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a b s t r a c t

We consider the sensor scheduling problem for remote state estimation under integrity attacks.
We seek to optimize a trade-off between the energy consumption of communications and the
state estimation error covariance when the acknowledgment (ACK) information, sent by the remote
estimator to the local sensor, is compromised. The sensor scheduling problem is formulated as
an infinite horizon discounted optimal control problem with infinite states. We first analyze the
underlying Markov decision process (MDP) and show that the optimal scheduling without ACK attack
is of the threshold type. Thus, we can simplify the problem by replacing the original state space with
a finite state space. For the simplified MDP, when the ACK is under attack, the problem is modeled
as a partially observable Markov decision process (POMDP). We analyze the induced MDP that uses a
belief vector as its state for the POMDP. We investigate the properties of the exact optimal solution
via contractive models and show that the threshold type of solution for the POMDP cannot be readily
obtained. A suboptimal solution is then obtained via a rollout approach, which is a prominent class of
reinforcement learning (RL) methods based on approximation in value space. We present two variants
of rollout and provide performance bounds of those variants. Finally, numerical examples are used
to demonstrate the effectiveness of the proposed rollout methods by comparing them with a finite
history window approach that is widely used in RL for POMDP.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Cyber–physical systems (CPS) refer to physical and engineer-
ng systems whose operations are monitored, coordinated, con-
rolled, and integrated by a computing and communication core
losely (Baheti & Gill, 2011; Rajkumar, Lee, Sha, & Stankovic,
010). Examples of CPS can be found in a variety of sectors,
nd many of them are vital to the normal operation of society.
owever, there have been many security incidents recently, such
s Maroochy water breach in 2000, Stuxnet malware in 2010, and
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Venezuela blackouts in 2019. Those incidents have motivated the
recurring study of the security of CPS.

This work considers the sensor scheduling problem for remote
state estimation under cyber attack. There have been many ex-
isting works on sensor scheduling under attack on the forward
channel, i.e. from a sensor to a remote estimator. From the per-
spective of attackers, an optimal denial-of-service (DoS) attack
scheduling problem with energy constraint was studied in Zhang,
Cheng, Shi, and Chen (2015). In Qin, Li, Shi, and Yu (2017), the
authors considered how to maximize the system performance
loss with a DoS attack on remote state estimation over packet-
dropping networks. Other related works can be found in Zhang,
Qi, Wu, Fu, and He (2016) and Qin et al. (2020).

There are also many works on attacks over the feedback chan-
nel. Most works are based on the ACK protocol, where the fusion
center sends an acknowledgment whenever it receives a packet,
proposed in Mo, Sinopoli, Shi, and Garone (2012). The authors
studied sensor scheduling for both no-ACK and ACK protocols and
analyzed properties of the optimal scheduling. The ACK-based
sensor scheduling was proved to outperform the one without
ACK, i.e., offline scheduling, under the same energy constraint
studied in Han, Cheng, Chen, and Shi (2013). Based on the ACK
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eedback scheme, many works consider the effect of ACK-based
ttacks. Guo, Wang, and Shi (2017) studied the DoS attack on
he feedback channel in the ACK-based sensor scheduling, and
roved that the optimal policy has a threshold structure. From
he perspective of defenders, an ACK-based deception scheme for
ensors was first proposed in Ding, Ren, and Shi (2016). Further-
ore, the authors presented an equivalent belief-based stochastic
ame to obtain the optimal stationary strategy for each agent
n Ding, Ren, Quevedo, Dey, and Shi (2020). The above works
ocus on the attack scheduling problem or active deception-based
chemes. To the best of our knowledge, few works focus on
btaining an optimal scheduling when the ACK received by the
ensor is attacked. Note that the uncertainty induced by the
ttack poses a major challenge in this problem.
For most existing works without ACK-based attacks, the sensor

cheduling problem is formulated as an optimal control problem
ith system dynamics model given by MDP (Leong, Ramaswamy,
uevedo, Karl, & Shi, 2020; Wu, Ren, Jia, Johansson, & Shi, 2019).
hen an ACK-based attack is present, it is most conveniently

ormulated by POMDP whose structural results could be ob-
ained via some stochastic ordering (Krishnamurthy, 2016). In
his paper, we investigate the possibility to derive a structural
esult via Monotone likelihood Ratio (MLR) ordering. It is proved
hat a threshold type of solution for POMDP cannot be readily
vailable. A suboptimal solution approach via rollout is then
roposed. ‘‘Rollout’’ was first proposed in Tesauro and Galperin
1997). It can be considered as single policy iteration (Bertsekas,
019) and provides an online approach for solving stochastic
cheduling, combinatorial optimization, and sequential repairing
roblems (Bertsekas & Castanon, 1999; Bertsekas, Tsitsiklis, &
u, 1997; Bhattacharya, Badyal, Wheeler, Gil, & Bertsekas, 2020).
In this work, we focus on the sensor scheduling problem for

emote state estimation under the presence of an ACK-based
ttack. We aim to obtain scheduling rules that minimize the
xpectation of an infinite horizon discounted accumulated cost.
he contributions of our work are: (1) We prove that the optimal
olicy of the underlying MDP is of threshold type. Therefore,
e can simplify the MDP by truncating the state space. (2) We
resent some properties of the exact optimal solution through
ontractive models for the MDP with belief vectors as states,
nd also prove that the structural result cannot be established
hrough MLR ordering. (3) We present a suboptimal scheme via
pproximation in value space and implement it through rollout
ith fixed and geometrically distributed truncated steps. The
orresponding performance guarantee is provided. A theoretical
nvestigation closely related to contributions (2) and (3) is given
n Patek (2007). However, due to the simplification achieved in
1), we are able to use contractive models, which are simpler and
etter suited for our problem.
The rest of the paper is organized as follows. Section 2 intro-

uces the system model, smart sensor, remote state estimation
s well as ACK feedback scheme. The sensor scheduling problem
nder an ACK-based attack is formulated as an infinite horizon
iscounted problem. The underlying MDP is studied and the
ptimal policy is shown to be of threshold type in Section 3. In
he presence of attack, a decision making process of the sensor
s modeled as a POMDP, which is analyzed in Section 4. In Sec-
ion 5, some numerical examples are provided to demonstrate the
ffectiveness of the proposed strategy. Conclusions are provided
n Section 6.

otations: The notation hn(x) stands for the function composition
h(hn−1(x)), where n ∈ N and h0(x) = x. The operator ρ(·) :

n×n
→ R+ denotes the spectral radius, i.e., ρ(A) = max{|λ1|,

λ2|, . . . , |λn|}, where λ1, . . . , λn are the eigenvalues of a matrix
∈ Rn×n. The identity matrix of size n is denoted by In. The

T
ranspose of a matrix A is represented by A . The notation Z

2

enotes the set of integers. The cardinality of a finite set S is
epresented by |S|. Sn

+
(Sn
++

) is the set of n × n positive semi-
efinite (definite) matrices. When X ∈ Sn

+
(Sn
++

), we simply write
⪰ 0 (X ≻ 0).

. Problem formulation

.1. System model

Let us consider a linear time-invariant (LTI) system described
y the following equations:

k+1 = Axk + wk, (1)

yk = Cxk + ϕk, (2)

where xk ∈ Rn and yk ∈ Rm are the vectors of state variables
and sensor measurements at time k, respectively. wk ∈ Rn

denotes the process noise and ϕk ∈ Rm is the measurement
noise. wk ∈ N (0,Q ) and ϕk ∈ N (0, R), where Q ⪰ 0 and
R ≻ 0, respectively. It is assumed that w0, w1, . . . and ϕ0, ϕ1, . . .

are mutually independent.

Assumption 2.1. The system matrix A is of full rank, i.e., rank(A)
= n.

Assumption 2.2. The pair (A, C) is observable and (A,
√
Q ) is

controllable.

Remark 2.1. Assumption 2.1 holds for all discrete systems dis-
cretized from their continuous counterparts.

2.2. Smart sensor

We consider the so-called ‘‘smart sensor’’ as described in Lewis
et al. (2004), which first locally estimates the state xk based on
all the measurements it has collected up to time k and then
transmits its local estimate to the remote estimator.

The sensor’s local minimum mean squared error (MMSE) es-
timate of the state xk and the corresponding error covariance are
defined as x̂sk = E [xk | y1, y2, . . . , yk] and P̂ s

k = E
[
(xk − x̂sk)(xk

−x̂sk)
T
| y1, y2, . . . , yk

]
, respectively. They can be calculated by

a standard Kalman filter. Under Assumption 2.2, the estimation
error covariance of the Kalman filter converges to a unique value.
Without loss of generality, we assume that the Kalman filter
at the sensor side has entered the steady state. Therefore, we
simplify our subsequent discussion by setting P̂ s

k = P̄, k ≥ 1,
where P̄ is the steady-state error covariance. For notational ease,
we define the Lyapunov operator h: Sn

+
→ Sn

+
as h(X)

△
= AXAT

+Q .
Then P̄ is given by the unique positive definite solution of the
equation X = h(X)− h(X)CT

[Ch(X)CT
+ R]−1Ch(X).

After obtaining x̂sk, the sensor will transmit it as a data packet
to the remote estimator. Random data drops may occur because
of the existence of fading and interference. We assume that the
sensor has two choices: one is to send the local state estimate
with high power, which will consume energy eh (eh > 0); the
other is to send the estimate with low power, which will consume
energy el (0 < el < eh). We assume that for the first choice, the
packet will always arrive at the remote estimator, while for the
other one, the arrival rate is υ ∈ (0, 1). In Fig. 1, we use two lines
to denote these two choices. The upper line refers to the choice

eh, and the lower line represents the choice el.
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Fig. 1. The system diagram.

.3. Remote state estimation

The transmission of x̂sk between the sensor and the remote
estimator can be characterized by a binary random variable γk,
k ∈ N:

γk =

{
1, if x̂sk arrives at time k,
0, otherwise (regarded as dropout).

Denote as x̂k and P̂k the remote estimator’s own MMSE state
estimate and the corresponding error covariance based on all the
sensor data packets received up to time step k. The remote state
estimate x̂k follows the recursion:

x̂k =
{
x̂sk, if γk = 1,
Ax̂k−1, if γk = 0.

(3)

The corresponding state estimation error covariance P̂k satisfies:

P̂k =
{
P̄, if γk = 1,
h(P̂k−1), if γk = 0.

(4)

The objective of sensor scheduling for the smart sensor is to
optimize a trade-off between the energy consumption of com-
munications and the trace of the estimation error covariance
of the remote estimator. We formally formulate the cost that
the sensor aims to minimize as Jobj = limN→∞ E

{∑N
k=0 αkgk

}
,

here α ∈ (0, 1) is the discount factor and gk denotes the
tage cost given by gk = β · (energy consumption) + (1 − β) ·
trace of error covariance), while β ∈ (0, 1) is the weighting
oefficient. The term ‘‘energy consumption’’ is related to el and eh,
nd ‘‘error covariance’’ is related to Eq. (4). Note that both stage
ost and control selection depend on the holding time, which is
he time since the last successful reception of the data. Therefore,
t is important for the sensor to know the holding time in order
o make right control selection. For this reason, the following
cknowledgment scheme is employed.

.4. ACK feedback scheme

To improve the estimation performance under an energy con-
traint, an online power scheduling approach based on the ACK
rom the remote estimator was proposed in Li, Quevedo, Lau,
nd Shi (2013). We consider the same setting and use a scheme
kin to Li et al. (2013). The remote estimator generates a 1-
it ACK signal to indicate whether the data packet is delivered
uccessfully or not, which is illustrated in Fig. 1. We set γk =

when the information x̂sk has been delivered to the remote
state estimator, and γk = 0 otherwise. In this way, the sensor
an obtain the real-time information from the remote estimator.
owever, ACK scheme faces the risk of being attacked. The next
ection shows a possible ACK-based attack model, which results
n degradation of the performance of sensor scheduling.
3

2.5. Attack model

While the ACK feedback scheme is simple and easy to im-
plement, the simple structure makes it a likely target of an
attacker who can carry out integrity attacks or DoS attacks (Li,
Quevedo, Dey, & Shi, 2015). In this section, we propose a possible
attack strategy for the attacker and investigate the corresponding
mitigation of this kind of attack in the rest of the paper.

When the ACK channel is perfect, the smart sensor will receive
a real-time ACK. If there is an integrity attack launched by ‘‘At-
tacker’’ shown in Fig. 1, the ACK may be modified, i.e., γk = 0 may
be modified to 1 and γk = 1 to 0, according to certain probability
defined by the attacker. In order to differentiate the ACK signal
under the normal and attack scenarios, we use zk to denote the
ACK received by the smart sensor under a possible attack for later
discussion. Note that zk may not be equal to γk. We denote as κ0
and κ1 the probability that γk = 0 and γk = 1 are flipped by the
attacker, respectively, i.e., κ0 = p(zk = 1 | γk = 0), κ1 = p(zk =
0 | γk = 1), where p(·) denotes the probability. It is assumed that
the attack probabilities do not vary during the attack process. Our
goal is to design a power scheduling approach, knowing that the
ACK information is under the above flip attack.

Remark 2.2. If the smart sensor is only concerned with the
error covariance of remote state estimation, namely, β = 0, the
optimal attack strategy for an attacker is given as (κ0, κ1) = (1, 0).
On the other hand, if the energy consumption of smart sensor
is the only concern (β = 1), corresponding attack probabilities
should be given as (κ0, κ1) = (0, 1). Since the smart sensor
ims to optimize a trade-off between the remote state estimation
ccuracy and transmission energy cost, intuitively, the optimal
ttack probability should be between 0 and 1. This can be also
bserved in the example in Section 5.1.

emark 2.3. Note that the flipping probability of the attack
ay be obtained by the smart sensor which transmits its state
stimate with high power eh over a period of time and computes
he statistics of the ACK signals. In view of this, we assume that
he system has the knowledge of attack probabilities and focus
n the mitigation of this kind of attack.

emark 2.4. The related study on the fake acknowledgment
ttack can be found in Li et al. (2015). The optimal DoS attack
n the feedback channel against the ACK-based sensor power
cheduling is studied in Guo et al. (2017). In Li, Quevedo, Dey,
nd Shi (2016), a game-theoretic approach to acknowledgment
ttack is proposed and the Nash equilibrium is studied. Note
hat the above works consider the DoS attack and emphasize
he performance analysis of attacks on the feedback channel. Our
ork focuses on mitigating the effect of the attack on ACK.

emark 2.5. It is worth noting that our proposed attack model is
ifferent from the lossy acknowledgment channel model. The key
ifference is that the remote estimator sends a feedback at each
ime and the attacker modifies the feedback signal with certain
robabilities.

.6. Preliminary analysis

In this section, we define the state, control, and observation of
ur problem. We apply the POMDP framework to model the pro-
ess given that ACK is under a possible attack. Note that due to the
ecursion of the dynamics in Eq. (4), the covariance Pk can only
ake value in the infinitely countable set {P̄, h(P̄), h2(P̄), . . .}. De-
ote as sk ∈ Z the holding time since the most recent successful
eception of the data from the sensor by the remote estimator:

k
△
= k− 1− max {t : γt = 1}. (5)
1≤t≤k−1
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herefore, sk = 0 means that the message sent at time k − 1
has been successfully received. We denote by S the state space
of the MDP. The state space has countable elements 0, 1, . . .,
standing for the holding time sk, and we will use sk to represent
the unspecified state in S. Denote as uk the control option and
as U the control space of the problem. The control options are to
send the state estimate with high or low energy, denoted as 1 and
0, respectively, i.e., U = {0, 1}, and we will use uk to represent
the unspecified control at time k. In particular, we use s and u to
refer to a value in S and U . We denote by pss′ (u) the transition
probability from s to s′ under control u and denote by g(s, u, s′)
the stage cost when such transition occurs. It is clear that the
probabilities are given as

pss′ (1) =
{
1, s′ = 0,
0, o.w.,

pss′ (0) =

⎧⎨⎩
υ, s′ = 0,
1− υ, s′ = s+ 1,
0, o.w..

(6)

For the power scheduling problem of our interest, the following
functions are usually used as cost per stage

g(s, 1, s′) = βeh + (1− β) tr(P̄),

(s, 0, s′) = βel + (1− β) tr(hs′ (P̄)).
(7)

Due to the presence of attack, the true state sk cannot be
omputed according to Eq. (5) since γk is potentially compro-
mised. Therefore, the observation received at current time is
conditioned on the current state s, denoted by qz(s), and its
onditional probability is given as

1(s) =
{
1− κ1, s = 0,
κ0, o.w.,

q0(s) =
{
κ1, s = 0,
1− κ0, o.w..

(8)

2.7. Problem of interest

Given that we know the successful arriving rate υ when trans-
mitted with low energy, the presence of the attacker, the ob-
servation probabilities qz(s), and the observations zk, we are in-
terested in obtaining a scheduling rule that minimizes the fol-
lowing expectation of the infinite horizon accumulated cost of
g(sk, uk, sk+1) given by Eq. (7) with a given discount factor of
α ∈ (0, 1): J(s) = limN→∞ E

{∑N
k=0 αkg(sk, uk, sk+1) | s0 = s

}
.

The challenge of the problem comes from two folds. First, the
roblem is a POMDP, which is difficult in its own right. Second,
he underlying MDP has a state space that is composed of infinite
tates. In what follows, we will first investigate the properties of
he MDP. It is shown that the optimal policy, if the states are
nown, is of the threshold type. Therefore, it is then sufficient to
onsider the finitely many state case, thus obtaining a MDP with a
runcated state space. Then we will show for the POMDP induced
y the truncated state space, contractive models apply and some
erformance guarantees can be established.

. Simplification of the underlying MDP

Table 1 summarizes some parameters related to the analysis
f the underlying MDP.

.1. Analysis on the properties of MDP

Recall that the Lyapunov operator is defined as h(X)
△
= AXAT

+

. For the error covariance iterated through the Lyapunov oper-
tor, we have the following lemma.1

1 We corrected an error in Lemma 2.3 of Shi, Johansson, and Qiu (2011) by
mposing lemma under Assumptions 2.1 and 2.2.
4

Lemma 3.1. Under Assumptions 2.1 and 2.2, the inequality

tr
(
hk(P̄)

)
< tr

(
hk+1(P̄)

)
, ∀k ∈ N,

holds, where tr
(
h0(P̄)

)
= tr

(
P̄
)
.

From Lemma 3.1, we know that the sequence {tr(hk(P̄))}∞k=0 is
monotonically increasing as k grows.

Lemma 3.2. If ρ(A) ≥ 1, limk→∞ tr(hk(P̄)) = +∞. Otherwise, the
equence {tr(hk(P̄))}∞k=0 is bounded.

The above lemma can be derived by Gelfand’s formula (Lax,
014). Recall the definition of the cost g given by Eq. (7), we have

g ≥ 0 viz., the MDP we are investigating here is nonnegative. This
is formalized as the following lemma.

Lemma 3.3. The cost function g satisfies

g(s, u, s′) ≥ 0,∀(s, u, s′) ∈ S × U × S.

In this paper, we will focus on the case where the stage cost
is unbounded, which is formalized in the following assumption.

Assumption 3.1. The system matrix A satisfies ρ(A) ≥ 1.

Remark 3.1. When ρ(A) < 1, in view of Lemma 3.2, the stage
cost is bounded for all states and controls, in which case a large
portion of the following analysis still applies. However, it would
be possible, depending on the tuning parameter β , to have low
energy transmission always as the optimal control, which would
not be practically interesting to investigate.

For the nonnegative MDP with state space S and control space
U , we denote as µ̄ : S → U a mapping from state space
to control space, and π̄ = {µ̄0, µ̄1, . . . } as a sequence of µ̄k.
Thus, the cost functions under π̄ and {µ̄, µ̄, . . . } are defined as
Jπ̄ (s) = limN→∞ E

{∑N
k=0 αkg(sk, µ̄k(sk), sk+1) | s0 = s

}
, Jµ̄(s) =

limN→∞ E
{∑N

k=0 αkg(sk, µ̄(sk), sk+1) | s0 = s
}
, in view of g being

nonnegative. For such problems, we are interested in obtaining
the optimal cost function J∗ and optimal stationary policy µ̄∗

iven as
∗(s) = inf

π̄
Jπ̄ (s), Jµ̄∗ (s) = J∗(s), ∀s ∈ S. (9)

or the problem of interest, the optimal cost function can be
chieved since the cost function is nonnegative (Lemma 3.3) and
he control space is compact under an unbounded cost. This is
ormalized as the following lemma.

emma 3.4 (Chapter 6, Bertsekas, 1976). (a) The optimal cost
unction J∗ of (9) satisfies Bellman’s equation. Namely, for all s ∈ S ,
∗(s) = minu∈U

∑
s′∈S pss′ (u)

{
g(s, u, s′) + αJ∗(s′)

}
. (b) Let π̄ =

µ̄, µ̄, . . .} be an admissible stationary policy. We have for all s ∈
, Jµ̄(s) =

∑
s′∈S pss′

(
µ̄(s)

){
g
(
s, µ̄(s), s′

)
+ αJµ̄(s′)

}
. (c) There is

n optimal stationary policy µ̄∗ that satisfies (9). (d) Starting with
0(s) ≡ 0, the value iteration (VI) sequence {Jk}∞k=0 generated by
k+1(s) = minu∈U

∑
s′∈S pss′ (u)

{
g(s, u, s′) + αJk(s′)

}
for all s ∈ S ,

onverges pointwise to J∗.

heorem 3.1. Let Assumptions 2.2 and 3.1 hold. The optimal policy
¯
∗ defined by Eq. (9) is of the threshold type, viz., there exists a
onstant ϵ∗ ∈ S such that

¯
∗(s) =

{
0, if s < ϵ∗,

1, if s ≥ ϵ∗.
(10)

oreover, the optimal cost is strictly increasing for all s ≤ ϵ∗, viz.,
∗(s− 1) < J∗(s) when s ≤ ϵ∗, and remains constant for s ≥ ϵ∗.
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Table 1
Descriptions of parameters.
Parameter Description

α ∈ (0, 1) The discount factor for the accumulated cost.
β ∈ (0, 1) The weighting coefficient related to energy consumption and error covariance.
υ ∈ (0, 1) The arrival rate if the sensor sends x̂sk with low power el .
ℓ ∈ Z, ℓ > ϵ∗ The largest value for the truncated space as defined in Section 3.2.
κ0, κ1 ∈ (0, 1) The probabilities that γk = 0 and γk = 1 are flipped by the attacker.
γk ∈ {0, 1} The ACK signal that indicates if x̂sk arrives at time k.
zk ∈ {0, 1} The ACK received by the smart sensor under a possible attack.
µ̄∗(s) ∈ {0, 1} The optimal policy at state s.
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Proof. For the simplicity of notations, we define gh ≜ g(s, 1, 0) =
eh + (1 − β) tr(P̄). By Lemma 3.4(b), (c), and (d), we can prove
hat J∗(s) = limk→∞ Jk(s) ≤ limk→∞ Jk(s′) = J∗(s′). Namely, J∗(s)
is monotonically increasing. In addition, the term g(s, 0, s + 1)
grows unbounded with s due to ρ(A) ≥ 1. Thus, there exists
some s̄ such that µ̄∗(s̄) = 1 and J∗(s̄) = gh + αJ∗(0) and
J∗(s′) ≥ J∗(s̄) = gh + αJ∗(0), ∀s′ > s̄. On the other hand, as
discussed above, for all s, we have J∗(s) ≤ gh + αJ∗(0). Thus,
J∗(s′) = gh + αJ∗(0). Define ϵ∗ ≜ argmin {s̄ | µ̄∗(s̄) = 1}. The
above proof has shown that for all s ≥ ϵ∗, the optimal cost J∗(s)
is constant and equals gh + αJ∗(0). In view of definition of ϵ∗,
we see that J∗(ϵ∗ − 1) < J∗(ϵ∗) [since otherwise, we would have
µ̄∗(ϵ∗−1) = 1, contradicting the definition of ϵ∗]. For s ≤ ϵ∗−2,
if J∗(s) = J∗(s+ 1), we have (1− υ) [g(s, 0, s+ 1)+ αJ∗(s+ 1)] =
1−υ) [g(s+ 1, 0, s+ 2)+ αJ∗(s+ 2)]. However, this contradicts
ith g(s, 0, s + 1) < g(s + 1, 0, s + 2) and J∗(s + 1) ≤ J∗(s + 2).
hus, the assumption is false and the proof is complete.

.2. Computational approach

Due to the fact that the optimal policy is of the threshold
ature, we can thus consider a truncated state space St =

0, 1, . . . , ℓ} with ℓ > ϵ∗. However, since ϵ∗ is not known,
either is ℓ. For the truncated problem, with a slight abuse of
otion, we will still use pss′ (u) to denote the transition probability,
ith the modification that pℓℓ(0) = υ and pℓ0(0) = 1 − υ ,
hile the stage costs remain the same as for the original problem.

n particular, g(ℓ, u, ℓ) = βel + (1 − β) tr
(
hℓ+1(P̄)

)
. When the

runcated problem fulfills the condition that ℓ > ϵ∗, its optimal
olicy is the same as the one of original problem with infinite
tate space. The proof is omitted due to the limit of space.

heorem 3.2. For the truncated problem with state space St =

0, 1, . . . , ℓ}, the optimal cost function and optimal policy satisfy
hat: (a) If ℓ ≥ ϵ∗, the optimal control of the truncated problem
s also given by Eq. (10), while the optimal cost function is J∗

|St
, the

estriction of optimal cost of original MDP to St . (b) If ℓ < ϵ∗, the
ptimal control of the truncated problem is 0 for all s ∈ St while the
ptimal cost is upper bounded by J∗

|St
.

In view of Theorem 3.2 and Proposition 12 in Bertsekas (1976),
iven some ℓ, we can use VI to get the corresponding optimal
olicy for the truncated problem. If it appears to be the threshold
ype, it corresponds to Theorem 3.2(a) and the optimal cost and
olicy obtained for the truncated problem are exactly the same
s the underlying MDP with the original state space. If it is not
he threshold type, it corresponds to Theorem 3.2(b) and we need
o increase ℓ to get the threshold ϵ∗. From now on, we refer to
he underlying MDP as the one with the truncated state space
rovided that ℓ > ϵ∗, and with a slight abuse of notion, we
ill still use pss′ (u) to denote the transition probability, with the
odification that pℓℓ(0) = υ and pℓ0(0) = 1 − υ , while the

ransition costs for all s ∈ St remain unchanged as mentioned
efore Theorem 3.2. Also, we will still use J∗ to denote the optimal
ost function.
5

. Scheduling under integrity attack

When the ACK information is under attack, we have a POMDP
roblem where the underlying state S has an infinite dimension,
ith a known probability of observation. Based on the study of
he previous section, the original state space can be replaced by
truncated version St with no impact on control selection. Thus,
he POMDP of our concern is the one with state space St , control
, observation Z , transition probability given by Eq. (6), stage cost
iven by Eq. (7), observation probability given by Eq. (8), with the
xception that pℓℓ(0) = υ and pℓ0(0) = 1−υ , while the transition
osts for all s ∈ St remain unchanged.

.1. Properties of the exact optimal solution

For the POMDP introduced above, we analyze the induced
DP that uses a belief vector as a state. It is well-known that

hose two problems are equivalent, albeit the problem with belief
tate is infinite-dimensional (Astrom, 1965). For this study, we
pply the contractive model detailed in Bertsekas (2018). To this
nd, we consider as states the functions b : St → R such that
s∈St

b(s) = 1, and b(s) ≥ 0, ∀s. It is easy to see that b is a vector
nd b ∈ Rℓ+1. We denote as B the set of all such belief states. Note
hat B ⊂ Rℓ+1. Denote as V : B→ R a function defined on B, and
s V the set of functions that contains all V where ∥V∥∞ < ∞.
iven a belief state b and a control u, the distribution of z can
e computed as p̂(z | b, u) =

∑ℓ

s=0 b(s)
∑ℓ

s′=0 pss′ (u)qz(s
′). The

ynamics of b is governed by a Bayesian estimator denoted as
: B × U × Z → B. As an illustration, if κ1 = κ2 = κ , then the

ynamics of the estimator is simplified as

(b, 0, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ(1− κ)
υ(1− κ)+ (1− υ)κ

(1− υ)κb(0)
υ(1− κ)+ (1− υ)κ

...
(1− υ)κ(b(ℓ)+ b(ℓ− 1))

υ(1− κ)+ (1− υ)κ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ(b, 0, 0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

υκ

υκ + (1− υ)(1− κ)
(1− υ)(1− κ)b(0)

υκ + (1− υ)(1− κ)
...

(1− υ)(1− κ)(b(ℓ)+ b(ℓ− 1))
υκ + (1− υ)(1− κ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ(b, 1, z) =
[
1 0 · · · 0

]T
, ∀z ∈ Z.

For the induced infinite-dimensional MDP, the stage cost ĝ :
× U → R is given as ĝ(b, u) =

∑ℓ

s=0 b(s)
∑ℓ

s′=0 pss′ (u)g(s, u, s
′).

Based on the above definitions, we introduce an abstract operator
H : B × U × V → R that defines the induced MDP. It is given as

H(b, u, V ) = ĝ(b, u)+ α
∑

p̂(z | b, u)V
(
Φ(b, u, z)

)
. (11)
z∈Z
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e denote as µ a function µ : B→ U and all such functions form
he set M. In addition, we denote as π a sequence of admissible
policies {µk}

∞

k=0 and Π as the set of all π . Then we introduce two
ellman operators Tµ, T : V → V given by

(TµV )(b) = H(b, µ(b), V ), (TV )(b) = inf
µ∈M

(TµV )(b). (12)

heorem 4.1 (Fixed Point Properties). Let Assumptions 2.2 and 3.1
old. For every Tµ and T , we have the following hold:

(a) There exists unique Vµ, V ∗ ∈ V such that

Vµ = TµVµ, V ∗ = TV ∗. (13)

(b) V ∗ given in Eq. (13) is the optimal cost function, viz., V ∗ =
infπ∈Π Vπ , where Vπ is given as Vπ = limN→∞ Tµ0

(
Tµ1

(
· · ·

(TµNV0) · · ·
))

, with V0 ≡ 0. In particular, V ∗ = infµ∈M Vµ.

(c) For a policy µ ∈M, Vµ = V ∗ if and only if TµV ∗ = TV ∗.

roof. Given that the space V is complete, we only need to
verify that the operators defined in Eq. (12) has the following
properties: (1) For all V , V ′ ∈ V such that V ≤ V ′, it holds
hat TµV ≤ TµV ′, µ ∈ M, TV ≤ TV ′. (2) For all V , V ′ ∈ V ,
TµV − TµV ′∥∞ ≤ α∥V − V ′∥∞, ∀µ ∈ M. Then the results
tated in (a), (b) and (c) follow from Prop. 2.1.1 and Prop. 2.1.2
n Bertsekas (2018).

(1) For all V , V ′ ∈ V ,

(TµV )(b) = H(b, µ(b), V )

=ĝ(b, µ(b))+ α
∑
z∈Z

p̂(z | b, µ(b))V
(
Φ(b, µ(b), z)

)
≤ĝ(b, µ(b))+ α

∑
z∈Z

p̂(z | b, µ(b))V ′
(
Φ(b, µ(b), z)

)
=H(b, µ(b), V ′) = (TµV ′)(b),
(TV )(b) = inf

µ∈M
(TµV )(b) ≤ inf

µ∈M
(TµV ′)(b) = (TV ′)(b).

(2) For all µ ∈M, we have

(TµV )(b)− (TµV ′)(b)

=α
∑
z∈Z

p̂(z | b, u)
[
V
(
Φ(b, u, z)

)
− V ′

(
Φ(b, u, z)

)]
≤α∥V − V ′∥∞,

which holds for all b ∈ B. Reverse the order of V and V ′,
which implies |V (b)− V ′(b)| ≤ α∥V − V ′∥∞, ∀b ∈ B. Take
supremum over B and we get the desired result.

As is mentioned in Theorem 3.1, the optimal cost function is
monotonically increasing as the holding time increases. However,
for the induced MDP where now the state b is an element in
the simplex of Rℓ+1, additional conditions are required to obtain
structural results like the one in Theorem 3.1. One simple and
useful approach is through Monotone likelihood ratio (MLR) or-
dering (Krishnamurthy, 2016). For two belief states b and b′, we
call b dominates b′ in the MLR sense if b(s)b′(s′) ≤ b′(s)b(s′), s <

s′, s, s′ ∈ St . Under suitable conditions, computing MLR order-
ing between two belief states b and b′ is sufficient to conclude
whether V ∗(b) ≥ V ∗(b′). In particular, if b dominating b′ in the
MLR sense implies V ∗(b) ≤ V ∗(b′), then we say the POMDP is MLR
decreasing in b. For the result to hold true, one key property re-
quired for the underlying MDP is that the related matrix is totally
positive of order 2 (TP2). A stochastic matrix [including rectangle
one, Krishnamurthy (2016, Definition 10.2.1)] is called TP2 if all

its second-order minors are nonnegative. The relevant stochastic t

6

matrices of our concern under control u are the transition matrix
P(u) and observation matrix M(u), given as

P(u) =

⎡⎢⎢⎣
p00(u) p01(u) · · · p0ℓ(u)
p10(u) p11(u) · · · p1ℓ(u)

...
...

. . .
...

pℓ0(u) 0 · · · pℓℓ(u)

⎤⎥⎥⎦ ,

M(u) =
[
q0(0) q0(1) · · · q0(ℓ)
q1(0) q1(1) · · · q1(ℓ)

]T

.

he following lemma outlines the sufficient conditions under
hich the POMDP is MLR decreasing in b.

emma 4.1 (Theorem 11.2.1, Krishnamurthy, 2016). For the POMDP
ith state space St , control U , observation Z , and stage cost g : St×

×St → R, if the following three conditions hold: (1) For each con-
rol u ∈ U , the expected stage cost defined as

∑
s′∈St

pss′ (u)g(s, u, s′)
s decreasing in s; (2) The transition matrix P(u) is TP2 for all u; (3)
he observation matrix M(u) is TP2 for all u, then the POMDP is MLR
ecreasing in b.

emark 4.1. The stage cost in Krishnamurthy (2016) is defined
s a function of current state and current action St × U , while
ere our stage cost g(s, u, s′) also depends on the next state. Thus,
he stage cost in Krishnamurthy (2016) is the expected stage cost

s′∈St
pss′ (u)g(s, u, s′) in our paper.

In the following theorem, we will show that the problem of
nterest here does not fulfill the TP2 property, thus MLR decreas-
ng in b cannot be established through the above conditions. For
he following discussion, we introduce a new class of functions.
e call σ : St → St a permutation if it is a bijection. For
given bijection σ , we obtain a new POMDP accordingly, with
tate space St , control space U , observation space Z , transition
robability given as pσ

ss′ (u) = pσ−1(s)σ−1(s′)(u), transition cost given
s gσ (s, u, s′) = g

(
σ−1(s), u, σ−1(s′)

)
, observation probability

σ
z (s) = qz

(
σ−1(s)

)
, transition matrix Pσ (u) and observation

atrix Mσ (u) defined accordingly. Now we are ready to proceed
o state the following result, which essentially means that for
he problem of interest, the MLR decreasing relation cannot be
stablished through Lemma 4.1.

heorem 4.2. Let Assumptions 2.2 and 3.1 hold. There exists
o permutation σ such that the corresponding POMDP fulfills the
onditions (1), (2), and (3) given in Lemma 4.1.

roof. In view of Lemma 3.1, stage cost g(s, u, s′) of the original
OMDP is increasing in s. Thus, condition (1) in Lemma 4.1 is
iolated. To have condition (1) hold, the only valid permutation
is given as σ (s) = ℓ − s. Under σ , the stage cost gσ (s, u, s′) is

ecreasing in s. However, we can see the transition matrix Pσ (0)
s not TP2. Indeed, the last second order minor of Pσ (0) is given
s,⏐⏐⏐⏐pσ

(ℓ−1)(ℓ−1)(0) pσ
(ℓ−1)(ℓ)(0)

pσ
(ℓ)(ℓ−1)(0) pσ

(ℓ)(ℓ)(0)

⏐⏐⏐⏐ = ⏐⏐⏐⏐p11(0) p10(0)
p01(0) p00(0)

⏐⏐⏐⏐⏐⏐⏐⏐ 0 υ

1− υ υ

⏐⏐⏐⏐ = υ(υ − 1) < 0,

hich means Pσ (0) is not TP2. Thus, there exists no permutation
such that its corresponding POMDP fulfills the conditions (1),

2), and (3) in Lemma 4.1.

Theorem 4.2 shows that the structural result for the induced
DP is not readily available. Therefore, we seek a suboptimal
olution based on approximation in value space, implemented
hrough the use of rollout (Bertsekas, 2019).
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.2. Approximate solution through rollout

Given that the exact solution cannot be established through
he MLR ordering for the belief states, we seek an approxi-
ate solution. Here, we use the rollout approach, which is a
imulation-based approach. To this end, we fix certain base policy
b ∈M. Given current belief state as b, we aim to obtain a control

option as the following minimizer

µ̃(b) ∈ argmin
u∈U

ĝ(b, u)+ α
∑
z∈Z

p̂(z | b, u)Ṽ
(
Φ(b, u, z)

)
, (14)

where we examine two options for Ṽ , which we denote as Ṽ r and
Ṽ (λ). The first option Ṽ r is to evaluate base policy µb for some
fixed r ∈ N steps, with final cost V̄ (b) =

∑
s∈St

b(s)J∗(s), thus

Ṽ r (b) = (T r
µb
V̄ )(b). (15)

The second option Ṽ (λ) is to evaluate the base policy µb with
geometrically distributed steps with final cost V̄ , thus Ṽ is defined
as

Ṽ (λ)(b) = (T (λ)
µb

V̄ )(b),

where λ ∈ (0, 1) is some design parameter, and T (λ)
µb
: V → V is

defined as

(T (λ)
µb

V )(b) = (1− λ)
∞∑

ℓ=1

λℓ−1(T ℓ
µb
V
)
(b). (16)

Note that Eq. (16) is a well-defined, infinite-dimensional operator
with the same fixed point as Tµb , and for all V , V ′ ∈ V , it holds
that ∥T (λ)

µb
V − T (λ)

µb
V ′∥∞ ≤ αλ∥V − V ′∥∞, where αλ =

α(1−λ)
1−λα

. Refer
o Li, Johansson, and Mårtensson (2019) for details of the above
esults.

When rollout method defined in Eq. (14) is implemented
xactly, with Ṽ = Ṽ r , the performance of µ̃ with respect to the
ptimal cost V ∗ can be characterized by the following lemma,
hich is given as Proposition 2.2.1 (Bertsekas, 2018).

emma 4.2 (Proposition 2.2.1, Bertsekas, 2018). Denote as Vµ̃ the
ost function of the policy µ̃ that is given by Eq. (14), and Ṽ = Ṽ r .
Then the suboptimality of Vµ̃ with respect to V ∗ is given by

∥Vµ̃ − V ∗∥∞ ≤
2α

1− α
∥T r

µb
V̄ − V ∗∥∞. (17)

Compared with above result, when Ṽ = Ṽ (λ), we have the
ollowing performance bound.

heorem 4.3 (Performance Bound). Denote as Vµ̃ the cost function
f the policy µ̃ that is given by Eq. (14), and Ṽ = Ṽ (λ). Then the
uboptimality of Vµ̃ with respect to V ∗ is given by

Vµ̃ − V ∗∥∞ ≤
2α

1− α
∥T (λ)

µb
V̄ − V ∗∥∞. (18)

roof. We view T (λ)
µb

V0 as the final cost and the above subop-
imality is a direct application of Proposition 2.2.1, (Bertsekas,
018).

emark 4.2. The scalars in Eqs. (17) and (18) are usually un-
known, so the resulting analysis will have a mostly qualitative
character. However, Lemma 4.2 and Theorem 4.3 provide some
insight on the performance of the rollout approach. By decreasing
the discount factor α and increasing the number of lookahead
tep, a better performance bound could be expected.
7

4.3. Rollout implementation via Monte–Carlo sampling

Here we exemplify a rollout implementation via Monte-Carlo
simulation method detailed in Bertsekas (2019). The algorithm is
summarized in Algorithm 1, where Ṽ = Ṽ r . Given a current belief
state b, we run Ns Monte Carlo simulations to decide the control
input, where the function ‘‘SIMULATOR’’ is used to take the Monte
Carlo simulations with parameter action u, belief state b and
truncated steps r . Then, a rollout control is obtained and can be
applied in the system. It is worth noting that if we use the second
variant where Ṽ = Ṽ (λ), the truncated step r is not anymore fixed,
but rather a random variable drawn from geometric distribution
with parameter λ.

Algorithm 1 Rollout policy for fixed truncated steps

Input: The discount factor α ∈ (0, 1), the sample number Ns, the
arrival rate under lower energy υ , current belief state b, the
truncated steps r , and the base policy µb ∈M

utput: The rollout control.
1: function Simulator(u, b, r)
2: v← 0
3: Apply u and collect observation z
4: v← ĝ(b, u), b← Φ(b, u, z)
5: for l = 1→ r do
6: u← µb(b)
7: Apply u and collect observation z
8: v← v + αlĝ(b, u), b← Φ(b, u, z)
9: end for
0: v← v + αr+1V̄ (b)
1: return v

2: end function
3: v0 ← 0, v1 ← 0
4: for k = 1→ Ns do
5: v0 ← v0+ Simulator(0, b, r)
6: v1 ← v1+ Simulator(1, b, r)
7: end for
8: ũ ∈ argminu′∈U

1
Ns

vu′

4.4. Finite history window approach as a baseline

In this subsection, we introduce a finite history window ap-
proach, which is widely employed in RL (Murphy, 2000) for
comparison. Different from the above model-based and on-line
method, it is a model-free and off-line method. For this problem,
the control space is the same as the problem in Section 2. We
use ok as an observation at time k, which includes a stored
observation with length m ≥ 1 and control input with length n ≥
0 given by ok ≜ [zk−m, . . . , zk−1, uk−n, . . . , uk−1]T ∈ Rm+n. Here,
the control input also needs to be recorded as it also effects the
decision-making of the sensor. Denote by O the set of all possible
observations o ∈ Rm+n, and |O| = |Z|m|U|n. It is straightforward
to see that the number of states grows exponentially with the
length of the window. Correspondingly, the cost per stage can be
obtained from the simulator according to Eq. (7).

With above formulation, we obtain a standard RL problem
with O as state space and U as control space. It can be solved
by many different RL methods and we use Q-learning (Watkins,
1989) as an example. The pseudocode of the algorithm is omitted
here due to the limit of space.

Remark 4.3. Rollout is an on-line and simulation-based approach
to obtain a suboptimal control. Different from other off-line ap-
proaches like Q-learning, it does not need to spend much time
to train and does not need to maintain a lookup table. At the
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Fig. 2. Cost functions of attacks with different probabilities and different initial
tates.

ame time, rollout can avoid the curse of dimensionality via
nline computation. Finally, the performance of Q-learning for
ur focused problem will be affected by the choice of history
indow size, while the performance of rollout will not be limited
y the base policy.

. Simulation

.1. A simple illustration of attack effect

An intuitive approach for the sensor scheduling would be
o make the decision according to the most recent observation
ithout remembering anything from the past. However, due to
he existence of integrity attack, the sensor cannot get the true
tate and it may not be optimal that the sensor decides whether
o send the data with high or low power directly according to
he current state. In order to give some insight into our proposed
ttack model, we provide a simple simulation to illustrate the
ffect of this kind of attack.
The system parameters are as follows:

=

[
1.2 0.3
0.3 0.8

]
, C =

[
1 1.7
0.3 1

]
, Q = R = I2.

It is straightforward to obtain that the steady-state Kalman filter-

ing error covariance P̄ =
[

1.7249 −0.7250
−0.7250 0.5144

]
.

The energy consumptions of different levels are tuning param-
ters. We have tested different combinations and here we present
ne choice. They are set as 10 tr P̄ and 2 tr P̄ . The successful arrival
ate υ for lower energy is set as 0.4. The discount factor α is set
o be 0.9. For illustration purpose, we set κ0 = κ1 = κ for the rest
f this section. However, the method applies to the general case
here κ0 ̸= κ1.
When the above intuitive approach is employed for sensor

cheduling, Fig. 2 shows that the cost function values with differ-
nt attack probabilities and initial states. From this figure, one can
ee that under the above parameter settings, the optimal attack
s of flip probability between 0 and 1.

.2. Threshold policy of underlying MDP

In this subsection, we provide a numerical example to verify
he threshold policy with different weight parameters β ’s and
rrival rate υ ’s. Other related parameters are the same as the
nes in the above subsection. Here, we use the value iteration to
ompute the optimal policy. The optimal policies under different
eight parameter β ’s and arrival rate υ ’s are shown in Table 2.
From this table, one can obtain that with the weight parameter
increasing, the optimal threshold increases, which is expected
ue to higher weight on the energy consumption. Besides, we
an see that as the arrival rate υ increases, the optimal threshold
ncreases, which is also expected since the sensor tends to send
he packet with low energy due to the increase of the arrival rate.
8

Table 2
The threshold ϵ∗ under different β ’s and υ ’s.
Parameters β with υ = 0.4 υ with β = 0.6

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

ϵ∗ 2 3 4 5 3 4 5 6

Fig. 3. Performance under different approaches with κ = 0.5 and β = 0.6.

.3. Comparison with rollout policy and finite history window ap-
roach

In this section, we consider the sensor scheduling under in-
egrity attack. The attack probability κ is set as 0.5 and the
eight parameter β is set as 0.6. Other related parameters are
he same as the ones in the above subsection. From Table 2, it is
traightforward to get that the optimal threshold is ϵ∗ = 4 when
= 0.6. Here, we truncate the state space and the state ℓ is set

s 7. Here, the base policy that we use is

b(b) =
{
0,

∑3
i=0 b(i) <

∑7
i=4 b(i),

1, o.w..

In Fig. 3, the brown bar denotes the true values of the optimal
osts for each state; the dark orange, gold and dark green bars
enote the cost functions of the base policy, rollout policies with
eometrically distributed and fixed truncated steps; the steel
lue, blue, and purple bars represent the cost functions using the
olicies obtained through Q-learning with different window sizes.
t is obvious that the performance of the rollout policy is much
etter than the base policy, and the cost functions of the rollout
olicies with geometrically distributed and fixed truncated steps
re close to the ones of the true optimal costs. It is also shown
hat with the window size increases, the corresponding cost
ecreases. This is expected as a better Q-value can be obtained
ith increased m and n. By computing the stationary distribution
nder optimal policy for the underlying MDP, we can obtain that
= {0.2, 0.2, 0.2, 0.2, 0.2} under the designed parameters. Then

we compute the two norms of the difference between the optimal
cost function and other cost functions of other suboptimal poli-
cies from state 0 to state 4 and they are 333.9849 (Base policy),
24.4510 (Geometrically distributed steps), 23.2594 (Fixed steps),
298.3401 (Q-learning: m = 2, n = 2), 59.0104 (Q-learning:
m = 3, n = 3), and 33.2229 (Q-learning: m = 4, n = 4). We
can see that the performance of the rollout policy is also better
than the ones obtained via Q-learning with all different window
sizes despite that no offline training is needed for rollout.

6. Conclusion

This paper studied the scheduling of sensor transmission prob-
lem for remote state estimation under integrity attacks. It was
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roved that the underlying MDP has a threshold type optimal
olicy. Thus we simplified the problem by truncating the state
pace. When an integrity attack is present, the problem was
ormulated as a POMDP. The existence of optimal policy for the
DP with belief state induced by the POMDP was studied and

t was proved that the monotonicity of value function cannot be
stablished via MLR ordering. The main result of this work is
suboptimal, on-line and model-based approach based on the
pproximation in value space and implemented through rollout
ith fixed and geometrically distributed truncated steps, and
orresponding performance guarantees were provided. Further-
ore, numerical examples were provided to demonstrate the
ffectiveness of the proposed approaches when compared with
finite history window approach. For the future work, how to
esign mitigation mechanisms against more intelligent attacker
s of great interest. We are also interested in studying the compu-
ational cost for real-time operation, including but not limited to
inding an appropriate metric to characterize the computational
ost.
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