improving productivity and safety by predicting
failures before they occur.

A. Privacy concerns in cloud-based control

Since cloud-based control mandates clients to share local
plant information with the cloud operator, the issue of privacy
naturally arises. While careless treatment of privacy leads to
undesirable social and economic consequences, controlling
privacy is a subtle and challenging engineering task. The
difficulty comes from the following reasons.

First, establishing the adequacy of the existing privacy
notions (e.g., differential privacy [6], k-anonymity [7], in-
formation theoretic privacy [8] among others) in the context
of particular applications (in our case, cloud-based con-
trol) often requires subtle discussions. In fact, many of the
available privacy notions and their validities are sensitive,
explicitly or implicitly, to the problem settings where those
notions were originally introduced and premises therein.
For instance, [9] shows by simple counterexamples that k-
anonymity is fragile against side-information. Likewise, [10]
and [8] demonstrate that, under several distinct settings,
differential privacy does not provide any guarantee in terms
of the information theoretic privacy.

Second, privacy notions targeting at single-stage data
disclosure mechanisms are in general not sufficient to accom-
modate privacy issues in cloud-based control. A good privacy
notion must also respect the fact that privacy leakage occurs
over multiple time steps, and the data from the past stored in
the cloud can potentially be used to threaten privacy at the
present time. Also, the existence of information feedback
must be carefully taken into account. Namely, the cloud
has certain influences (through control input) on the future
private information (state of the client’s plant), and hence
appropriate statistical conditioning is needed to distinguish
private information from public information.
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Finally, we note that various techniques of data encryption
could enhance the security of cloud-based control, but are
not sufficient to resolve privacy issues completely. In fact,
some applications (e.g., traffic navigation) requires the cloud
to have an access to decrypted data (e.g., client’s location)
to provide an appropriate service. Hence privacy is not
protected unless the cloud operator is completely trustworthy
and the decrypted data is never transfered to the third party.
This is why randomization (e.g., private data is intentionally
corrupted by noise before disclosed) is a widely used scheme
to trade-off privacy and service utility. However, we also
note that there is an emerging control technology by which
the cloud is able to perform necessary computation using
encrypted data only [11]–[13].

For these reasons, protecting privacy requires sophisticated
technologies and hence, it is not practical nor safe to leave
the decision on which data to be disclosed/kept as confi-
dential up to each client’s discretion. A possible solution
is to introduce an additional layer (privacy filter) bridging
the cloud and clients, which has a dedicated role to control
the leakage of private data (Fig. 1). By an appropriate joint
design of privacy filter and control algorithms, the overall
system is able to balance utility of cloud-based control and
privacy losses.

In order to discuss privacy issues quantitatively, this paper
introduces an axiomatic characterization of privacy. More
specifically, we propose a set of postulates, which is a set of
natural properties to be satisfied by a reasonable notion of
privacy, and show that a particular function, namely Kramer’s
notion of causally conditioned directed information, arises
as a unique candidate to quantify privacy loss in a compat-
ible manner. An axiomatic characterization also provides a
convenient interface between theory and practice of privacy
discussions. As discussed above, it is often difficult to
judge whether a given notion of privacy is appropriate for
individual applications. In contrast, axioms are often easier
to discuss in practical contexts. Axioms also provide a solid
mathematical basis on which rigorous theory of privacy can
be developed.

B. Related work

Privacy has been extensively studied in the database liter-
ature in recent years. While ad hoc approaches for privacy
(sub-sampling, aggregation, and suppression) have a long
history, one of the first formal definition of privacy is given
by k-anonymity [7]. Extensions of this notion include t-
closeness and l-diversity [9]. Differential privacy [6] has been
particularly popular since its introduction, partly because of
its convenient property that no prior on the database content
is needed nor used. Information-theoretic privacy in database
is also considered in [8] and [14].

Privacy has only relatively recently become a topic of
concern in the control-engineering literature. Some of the
first works in the area treated consensus algorithms, and
how participating agents can maintain some level of privacy
despite sharing information with neighbors, see [15], [16],
[17]. Differential privacy, which was originally developed

for database privacy, can quite generally be adapted to a
control-theoretic context as shown in [18], [19], and also in
particular filtering and control applications, see [15], [20],
[17], [21], for example. Based on game theory, alternative
rigorous notions of privacy in a control and filtering context
have been obtained in [22], [23].

A general introduction to information-theoretic security,
secrecy and privacy can be found in [24]. Information
theory has been used to analyze various aspects of pri-
vacy in several different problems settings. The problem
of private information-retrieval [25] was considered for ex-
ample in [26] (and references therein). Recent work re-
ported in [27] introduced the notion of capacity of private
information-retrieval, and characterized corresponding fun-
damental bounds. Information-theoretic tools have also been
utilized in the context of differential privacy [28], [29]. Very
recent work summarized in [30] studies the relation between
differential privacy and privacy quantified in terms of mutual
information. This paper also relates these two notions to
the concept of identifiability. The work reported in [14]
introduced a general framework for establishing a relation
between privacy and utility based on rate–distortion argu-
ments. Similarly, [31] developed analytic tools to support the
characterization of leakage of privacy in biometric systems.

C. Contribution of this paper

Contributions of this paper are summarized as follows.
(a) We exemplify a set of postulates (Postulates 1-4) character-

izing basic properties of a privacy measure in cloud-based
control, and elucidate how Kramer’s causally conditioned
directed information arises as a unique candidate satisfying
it.

(b) We formulate an optimization problem characterizing op-
timal joint control and privacy filter policies, and derive
its explicit solution in the LQG case.

Although we show that the causally conditioned directed in-
formation is the only candidate satisfying the considered set
of postulates, we do not claim that the considered postulates
are the only possible characterization of privacy. In fact, it
is our important future work to examine carefully, possibly
using real-world incidents of privacy attacks, whether the
considered privacy postulates are appropriate or not. At
the same time it is worth studying how a different set of
postulates leads to a different notion of privacy. We also
note that axiomatic consistency is not the only criteria that
determines usefulness of privacy notions. For instance, to
design a privacy filter according to our privacy notion we
need to have a precise knowledge about the system model
(e.g., distributions of process noises). This is a weakness
compared to the mechanisms based on differential privacy,
which does not require prior knowledge of the system.

D. Notation

Random variables are indicated by upper case symbols
such as X . We denote by PX , PX,Y and PX|Y the probability
distribution of X , the joint probability distribution of X and
Y , and the stochastic kernel of X given Y , respectively.
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Fig. 2. Privacy filter: General model.

We use notation PX|y to emphasize that it is the conditional
probability distribution of X given Y = y. We write H(X|z)
and I(X;Y |z) to denote the entropy and mutual information
evaluated under PX,Y |z , and define conditional entropy and
conditional mutual information by H(X|Z) := EPZ

H(X|z)
and I(X;Y |Z) := EPZ

I(X;Y |z). If f is a function of a
random variable X , denote by EPX

f(X) or EPX
f(x) the

mathematical expectation.

II. PROBLEM SETTING

In this paper, a cloud-based control system is modeled by
a discrete-time nonlinear stochastic control system. We say
that a random variable is public at time t if its realization is
known to the cloud operator at time t. In contrast, by private
random variable at time t, we refer to random variables
that the client wishes to keep confidential (in an appropriate
sense discussed below) at time t.1 This classification reflects
our premise that the cloud operator is “honest but curious”
in that it will perform designated control actions faithfully,
but will try to learn private data and even to transfer it to
the third party. In this paper, we treat the state sequence
Xt , (X1, ..., Xt) of the local plant up to time t as the
private random variable at time t. We wish to introduce an
appropriate measure of privacy loss that occurs during the
operation of cloud-based control over a period 1 ≤ t ≤ T .

Fig. 2 shows a general structure of privacy filters. An
output filter prevents raw sensor data to be disclosed to the
cloud. An input privacy filter replaces the control input Ut

with a different value Vt to enhance privacy. In general, the
input and output filters can communicate with each other via
messages Ψt and Φt. Privacy filters and controller algorithms
are in general randomized policies and have memories of the
past observations. Thus, we model them as stochastic kernels
of the forms specified in Fig. 2. Fig. 3 shows a simpler form
of a privacy filter in which the control input commanded by
the cloud is directly applied to the plant. Since there is no
input filter, this architecture is easier to implement. For the
rest of the paper, we focus on this simple architecture in
Fig. 3, and discuss privacy notions and privacy filter design
problems exclusively for this architecture. In Section III,

1According to this definition, note that random variables are public or
private, or neither.
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Fig. 3. Privacy filter: Output filter only.

we characterize our privacy notion axiomatically, and then
formulate a joint controller and output privacy filter design
problem in Section IV. We derive an optimal form of joint
controller and output privacy filter in the LQG regime in
Section V.

III. AXIOMATIC CHARACTERIZATION OF PRIVACY

A meaningful notion of privacy must satisfy some basic
properties. In this section, we first consider a single-stage
data disclosure mechanism and show that the only candidate
function that satisfies the natural set of postulates (axioms) is
Shannon’s mutual information between private and published
random variables. Our argument is aligned with the logic
developed in [32], where the mutual information arises as a
unique function that characterizes the value of side informa-
tion in inference problems. The set of axioms used there is
simple, and thus we argue that it can be naturally used as a
set of axioms for privacy. Then, we apply this observation
to multi-stage feedback control systems and show the unique
candidate characterizing privacy loss in cloud-based control
in a satisfactory manner is the causally conditioned directed
information.

A. Single-stage case

Suppose X and Y are X - and Y-valued random variables
with joint distribution PX,Y . We temporarily assume that
X and Y are countably finite sets, and denote by PX the
space of probability distributions on X . Assuming that X is
a private random variable, we wish to quantify the privacy
loss due to the disclosure of a random variable Y .

First, we quantify the “hardness” of inferring X using
the notion of loss function. Generally speaking, a random
variable X is hard to infer if the expected posterior value
of observation (i.e., the degree of “surprise” that occurs
when observing a realization x ∈ X ) cannot be made
small. The posterior value of the observation is a function
of the observed realization x ∈ X and a prior distribution
QX ∈ PX assumed by the observer. We refer to such a
function ` : X ×PX → R as a loss function. In the literature,
it is also called the scoring rule [33] or self-information
[34]. Note that for a given choice of `, the task of inference
is to minimize ` by properly assuming QX . Among many

1668



options, the logarithmic loss function `(x,QX) = log 1
QX(x)

is frequently used in the literature.
Let PX ∈ PX be the true probability distribution of X ,

and QX ∈ PX be the assumed distribution. In general
PX 6= QX . If S(PX , QX) , EPX

`(X,QX), the quantity
infQX

S(PX , QX) is referred to as the Bayes envelope. A
loss function is said to be proper if infQX

S(PX , QX) =
S(PX , PX). It can easily be shown that the logarithmic
loss function is proper, and the associated Bayes envelope
coincides with the entropy H(X) of X:

inf
QX

S(PX , QX) = S(PX , PX) = EPX
log

1

PX(x)
= H(X).

Now we introduce the first postulate characterizing our
privacy notion. It states that privacy loss due to disclosing
Y is measured by the expected difference in Bayes envelope
evaluated before and after observing Y . Given a loss function
` and the joint distribution PX,Y , we refer to the privacy
loss evaluated this way as the privacy leakage function, and
denote it by L(`, PX,Y ).

Postulate 1: The privacy leakage function is in the form

L(`, PX,Y ) =

inf
QX

EPX
[`(X,QX)]− EPY

inf
QX|Y

EPX|Y [`(X,QX|Y )].

The first term on the right hand side is the Bayes envelope
evaluated without side information Y , while in the second
term, the assumed distribution QX|Y is allowed to depend on
Y . Hence, L(`, PX,Y ) is understood to be the improvement
in the estimation quality due to the side information Y .
If the loss function ` is logarithmic, the privacy leakage
function L(`, PX,Y ) defined above coincides with the mutual
information between X and Y , i.e.,

L(`, PX,Y ) = H(X)−H(X|Y ) = I(X;Y ).

Up to now, the logarithmic loss function is just an example
among many other possible choices of loss functions. It turns
out that it is the only option that satisfies the following
natural postulate.

Postulate 2: (Data-processing axiom [32]) For any dis-
tribution PX,Y on X × Y , the information leakage function
L(`, PX,Y ) satisfies

L(`, PT (X),Y ) ≤ L(`, PX,Y ) (1)

for every T : X → X such that T (X)–X–Y and
X–T (X)–Y form Markov chains. In (1), the joint distri-
bution PT (X),Y on X × Y is defined by

PT (X),Y (T (BX )× BY) = PX,Y (BX × BY)

for all subsets BX and BY of X and Y .
Theorem 1: (Justification of mutual information [32])

Let X be a finite set with |X | ≥ 3. Under Postulate 2,
the privacy leakage function is uniquely determined by the
mutual information

L(`, PX,Y ) = I(X;Y )

up to a positive multiplicative factor.

Proof: See [32].

Remark 1: The result of Theorem 1 can be extended to
the case with continuous random variables X and Y using
a formula [35, Ch. 2.5], [36, Ch. 3.5], [37, Ch. 7.1]:

I(X;Y ) = sup I([X], [Y ]). (2)

The right-hand-side of (2) denotes the supremum of mutual
information between discrete random variables [X] and [Y ]
over all finite quantizations. If we consider a supremum
achieving sequence of quantizers, and require the data-
processing axiom to be satisfied by each element of the
sequence, we obtain I(X;Y ) as the unique privacy leakage
function for continuous random variables X and Y .

B. Multi-stage case

Based on the discussion in the previous section, in this
section we propose a privacy measure suitable for cloud-
based control (Fig. 3). To proceed, we introduce the follow-
ing additional postulates.

Postulate 3: The private random variable at time t is Xt,
while Y t−1 and U t−1 are public at time t.

We first characterize the instantaneous privacy loss at time
step t due to the disclosure of Yt. By Postulate 3, we need
to characterize the privacy leakage function for Xt due to
disclosing Yt under the joint distribution PXt,Yt|yt−1,ut−1 .
Notice that, by Postulate 3, yt−1 and ut−1 are public
knowledge.

Let ` be a loss function as in the preceding subsection.
For every realization (yt−1, ut−1), Postulate 2 requires the
privacy leakage function L(`, PXt,Yt|yt−1,ut−1) to satisfy

L(`, PT (Xt),Yt|yt−1,ut−1) ≤ L(`, PXt,Yt|yt−1,ut−1)

whenever T (Xt) ∈ X t is a sufficient statistic of Xt for Yt
given Y t−1 = yt−1 and U t−1 = ut−1, i.e., the following
Markov chains hold under PXt,Yt|yt−1,ut−1 :

T (Xt)–Xt–Yt, Xt–T (Xt)–Yt.

From Theorem 1, we conclude that the only loss function
(up to positive multiplicative factors) that satisfies the above
inequality is the logarithmic one, and with necessity we have

L(`, PXt,Yt|yt−1,ut−1) = I(Xt;Yt|yt−1, ut−1).

Thus, if Y t−1 and U t−1 have a joint distribution PY t−1,Ut−1 ,
the expected privacy loss at time step t is

EPY t−1,Ut−1L(`, PXt,Yt|yt−1,ut−1) = I(Xt;Yt|Y t−1, U t−1).

Finally, we assume that our privacy notion satisfies the
following natural property.

Postulate 4: The expected total privacy loss over the
horizon t = 1, 2, ..., T has a stage-additive form over the
expected instantaneous privacy losses.

Under Postulate 4, the expected total privacy loss is

T∑
t=1

I(Xt;Yt|Y t−1, U t−1) =: I(XT → Y T ‖UT−1). (3)
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The notation on the right hand side of (3) is introduced
in [38] to denote the quantity appearing on the left hand
side of (3). We refer to this quantity as (Kramer’s) causally
conditioned directed information. Thus, we obtain:

Proposition 1: Under Postulates 1-4, causally condi-
tioned directed information I(XT → Y T ‖UT−1) is the only
function (up to positive multiplicative factors) quantifying
the expected privacy loss in the cloud-based control in Fig. 3.

IV. PRIVACY-PRESERVING CLOUD-BASED CONTROL
DESIGN

Suppose that the performance of the cloud-based control
system is measured by a stage-wise additive cost function∑T

t=1 Ec(Xt+1, Ut). Then, privacy loss in the cloud-based
control with a given control performance requirement δ is
minimized by solving

min I(XT → Y T ‖UT−1) (4a)

s.t.
T∑

t=1

Ec(Xt+1, Ut) ≤ δ. (4b)

Likewise, the best achievable control performance under the
privacy constraint is characterized by flipping the constraint
and objective functions in (4). In both cases, the optimization
domain is the space of the sequence of Borel measurable
stochastic kernels

D = {PUt|Y t,Ut−1 , PYt|Y t−1,Ut−1,Zt}Tt=1 (5)

characterizing joint controller and output privacy filter poli-
cies.2 Since (4) is an infinite dimensional optimization prob-
lem, it is in general difficult to obtain an explicit form of an
optimal solution. In Section V, we consider a special case
in which it is possible.

A. Implication

So far we have provided a justification of I(XT →
Y T ‖UT−1) as a measure of privacy loss. In this subsection,
we study how this quantity imposes a fundamental limitation
in estimating private random variables.

Consider an optimal joint controller and output privacy
filter policy solving (4), and let γ be the optimal value. By
Postulate 4, the total privacy loss γ can be written as γ =∑T

t=1 γt, where

γt = I(Xt;Yt|Y t−1, U t−1) (≥ 0) (6)

is the privacy loss at time t. To see how (6) guarantees
privacy against inferring Xt at time t even after disclosing
Yt, consider an estimate of Xt of the form X̂t : Yt ×
U t−1 → X t. Since realizations of Y t−1 and U t−1 are prior
knowledge at time t, X̂t can be viewed as a function of Yt
alone, and thus Xt – Yt – X̂t forms a Markov chain given
(Y t−1, U t−1). By the data-processing inequality,

I(Xt; X̂t|Y t−1, U t−1) ≤ I(Xt;Yt|Y t−1, U t−1) = γt.

2We consider PU1|Y 1,U0 = PU1|Y 1 and PY1|Y 0,U0,Z1 = PY1|Z1 .

In other words, the expected mutual information between Xt

and X̂t is bounded by γt:

EPY t−1,Ut−1 I(Xt; X̂t|yt−1, ut−1) ≤ γt. (7)

This inequality imposes a fundamental limitation of estima-
tion in the following sense. Let ρt : X t×X t → [0,∞) be an
arbitrary distortion function. For a given source distribution
PXt|yt−1,ut−1 , let Dt : [0,∞)→ [0,∞) be the distortion-rate
function [39]. By definition of the distortion-rate function,
for any joint distribution PXt,X̂t|yt−1,ut−1 , we have

EPXt,X̂t|yt−1,ut−1ρt(X
t, X̂t) ≥ Dt(I(Xt; X̂t|yt−1, ut−1)).

Taking expectation with respect to PY t−1,Ut−1 , we have

Eρt(Xt, X̂t) ≥ EPY t−1,Ut−1Dt(I(Xt; X̂t|yt−1, ut−1)) (8a)

≥ Dt(EPY t−1,Ut−1 I(Xt; X̂t|yt−1, ut−1)) (8b)

≥ Dt(γt). (8c)

Recall that distortion-rate functions are in general convex
and non-increasing [39, Lemma 10.4.1]. Thus, (8b) follows
from Jensen’s inequality, and (8c) follows from (7).

Hence, under our privacy notion, (6) ensures that the
estimation error corresponding to any estimator X̂t based
on all information available in the cloud at time t cannot be
smaller than the distortion-rate function Dt(γt).

V. LQG CASE

In this section, we consider a special case in which (4)
becomes a tractable optimization problem. Suppose the plant
in Fig. 3 is a fully observable linear dynamics system

Xt+1 = AtXt +BtUt +Wt, Zt = Xt

where Wt ∼ N (0,ΣW
t ) is a sequence of independent

Gaussian random variables. Assume also that c(·, ·) is a
convex quadratic function, and that the problem (4) can be
written as

min I(XT → Y T ‖UT−1) (9a)

s.t.
T∑

t=1

E(‖Xt+1‖2Qt
+ ‖Ut‖2Rt

) ≤ δ. (9b)

The domain of optimization is (5). Problem (9) is identical
to the problem considered in [41], except that in [41],
an optimal solution is provided under the restriction that
the stochastic kernels in (5) are Linear-Gaussian. In what
follows, we provide a solution to (9) without such an
assumption.

To this end, we consider a related optimization problem

min I(XT → UT ) (10a)

s.t.
T∑

t=1

E(‖Xt+1‖2Qt
+ ‖Ut‖2Rt

) ≤ δ (10b)

where the domain of optimization is D given by (5). Problem
(10) is studied in [40], where it is shown that an optimal
solution is a Linear-Gaussian randomized policy shown in
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Controller 
 𝑈𝑈𝑡𝑡 = 𝐾𝐾𝑡𝑡𝔼𝔼(𝑋𝑋𝑡𝑡|𝑌𝑌𝑡𝑡) 

Plant 
𝑋𝑋𝑡𝑡+1 = 𝐴𝐴𝑡𝑡𝑋𝑋𝑡𝑡 + 𝐵𝐵𝑡𝑡𝑈𝑈𝑡𝑡 + 𝑊𝑊𝑡𝑡 

𝑍𝑍𝑡𝑡 = 𝑋𝑋𝑡𝑡 

Output Privacy Filter 
𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡𝑍𝑍𝑡𝑡 + 𝑉𝑉𝑡𝑡,𝑉𝑉𝑡𝑡~𝑁𝑁(0, Σ𝑡𝑡𝑉𝑉) 

𝑍𝑍𝑡𝑡 

𝑌𝑌𝑡𝑡 𝑈𝑈𝑡𝑡 

𝑈𝑈𝑡𝑡 

𝑊𝑊𝑡𝑡 Client 

Cloud 

Fig. 4. Structure of optimal policy for problem (10). Matrix parameters
Ct, ΣV

t , Lt, Kt for t = 1, ..., T are determined by an algorithm based on
semidefinite programming. See [40] for the details. This structure can also
be viewed as an optimal joint controller policy and output privacy filter for
the LQG case (9). Although the output privacy filter is allowed to utilize
public random variable Ut−1 (as shown in Fig. 3), it turns out that this
information need not be used.

Fig. 4, which can be synthesized by means of semidefinite
programming.3 Now we claim the following.

Proposition 2: The policy shown in Fig. 4, which is an
optimal solution to (10), is also an optimal solution to (9).

Proof: (Outline only) This result is obtained in the
course of proving the main result of [40]. By [40, equation
(22)], it is shown that for an optimal policy P ∗ shown in
Fig. 4, an equality

I(XT → UT ) =
∑T

t=1
I(Xt;Yt|Y t−1)

holds. However, for P ∗, it is also shown in [40, Section VI-
E] that

I(XT → Y T ‖UT−1) =
∑T

t=1
I(Xt;Yt|Y t−1).

A complete proof is rather lengthy, and must be deferred to
[40, Section VI].

Proposition 2 suggests an explicit form of the joint control
and output privacy filter policy solving (9).

Proposition 3: An optimal joint controller and output
privacy filter characterized by an optimal solution to (9) is
in the form shown in Fig. 4. An optimal choice of matrices
Ct, ΣV

t , Lt (Kalman gains) and Kt (feedback control gains)
are obtained by semidefinite programming.

Notice that the privacy filter shown in Fig. 4 is similar to
privacy protecting mechanisms considered in various other
contexts (e.g., [6]) in that it is adding noise Vt before
disclosing data. Proposition 3 shows that the optimal noise
distribution is Gaussian in the LQG case (9).

VI. NUMERICAL EXAMPLE

In this section, we consider a simple scalar system

Xt+1 = Xt + Ut +Wt, t = 1, ..., T

3In [40], problem (10) is studied with more general optimization domain
D′ , {PUt|Xt,Ut−1}Tt=1. Note that D ⊂ D′ in that every element in D
can be, by compositions of stochastic kernels, mapped to an element of D′.
Since it is shown that a policy P ∗ shown in Fig. 4 is optimal over D′, and
since P ∗ is in fact an element of D, it can be concluded that P ∗ is an
optimal solution to (10).
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Fig. 5. SNR of the optimal privacy filter and the privacy loss.
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Fig. 6. Simulated trajectory of Xt and its estimate E(Xt|Y t).

with a process noise Wt ∼ N (0, 0.3). This example is
motivated by a cloud-based navigation service, where the
state variable Xt is interpreted as the position of the client
at time t, whereas Ut is the navigation signal provided by the
cloud. Assuming the initial position is X1 = 10, the cloud-
based controller navigates the client to the origin withing
T = 30 steps only using the output of a privacy filter

Yt = CtXt + Vt, Vt ∼ N (0,ΣV
t ).

The optimal privacy filter is different depending on the
choice of δ in (9). We consider two scenarios in which
control requirements are stringent (δ = 24.9) and mild
(δ = 31.9). In both cases, we use the same control cost
function with Qt = 1, Rt = 20 for all t. The former
case requires higher data rate (measured in directed infor-
mation). In each scenario, we compute the optimal sequence
{Ct,Σ

V
t }t=1,...,30 by solving (9) using semidefinite pro-

gramming. The sequence of signal-to-noise ratios SNRt =
C2

t /Σ
V
t is plotted in Fig. 5 (a). The total loss of privacy in

the high rate scenario is 45.6 [bits] (the area of blue region
in Fig. 5 (b)) while it is 8.1 [bits] in the low rate case (the
area of red region in Fig. 5 (b)). Fig. 6 shows the closed-
loop performance in each scenario. In the high rate case,
the cloud estimates the position of the client accurately, and
consequently the control performance is preferable. In the
low rate case, the estimate is not accurate (privacy is better
protected) and the control performance is poor.

VII. SUMMARY AND FUTURE WORK

In this paper, we showed that Kramer’s causally condi-
tioned directed information arises as the unique candidate
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(up to positive multiplicative factor) for a measure of privacy
loss in cloud-based control if Postulates 1-4 (including the
data-processing axiom [32]) are to be satisfied. This result
is the first step towards axiomatic privacy theory, which
is a prospective approach providing a convenient interface
between theory and practice in privacy discussions. There are
numerous further opportunities in the same line of research.
Notice that the set of postulates we have selected in this
paper is not the only possible characterization of privacy. In
fact, in [8], the “maximum” type of privacy leakage function

L(`, PX,Y ) =

inf
QX

EPX
[`(X,QX)]−min

y∈Y
inf

QX|Y
EPX|Y [`(X,QX|Y )].

is considered in parallel with the “average” type of privacy
leakage function we assumed in Postulate 1. It is of great in-
terest whether there exists a valid notion of privacy satisfying
the corresponding new set of postulates.
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