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Abstract— In this paper an efficient computation scheme
for analyzing the security of power transmission networks is
presented. In order to strategically allocate protection devices
in the network, the problem of finding the sparsest stealthy false
data attack to the state estimator is studied. While the attack
search problem is traditionally solved as a generic constrained
cardinality minimization problem, this paper exploits the prob-
lem structure intrinsic to the power network application to
obtain a polynomial time approximate algorithm based on a
minimum cut relaxation. Experiment results from realistic test
cases are presented to demonstrate the efficiency and accuracy
of the proposed algorithm.

I. INTRODUCTION

A. SCADA Security and Power Transmission

A modern society relies critically on the proper operation

of the electric power distribution system, which is super-

vised and control through the Supervisory Control And Data

Acquisition (SCADA) systems. These systems are highly

dependent on control algorithms but also on computerized

and networked information. The resilience of power system

on this infrastructure, makes it more susceptible not only to

operational errors but also to external attacks.

SCADA systems measure data through remote devices all

over the grid and gathers them at a control center through

communication channels. There computer processing takes

place and control commands are sent back to the system.

The vulnerabilities that are introduced could be exploited by

malicious attackers. Many reports concerning the vulnera-

bilities due to cyber attacks [1], [2] are given, but also real

incidents (e.g. [3]) affirm the importance of this issue.

B. State Estimation of Power Systems

State estimators (such as power flow estimators) in power

systems are currently used to, for example, detect faulty

equipment and to route power flows. The estimators are

currently located in control centers. Large numbers of mea-

surements are sent to the centers over unencrypted commu-

nication channels, which are susceptible to false-data attacks.

Therefore the security of the estimator becomes an important

issue [4]–[8].

In this paper the linearized power network state estimation

problem is considered. The network can be modeled as a

graph with n nodes (i.e., buses) and ma directed arcs (i.e.,

transmission lines) on which power flows. The flow can
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be negative, meaning that the actual direction of the flow

is opposite to the direction of the arc. The (arc-to-node)

incidence matrix A ∈ R
n×ma describes the topology:

∀ j = 1, . . . ,ma A(i, j) =











1 if arc j starts at node i

−1 if arc j ends at node i

0 otherwise
(1)

The states of the power network are the phase angles at

the nodes, grouped into a vector δ ∈R
n. The measurements,

denoted as z, contain three parts: (a) arc power flows, (b)

their negative copies, and (c) external power injections into

nodes. The arc power flows are related to δ by the linearized

formula DAT δ , where D ∈ R
ma×ma is a diagonal matrix

whose diagonal entries are the reciprocal of the reactance

of the arcs [9]. By the flow conservation law, the external

power injections into nodes are also related to the states δ
as L δ = ADAT δ , where L is the weighted Laplacian of

the graph. To summarize, the states and measurements of a

power network are related by

z = Hδ , where H ,





DAT

−DAT

ADAT





m×n

(2)

with m = n+ 2ma. Hence, H has more rows than columns

by construction. Note that for the convenience of exposition

in this paper, the H matrix defined in (2) is a row permuted

version of the standard H matrix defined in the IEEE bench-

marks. Finally, it is assumed in this paper that D is positive

definite (i.e., positive, inductive reactance). This is not always

true, even though it is uncommon to encounter negative

reactance. Out of the 19 test cases from MATPOWER [10],

there is one case (300-bus case) having one arc with negative

reactance.

To obtain an estimate of the states δ using the mea-

surements z, the relation in (2) can be inverted, for in-

stance, by solving a least squares problem. To detect

whether the measurements z are reliable, a bad data detec-

tion (BDD) test is typically performed [9]. If the residual
∥

∥(I −H(HT H)+HT )z
∥

∥ is too big, then an alarm is triggered.

C. Sparsest Stealthy False Data Attacks

This paper considers the hypothetical scenario where the

measurements of a power network are susceptible to additive

false data attacks. The measurement vector that the state

estimator receives is of the form z+∆z, where z = Hδ is the

vector of true power flows and ∆z is the measurement attack

vector. If an attack vector ∆z is such that it is impossible to

satisfy ∆z = H∆δ for any ∆δ , then the BDD alarm would
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be triggered and the attack would fail. To avoid BDD alarm

trigger, [4] introduces the notion of stealthy false data attack,

amounting to a change of decision variables of the form

∆z = H∆δ for some ∆δ (3)

To make the attack vector ∆z stealthy, attacks might be

required on multiple measurements even if the attacker is

interested in attacking only one measurement (e.g. an arc).

Since each attack on a measurement entails some risk, the

attacker would be interested in finding the sparsest stealthy

attack. From the viewpoint of a defender, the question of the

sparsest stealthy attack is also important because it identifies

the measurements which are vulnerable to attack. Then the

analysis result can be used to strategically place protective

equipment to its best effect (e.g. [7]). This paper considers

the following sparsest stealthy false data attack problem of a

single measurement k ∈ {1,2, . . . ,m}, initially studied in [6].

αk , min
∆δ

‖H∆δ‖0

subject to H(k, :)∆δ = 1
(4)

where ‖·‖0 denotes the cardinality of a vector, and H(k, :)
follows the “MATLAB convention” denoting the kth row

of H. It is assumed that there is no column of A which

is all-zero. This implies that H does not have any all-

zero row (i.e., empty measurement). Hence, the problem

in (4) is always feasible. The minimum objective value

in (4), denoted as αk, is defined in [6] as the security

index of measurement k. αk provides the absolute lower

bound on the number of measurements that need to be

compromised in a stealthly attack on measurement k. Hence,

the knowledge of the security indices of the measurements

allows the power network operator to pinpoint the location

where protective mechanisms such as encryptions and PMUs

should be placed. For the rest of the paper, if k ∈ [1,2mb],
then the corresponding αk is referred to as arc measurement

security index. On the other hand, if k ∈ [2mb+1,m], then the

corresponding αk is called injection measurement security

index.

D. Previous Works

The security index problem in (4) is NP-hard because

it is a cardinality minimization problem with a nontrivial

constraint. [4] reports the use of matching pursuit for ob-

taining suboptimal solutions to (4). [6] proposes a simple

and efficient security index upper bounding scheme – among

all columns of H with a nonzero entry in the kth row, the

sparsest column is chosen as a suboptimal solution H∆δ
to (4). [6] also reports using LASSO [11] to suboptimally

solve (4). To solve (4) to optimality, a mixed integer linear

program (MILP) can be set up and solved using, for instance,

the branch-and-bound algorithm (e.g. [12]). Alternatively, [7]

proposes an enumerative algorithm for (4).

The mentioned previous works are “generic” in the sense

that (4) is solved without taking into account the specific

structure of the H matrix. The proposed scheme, however,

is restricted to the case where H has the form in (2). More

recently there are also results focusing on the structure of H

[13], [14]. However, the considered problems in these work

are different from the problem in this paper. This paper shows

that the optimal solution to (4) is structured, as summarized

in Proposition 1 in Section II. By exploiting the structure

of the optimal solution, efficient computation schemes for

(4) can be derived in Section III. Section III also shows

that in the special case where the H matrix does not have

the ADAT block (i.e., no injection measurement), then (4)

can be solved exactly in polynomial time. Finally, numerical

experiments in Section IV demonstrate that the proposed

schemes outperform the previous works.

II. NODE PARTITIONING FORMULATION OF THE

SECURITY INDEX COMPUTATION PROBLEM

A. Binary Characterization of Optimal Solutions

From the point of view of achieving the smallest value of

‖H∆δ‖0 in (4), an all-zero vector would be the best choice.

However, this choice violates the constraint H(k, :)∆δ = 1.

The next logical guess would be an n-vector whose entries

are either 0 or β , for some β 6= 0. This turns out to be the

structure of at least one optimal solution to (4), due to the

specific setup in this paper. The following statement formally

verifies the intuition.

Proposition 1: Let H in (4) have the structure in (2), and

assume that D is positive definite. Then there is at least one

optimal solution of (4) of the form β ∆δb where ∆δb is an

n-vector whose entries are either 0 or 1, and β is a scalar

such that β H(k, :)∆δb = 1.

Proof: See [15].

The above statement implies that, without loss of generality,

the problem in (4) can be restricted to a node partitioning

problem assigning the entries of ∆δ to be either 0 or 1. This

in turn simplifies the counting of injection attacks (i.e., part

of the objective function value in (4)).

Corollary 1: For any 0-1 partition of the nodes specified

by ∆δb in Proposition 1, a node i is subjected to an injection

attack if and only if its node value ∆δb(i) is greater than that

of at least one of its neighbors.

Proof: See [15].

For instance, the above statement rule out the arc flow

balance situation depicted in Fig. 1.

1 2 3

 !
1

= 2  !
2

= 1  !
3

= 0

 z
12

= 1  z
23

= 1

 z
1

= 1  z
3

= 1 z
2

= 0

Fig. 1. Arc flows are balanced at node 2 even if both of its incident arcs
have nonzero flows. This situation cannot happen if the node values can
only be either 0 or 1.

B. Node Partitioning Formulations for Security Index

Proposition 1 provides an equivalent but simplified graph

interpretation of (4) for the security index of an arc.

• Let (i, j) (from i to j) be the targeted arc. Assign node

value at i to be 1 and node value at j to be 0.
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• Assign value 0 or 1 to the rest of the nodes to minimize

cost, to be described in the next step.

• Cost is the number of arcs with different start/end node

values, plus the number of nodes incident to such arcs.

For reference, the above problem will be referred to as the

minimum cost node partitioning problem for the rest of this

paper.

Corollary 1 also provides an equivalent but simplified

graph interpretation of (4) in the case of injection attack.

• Let node i be subjected to an injection attack. For each

arc incident to i, calculate the arc measurement security

index (with the node value at i set to 1).

• The minimum of the above indices is the security index

of the injection measurement at node i.

III. EFFICIENT SECURITY INDEX COMPUTATION BASED

ON NODE PARTITIONING

A. Minimum Cut Problem on a Weighted Directed Graph

The rest of this paper will make use of the solving of

a standard graph optimization problem called minimum cut

problem (MIN-CUT) [12], which is now briefly reviewed.

Consider a directed graph defined by its node set N and

arc set A . The arcs are weighted with wi j for all (i, j) ∈ A .

Let s and t be two different nodes called source and sink

respectively. An “s− t cut” is defined as a partition of the

nodes into two disjoint sets S and N \ S such that s ∈ S

and t ∈ N \ S. For any cut, the associated “cut capacity” is

defined as

C(S), ∑
{(i, j)∈ A i∈ S, j/∈ S}

wi j

The problem of s− t MIN-CUT (or MIN-CUT for short) is

the problem of finding the s− t cut with the minimum cut

capacity.

(MIN-CUT) minimize
S

C(S)

subject to S and N \ S is an s− t cut
(5)

The MIN-CUT problem above can be solved in polynomial

time using algorithms algorithms such as [16] or [17] via

the max-flow/min-cut theorem [12]. In addition, the set of all

optimal partitions of a MIN-CUT problem can be efficiently

characterized and enumerated. This is due to the results of

[18], [19].

B. Security Index Upper Bounding via MIN-CUT Relaxation

The minimum cost node partitioning problem in Section

II-B is, unfortunately, still a combinatorial optimization

problem. In response, this paper proposes the following

polynomial-time approximate algorithm, based on solving a

MIN-CUT problem described in (5).

Security index of an arc measurement – upper bounding

via MIN-CUT relaxation

Step 1

Define a directed graph G as follows. Whenever

(i, j) is an arc of the original power network graph,

both (i, j) and ( j, i) will be arcs of the new graph

G . Let the weights on all arcs in G be 2.

Step 2

Denote (s, t) as the targeted arc of which the secu-

rity index is considered. Let s and t be, respectively,

the source and sink nodes in G defined in step 1.

Step 3

Solve the s− t MIN-CUT problem on G . Let ∆δmc

be the optimal MIN-CUT partition, ‖H∆δmc‖0 is an

upper bound of the security index of the arc (s, t).
Step 4

Enumerate all optimal MIN-CUT partitions for the

best security index upper bound.

In step 1 of the above procedure, the opposite direction

arcs are added to account for the fact that the power flows on

a power network can be positive or negative, while the flows

in the standard MIN-CUT setting are always nonnegative.

The arc weights are chosen to be 2 to account for the fact

that whenever ∆δ (i) 6= ∆δ ( j), both arc (i, j) and ( j, i) will

require an arc attack (cf. (2)). In step 2, the designation of

s and t guarantees that the MIN-CUT partition in step 3

is feasible to the original minimum cost node partitioning

problem.

Modulus the specific details of step 1 and step 2, the

MIN-CUT problem in step 3 is a relaxed version of the

minimum cost node partitioning problem in Section II-B,

without taking into account the cost with the injection

measurements. Hence, a security index upper bound can

be obtained by solving the MIN-CUT problem. Note that

the number of injection attacks is monotonically (though not

necessarily linearly) non-decreasing with the number of arc

attacks. Hence, minimizing only the number of arc attacks (as

in MIN-CUT) tends to make the number of injection attacks

small. It will be demonstrated in Section IV that, with the

enumeration in Step 4, the proposed approximate algorithm

is highly accurate and efficient. However, at this moment

the rigorous justification for the accuracy is still unknown.

In fact, in the worst case even if with the enumeration in

Step 4, the proposed upper bound can still be strict. This is

illustrated in Fig. 2.

Finally, notice that the MIN-CUT upper bounding proce-

dure can be used to find upper bounds for injection security

index as well. This is done simply by following the injection

measurement security index formulation in Section II-B (i.e.,

the last two bullets), with the MIN-CUT bounding replacing

the actual arc security index computation.

C. Enforcing Encryption Protection

To protect the power network from malicious attacks, [5],

[7] considered the placement of encryption devices at nodes.

It is assumed that once encrypted, none of the arcs incident to

the protected nodes can be attacked. Denote P as the set of

arcs incident to the protected nodes (i.e., the corresponding

attack vector components should be zero), then the protected

version of the security index problem in (4) can be written

4056



s t

1 2

…… ………

Fig. 2. A counterexample showing that the optimal MIN-CUT partition
is not the optimal solution to the minimum cost node partitioning problem
in Section II-B. s and t are the source and sink (i.e., the two nodes of the
attacked arc). All arcs in the graph have weight 2. Because there is no arc
connecting 1 and 2, the only MIN-CUT partition separating s and t cuts
through all the arcs in the middle connecting the unlabeled nodes. However,
when the number of unlabeled nodes in the middle columns is sufficiently
large (i.e., larger than 3), the minimum cost partition either cuts through the
arcs incident to s or those incident to t.

as
minimize

∆δ
‖H∆δ‖0

subject to H(k, :)∆δ = 1

H( j, :)∆δ = 0, ∀ j ∈ P

(6)

It can be verified that (6) is also a node partitioning problem,

as summarized by the following statement.

Proposition 2: Let H in (6) have the structure in (2), and

assume that D is positive definite. Then there is at least one

optimal solution of (6) of the form β ∆δb where ∆δb is an

n-vector whose entries are either 0 or 1, and β is a scalar

such that β H(k, :)∆δb = 1.

Proof: See [15].

The minimum cost node partitioning problem in Section II-

B can be modified to allow the protection constraint. The

protected arcs should cost “infinity” to cut In practice, any

number larger than the number of rows of H in (2) suffices.

With this modification, the targeted arc can be attacked if and

only if the corresponding security index is less than infinity.

Similar conclusion can be made with the injection attack

case, stating that the injection measurement can be attacked if

and only if its security index is less than infinity. Finally, note

that the proposed MIN-CUT based upper bounding scheme

in Section III-B also detects infeasible instances. This is

summarized in the following statement.

Proposition 3: For the security index problem with pro-

tection in (6), the proposed MIN-CUT based upper bounding

scheme in Section III-B (with protected arcs weight being

infinity) finds an infinity upper bound if and only if the

corresponding measurement cannot be attacked.

Proof: See [15].

Reference [7] also considers other types of protection

schemes, namely protecting arc and/or injection measure-

ments. While the proposed framework can handle the sce-

nario with protected arcs (as explained before), the situa-

tion with protected injection can create a difficulty for the

proposed computation scheme. In particular, consider Fig. 1

in which the injection measurement to node 2 is protected

(i.e., no (perturbed) external injection). Modulus a constant

offset of the node values, the only feasible solution in this

example requires that all three node values are different. This

contradicts Proposition 2.

Finally, it is noted that the “protection constraint” in

(6) might arise from a situation unrelated to encryption

protection. There exist some “pseudo-measurements” in the

power network that are known to have some fixed values,

irrespective of the operation condition. Hence, the corre-

sponding components of the attack vector must be zero. This

is the same requirement as the protection constraint in (6).

D. Exact MIN-CUT Formulation in the Injection-free Case

In a restricted case where the H matrix in (2) does not

contain any injection measurements, the MIN-CUT upper

bounding scheme in Section III-B becomes exact. The fol-

lowing statement provides the rationale.

Proposition 4: Denote Harc ,

[

DAT

−DAT

]

as the H matrix

in the injection-free case. Consider the following restricted

security index computation problem

minimize
∆δ

‖Harc∆δ‖0

subject to Harc(k, :)∆δ = 1
(7)

There is at least one optimal solution to (7) that is of the

form β ∆δb, where the entries of ∆δb is either 0 or 1, and

β is chosen such that β Harc(k, :)∆δb = 1. Consequently,

optimization problem (7) is also a node partitioning problem.

Because of the lack of injection cost in the objective function

in (7), the security index upper bounding procedure in

Section III-B becomes exact.

Proof: See [15].

Contrary to Proposition 1, Proposition 4 does not require that

reactance matrix D to be positive definite. Proposition 4 also

has a “protected version” in which some arcs are protected.

This version is not explicitly stated in here.

E. Security Index with Partial Measurements

While not being the main focus of this paper, the security

index problem with a H matrix containing only part of the

measurements can also be approximately addressed by the

proposed MIN-CUT based scheme in Section III-B. In step

1 of proposed scheme, the weights of the unmeasured arcs

can be set to 0. Hence, the MIN-CUT solving in step 3

would not take into consideration whether the unmeasured

arcs are attacked or not. However, the above is only an

approximate scheme, since the cost associated with the

injection is ignored.

IV. NUMERICAL EXPERIMENT

In this section various methods to (optimally or sub-

optimally) compute the security indices will be evaluated.

To simplify the exposition, the explanation is given in the

unprotected case only. However, experiment results in the

protected case will also be covered. All computations are

performed on a laptop with an Intel Core i5 2.53GHz CPU

and 4GB of memory. The power network benchmarks are
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all obtained from [10]. The methods which are compared in

detail include

MILP

Exactly solving a MILP formulation of (4) us-

ing well-established solvers such as CPLEX and

Gurobi. See [15] for the details of this formulation.

The security indices obtained by MILP are used as

the reference for accuracy comparison.

Matching Pursuit

Suboptimally solving (4) using matching pursuit.

The algorithm greed mp.m, implementing the

work from [20], is from Dr. Thomas Blumensath’s

website.

LASSO

Suboptimally solving (4) using LASSO. This

means that the cardinality objective function in (4)

is replaced with the vector 1-norm. The problem

can be formulated as a convex linear program (see,

for example, [12] or [21] for detail). The linear

program solver is using CPLEX.

MIN-CUT

Security index upper bounding using the proposed

MIN-CUT based scheme in Section III-B.

In order to study the effect of the enumeration in step

4 in the proposed upper bounding scheme, the proposed

scheme is carried out with three variants, each requiring more

computation time than the previous. These three variants

are denoted MIN-CUT-1, MIN-CUT-2, and MIN-CUT-all

described as follows. In MIN-CUT-1, step 4 is ignored.

In MIN-CUT-2, step 4 is partially executed. Instead of

enumerating all optimal partitions of the MIN-CUT problem,

only two partitions with the minimum and maximum source

sets are considered. See [15] for the details of MIN-CUT-

2. Finally, MIN-CUT-all is the proposed scheme, with step

4 fully executed. All MIN-CUT problems in this paper are

solved using the MAX-FLOW solver from MatlabBGL [22],

which uses the routines from Boost Graph Library [23].

The first test case is the IEEE 14-bus example, which

includes 14 nodes and 20 arcs. The security indices of all

except the first 20 redundant ones (cf. (2)) are either exactly

or approximately computed using the methods described

above. Denote αk as the security index of measurement

k (computed using MILP), and α̂k as the inexact index

computed by matching pursuit, LASSO, or the proposed

MIN-CUT based schemes. Define the relative error for a

security index as
α̂k−αk

αk
. Then define the average relative

error as the average of the relative errors over all security

indices, except the last redundant ones. Table I shows the

average relative error and the computation time. Table I

suggests that the quality of the security index approximation

by matching pursuit and LASSO is relatively poor, while

the proposed MIN-CUT schemes are very accurate and time-

efficient. Since the security index αk is the minimum number

of attacks that need to be carried out in order to compromise

measurement k. The erroneously large indices estimated by

matching pursuit and LASSO can lead to a false sense of

TABLE I

AVERAGE RELATIVE ERROR AND COMPUTATION TIME IN THE IEEE 14

BUS EXAMPLE

Method Ave. rel. error (%) Time (sec)

MILP 0 1.147

Matching pursuit 77.52 0.8946

LASSO 35.00 0.5842

MIN-CUT-1 0 0.007879

MIN-CUT-2 0 0.01213

MIN-CUT-all 0 0.02017

security.

The next test case is the IEEE 118-bus example. In this

example, 10 different copies of the original IEEE 118-bus

network are created by adding protection (see Section III-C)

to different sets of nodes. The protection is uniformly placed

(in terms of node labels) in the copies. The percentages of

protected nodes increase in the copies from 0% to 50%.

Fig. 3 shows the average relative errors (as defined in the

previous example) due to matching pursuit and LASSO.

Matching pursuit spends a total of 54 minutes to compute the

indices (probably having a convergence issue; MILP takes

about 50 minutes), and LASSO spends about 95 seconds.
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Fig. 3. Average relative errors (%) due to matching pursuit and LASSO.
The relatively small errors for the cases with a lot of protection (e.g. 50%)
is due to the fact that there are many measurements that cannot be attacked,
and those attackable admits very simple attack vectors.

The average relative errors (%) due to MIN-CUT-1 are

1.104, 0.8978, 0.9370, 0.7997, 0.7897, 0.6174, 0.4308,

0.1600, 0.1023, 0 for the 10 cases, respectively. On the other

hand, MIN-CUT-2 and MIN-CUT-all do not incur any error.

Regarding computation time, the three MIN-CUT schemes

take 0.8711 second, 1.287 seconds, and 2.007 seconds re-

spectively (MILP takes about 50 minutes). This example

again demonstrates the efficiency and accuracy advantages

of the proposed scheme.

The last test case is a 2383-bus example (case2383wp

from [10]). Out of the 8175 measurements, the last 5279

security indices are meaningful. In this example, none of

the measurements are protected. The proposed MIN-CUT

schemes, as well as the simple upper bounding scheme from

[6] are used to compute all 5279 security indices. Only

14 selected measurements are chosen to compute the true

security indices using MILP (due to time limitation). Figure

4 shows the comparison for these 14 selected indices. For

all security indices, MIN-CUT-2 and MIN-CUT-all provide
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Fig. 4. Security indices (and bounds) for 14 selected measurements in
the IEEE 2383-bus example. The MIN-CUT-1 exhibits some error, while
the other two MIN-CUT schemes do not incur any. The method from [6]
(UB-col) also leads to some error.

the same bounds (and exact at least for the 14 selected cases

in Fig. 4). The security index bounds found by the simplest

MIN-CUT-1 and the method from [6] are no smaller than

those of the other two MIN-CUT schemes, and sometimes

strictly larger. The “average relative error” (with respect to

MIN-CUT-all scheme) of the MIN-CUT-1 scheme is 1.433%,

while the analogous quantity for [6] is 6.889%.

In terms of computation time, MILP takes a total of 1307

seconds to solve the security indices for the 14 measurements

(minimum time case is 7.978 seconds and maximum case is

665.8 seconds). On average, MILP will require 5.7 days to

compute all 5279 meaningful indices. On the other hand,

the MIN-CUT bounding schemes take 12.92 seconds, 19.36

seconds and 31.41 seconds respectively. The scheme from [6]

is very efficient, requiring only 0.8543 second. Finally, it is

worth noting that CPLEX can stop the algorithm for finding

security index as soon as a feasible solution is found. Using

this feature of CPLEX, another 14 approximate security

indices can be obtained for the selected measurements.

The computation takes 129.9 seconds (for 14 indices only).

The average relative error for these 14 approximate indices

is 31.43%. This example further demonstrates the time-

efficiency of the proposed method versus MILP.

V. CONCLUSION

This paper analyzes the security of electric power network

through the security index introduced in [6]. By exploiting its

structure, the security index problem in (4) can be reduced to

a minimum cost node partitioning problem. While this prob-

lem is still combinatorial, its cost structure inspires a highly

efficient and accurate approximate algorithm via MIN-CUT

relaxation. The proposed approximate algorithm can be

modified in several ways, depending on the application. For

instance, the situation with encryption protection of buses

can be handled (cf. (6)), and the proposed algorithm becomes

exact in the special case where the H matrix does not contain

any injection measurement (cf. (7)). However, the presented

results are by no means complete. For instance, the rigorous

investigation of the accuracy of the approximate algorithm

is desirable. In addition, the capability to handle injection

measurement protection without protecting all incident arcs

is highly relevant. The removal of the positive reactance

assumption is also worth investigation.

ACKNOWLEDGEMENT

The authors would like to thank Andŕe Teixeira for discus-
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