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Abstract— In this paper, we characterize and analyze the
set of strategic stealthy false-data injection attacks on discrete-
time linear systems. In particular, the threat scenarios tackled
in the paper consider adversaries that aim at deteriorating
the system’s performance by maximizing the corresponding
quadratic cost function, while remaining stealthy with respect
to anomaly detectors. As opposed to other work in the lit-
erature, the effect of the adversary’s actions on the anomaly
detector’s output is not constrained to be zero at all times.
Moreover, scenarios where the adversary has uncertain model
knowledge are also addressed. The set of strategic attack
policies is formulated as a non-convex constrained optimization
problem, leading to a sensitivity metric denoted as the output-
to-output `2-gain. Using the framework of dissipative systems,
the output-to-output gain is computed through an equivalent
convex optimization problem. Additionally, we derive necessary
and sufficient conditions for the output-to-output gain to be
unbounded, with and without model uncertainties, which are
tightly related to the invariant zeros of the system.

I. INTRODUCTION

Resilience may be characterized as the ability to maintain
acceptable levels of operation in the presence of abnormal
conditions. It is an essential property in industrial control
systems that are the backbone of several critical infrastruc-
tures, such as electric power systems, transport networks, and
water and gas distributions networks.

The trend towards using pervasive and open-standard
information technology (IT) systems, such as the Internet and
SCADA communication protocols, results in control systems
becoming increasingly vulnerable to malicious cyberthreats.
In classical IT systems, potential vulnerabilities to malicious
adversaries are tackled by ensuring the system’s cybersecu-
rity, which may be defined as the state of being protected
against the unauthorized access, change, or destruction of
electronic data and services. In fact, cybersecurity is a core
requirement in information and communication technologies
that are ubiquitous in modern societies. However, when
applied to industrial control systems, the latter definition
of cybersecurity does not capture essential features of con-
trol applications: system functionality and safe operation.
More specifically, even insecure industrial systems must
comply with safety requirements, while strict functionality
or performance requirements on the system may render
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many cybersecurity mechanisms unusable. To address these
operational requirements, resiliency must also be sought.

Not surprisingly, the complementarity of cybersecurity and
resilience in industrial control systems is clearly visible in
the basic assumptions and focus of these approaches. For
instance, traditional cybersecurity does not consider the in-
terdependencies between the physical components and the IT
infrastructures. On the other hand, classical control-theoretic
approaches to resilience (e.g., fault-tolerance) typically deal
with independent disturbances and faults; thus they are not
tailored to handle possibly colluding malicious cyberthreats.
Theory and tools to analyze and build cyber-secure and
resilient control systems are, therefore, lacking and in need
to be developed.

The topic of cyber-secure and resilient control systems has
been receiving increasing attention recently. An overview
of existing cyberthreats and vulnerabilities in networked
control systems is presented in [1]–[3]. Particularly, realistic
and rational adversary models are highlighted as one of
the key items in security for control systems, thus making
adversaries endowed with intelligence and intent, as opposed
to faults. Therefore, these adversaries may exploit existing
vulnerabilities and limitations in the traditional anomaly
detection mechanisms and remain undetected. In fact, [4]
uses such fundamental limitations to characterize a set of
stealthy attack policies for networked systems modeled by
differential-algebraic equations. Related stealthy attack poli-
cies were also considered in [3], [5]. A common thread
within these approaches is that stealthy attacks are con-
strained to be entirely decoupled from the anomaly detector’s
output. Such requirement may be overly stringent, since
attacks yielding a sufficiently small output can also remain
undetected. Moreover, relevant properties such as the impact
or the strategic nature of such stealthy attack policies are not
addressed in the literature.

As main contributions of this paper, we consider threat
scenarios where malicious adversaries aim at maximizing
the system’s operational cost through false-data injection
attacks, while remaining stealthy with respect to anomaly
detectors. Specifically, the set of strategic stealthy false-data
injection attacks are formulated as a non-convex optimization
problem, which leads to a sensitivity metric denoted as
the system’s output-to-output `2-gain. Using the framework
of dissipative systems, we propose computational methods
to compute the output-to-output `2-gain. Additionally, we
derive necessary and sufficient conditions for the output-to-
output `2-gain to be unbounded, which are formulated as
conditions on the system’s invariant zeros. Furthermore, the
existence of strategic attacks yielding unbounded gains under
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model uncertainty is also analyzed.
The outline of the paper is as follows. In Section II,

we describe the problem formulation and state the main
questions that are tackled in this work. The dissipative
systems theory for discrete-time systems is summarized in
Section III, which will be used to derive one of the main
results in Section IV. Conditions for the finiteness of the
output-to-output gain with accurate models are derived in
Section IV, which are illustrated through a simple numerical
example. Section V tackles the robustness of the strategic
attacks with respect to model uncertainty, and the paper
concludes with final remarks in Section VI.

A. Notation

Denote R, C, Z. and Z+ as the set of real, complex,
integer, and positive integer numbers, respectively. The set
of matrices with m rows, n columns, and entries in R (C) is
denoted as Rm×n (Cm×n). A positive (semi-)definite square
matrix A ∈ Cn×n is denoted as A � 0 (A � 0). Given a pair
of complex vectors y, x ∈ Cn, denote their inner-product in
Cn as 〈y, x〉 = yHx, where yH is the Hermitian conjugate
of y. The 2-norm of x ∈ Cn is defined as ‖x‖ =

√
〈x, x〉.

Let x : Z+ → Rn be a real-valued discrete-time signal and
denote x[k] ∈ Rn as its value at time k ∈ Z+. Considering
the time-horizon [0, N ] = {k ∈ Z+| 0 ≤ k ≤ N} and
the real-valued signals x and y, denote the inner-product

of x and y over [0, N ] as 〈y,x〉[0,N ] =

N−1∑
k=0

〈y[k], x[k]〉.

In particular, the `2-norm of x over [0, N ] is defined as
‖x‖2[0,N ] = 〈x,x〉[0,N ]. Denote the space of square integrable
signals as `2 = {x : Z+ → Rn| ‖x‖2[0,∞] < ∞} and define
the extended signal space `2e = {x : Z+ → Rn| ‖x‖2[0,N ] <

∞, ∀N ∈ Z+}.

II. PROBLEM FORMULATION

In this section, we present the control system structure and
describe the main problem at hand. Consider the modeling
framework described in [3], where the control system is
composed by a physical plant, a feedback controller, and an
anomaly detector. The physical plant, feedback controller,
and anomaly detector are modeled in a discrete-time state-
space form as, respectively,

P :


xp[k + 1] = Apxp[k] +Bpỹc[k]

ym[k] = Cmxp[k]

yp[k] = CJxp[k] +DJ ỹc[k]

(1)

F :

{
z[k + 1] = Acz[k] +Bcỹm[k]

yc[k] = Ccz[k] +Dcỹm[k]
(2)

D :

{
s[k + 1] = Aes[k] +Beyc[k] +Keỹm[k]

yr[k] = Ces[k] +Deyc[k] + Eeỹm[k]
(3)

where xp[k] ∈ Rnp , z[k] ∈ Rnz , and s[k] ∈ Rns are the state
variables, ỹc[k] ∈ Rnc is the vector of control actions applied

to the process, ym[k] ∈ Rnm is the measurement vector
obtained from the sensors, yp[k] ∈ Rnp is a virtual output
vector used to compute the closed-loop performance, and
yr[k] ∈ Rnr the residue vector. The sensor measurements
and actuator data are transmitted through a communication
network, which at the plant side correspond to ym[k] and
ỹc[k], respectively. At the controller side, we denote the
sensor and actuator data by ỹm[k] ∈ Rny and yc[k] ∈ Rnc .

The controller is designed to optimize the closed-loop
system’s performance. Given the system trajectories within
the time-interval [0, N ], the system’s performance is evalu-
ated according to the cost function JN (xp, ỹc) = ‖CJxp +
DJ ỹc‖2[0,N ] = ‖yp‖2[0,N ], where yp is the virtual perfor-
mance signal defined by yp[k] = CJxp[k] +DJ ỹc[k].

The anomaly detector monitors the system to detect pos-
sible anomalies, i.e., deviations from the nominal behavior.
The anomaly detector is collocated with the controller and
it evaluates the behavior of the plant based only on the
closed-loop models, ỹm[k] and yc[k]. In particular, given the
time-interval [0, N ] and the residue signal yr, an alarm is
triggered to indicate the presence of anomalies if the residue
meets ‖yr‖2[0, N ] ≥ ε2, where ε ≥ 0 is chosen according to
a suitable trade-off between detection and false-alarm rates.
Without loss of generality, let ε = 1 in the remainder of this
paper.

A. False-data injection attack scenario

Given the structure of the closed-loop system described
above, we now present the attack scenario. In particular, we
discuss the model knowledge and disruption and disclosure
resources available to the adversary, together with the adver-
sary’s goals and constraints shaping the attack policy.

Disruption and disclosure resources: In the present
scenario, the adversary can inject false-data in the actuator
and measurement channels, which is captured by having[

ỹc[k]
ỹm[k]

]
=

[
yc[k]
ym[k]

]
+

[
Ba
Da

]
u[k],

where u[k] ∈ Rnu is the attack vector. However, the
adversary cannot eavesdrop on the sensor and actuator data.
Hence, the corresponding attack policy does not use any
online data of the system, corresponding to an open-loop
policy, and is further assumed to be computed a priori.

Model knowledge: Stacking the states of the
plant, controller, and anomaly detector as x[k] =
[xp[k]> z[k]> s[k]>]>, the closed-loop dynamics under
attack can be written as

Σ ,


x[k + 1] = Ax[k] +Bu[k][
yp[k]
yr[k]

]
︸ ︷︷ ︸
y[k]

=

[
Cp
Cr

]
︸ ︷︷ ︸
C

x[k] +

[
Dp

Dr

]
︸ ︷︷ ︸
D

u[k], (4)

where x[k] ∈ Rnx , y[k] ∈ Rny , and the individual matrices
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are given by

A =

 Ap +BpDcCm BpCc 0
BcCm Ac 0

(BeDc +Ke)Cm BeCc Ae

 ,
B =

BpBa +BpDcDa

BcDa

(BeDc +Ke)Da

 ,
Cp =

[
CJ +DJDcCm DJCc 0

]
,

Dp = DJ(DcDa +Ba),

Cr =
[
(DeDc + Ee)Cm DeCc Ce

]
,

Dr = (DeDc + Ee)Da.

(5)

In the present scenario, the adversary also has access to the
detailed model of the closed-loop system, Σ = (A,B,C,D),
which is used to compute the attack policy. Later in the
paper, we also consider a more moderate scenario, where
the adversary’s knowledge contains some uncertainties.

Attack goals and constraints: The adversary aims at
disrupting the system’s behavior while remaining stealthy
with respect to the anomaly detector. The level of disrup-
tion is evaluated through the increase in the cost function
JN (xp, ỹc) = ‖yp‖2[0,N ], while the adversary remains
stealthy if no alarm is triggered, i.e., ‖yr‖2[0,N ] ≤ 1. In par-
ticular, we let N go to infinity and consider adversaries that
desire to maximize the cost J∞(xp, ỹc) = ‖yp‖2[0,∞] while
ensuring that the residue output is bounded as ‖yr‖2[0,∞] ≤ 1.
Such an adversary model leads to the attack policy charac-
terized next.

B. Strategic stealthy attack policy

Given the adversary model previously described, the cor-
responding attack policy can be formulated as the following
non-convex optimization problem

‖Σ‖2`2e, yp←yr , sup
u∈`2e

‖yp‖2[0,∞]

subject to (4), ∀k ≥ 0, x[0] = 0,
‖yr‖2[0,∞] ≤ 1,

(6)
where ‖Σ‖2`2, yp←yr captures the maximum level of disrup-
tion induced by a stealthy adversary. The resemblance of
the optimization problem (6) with the classical input-to-
output `2-gain of Σ is evident: simply replace yr with u
in (6) to obtain the input-to-output `2-gain. Such similarities
compel us to denote ‖Σ‖2`2, yp←yr as the output-to-output
`2-gain of Σ. In fact, the latter term alludes to an interesting
re-interpretation of the output-to-output gain of Σ as the
classical input-to-output gain of another system related to
Σ. This interpretation carries valuable insights on important
properties of ‖Σ‖2`2e, yp←yr that are briefly discussed next,
such as conditions under which the gain can be unbounded.

Consider the infinite-dimensional vector yr ,
[y>r [0] y>r [1] . . . ]> and define the infinite-dimensional
Toeplitz operator Tr such that yr = Tru for x[0] = 0.
With a slight abuse of notation, define T †r as a left-
inverse mapping of Tr, such that u = T †r yr. Using this

transformation, the output-to-output `2-gain defined in (6)
can be rewritten as the eigenvalue problem

‖Σ‖2`2e, yp←yr = sup
yr∈`2e

y>r T †>r T >p TpT †r yr

subject to y>r yr ≤ 1,
(7)

which corresponds to the classical `2-gain of the system
TpT †r with input yr and output yp. Although this inter-
pretation may seem odd at first, it leads to an interesting
motivation from the framework of behavioral systems [6]. In
behavioral system, instead of inputs and outputs, u[k] and
y[k] are seen as signals generated from the set of allowed
trajectories of a system. In this sense, the output-to-output
`2-gain simply represents the maximum amplification from
one signal, yr[k], to another, yp[k]. Moreover, we see that the
system TpT †r must be well-defined and asymptotically stable
for ‖Σ‖2`2e, yp←yr to be finite. In fact, we shall conclude
that (A,B,Cr, Dr) having no unstable zeros outside the
unit disk, thus admitting a left-inverse, is sufficient for the
output-to-output gain to be finite. With additional derivations,
necessary and sufficient conditions for the finiteness of
‖Σ‖2`2e, yp←yr are derived. Specifically, in the subsequent
sections we tackle the following questions:

1) How can ‖Σ‖2`2e, yp←yr be computed?
2) What are the necessary and sufficient conditions for
‖Σ‖2`2e, yp←yr to be bounded?

3) How sensitive are strategic stealthy attacks to model
uncertainties?

In the remainder of this paper, we analyze relevant proper-
ties of the output-to-output `2-gain and address the previous
questions. In particular, the first and second questions are
tackled in Section IV, while the third question is addressed in
Section V. First, we revisit the basic concepts of dissipative
systems with quadratic supply-rates [7], [8], which are used
to derive the main results in the paper.

III. DISSIPATIVE SYSTEMS THEORY

Consider the discrete-time system Σ, as detailed in (4).
Define a real-valued function of the inputs and states of the
system, called supply-rate, as s : Rnu ×Rnx → R, together
with a non-negative function of the states V : Rnx → R+,
called storage function. In particular, we consider quadratic
supply rates characterized by

s(u, x) =

[
x
u

]> [
Qxx Qxu
Qux Quu

]
︸ ︷︷ ︸

Q

[
x
u

]
, (8)

where Q = Q> ∈ Rnx+nu×nx+nu , without any definiteness
constraints being imposed on Q. Since Q is symmetric, and
thus diagonalizable, note that Q can be decomposed as

Q = [Cr Dr]
>[Cr Dr]− [Cp Dp]

>[Cp Dp],

for appropriate matrices Cr, Dr, Cp, and Dp, and the supply
rate can also be rewritten as

s(u, x) = ‖yr‖2 − ‖yp‖2. (9)
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In the literature, the discrete-time system (4) is said to be
dissipative with respect to the supply rate s(u, x) if there
exists a real-valued function V (x) such that the inequality

V (x[k1])− V (x[k0]) ≤
k1−1∑
k=k0

s(u[k], x[k])

= ‖yr‖2[k0,k1] − ‖yp‖2[k0,k1]

(10)

holds for all k0 ≤ k1 and all trajectories satisfying (4).
Remark 1: By writing the dissipation inequality in terms

of a difference in between output energies, most of the
definitions and results of dissipative systems for continuous-
time systems can be straightforwardly mapped to discrete-
time systems, and vice-versa, as it has been highlighted by
different authors [9], [10]. Therefore, for brevity, the proofs
in the present section are omitted.

For dissipative systems, there exist two universal storage
functions of special interest, namely the available stor-
age function V a[k0, k1](x) and the required supply function
V r[k0, k1](x). The available storage, corresponding to the
maximum supply extracted from the system (4) initialized
at a fixed initial condition x0, is defined as

V a[k0, k1](x) , sup
u∈`2e

−
k1−1∑
k=k0

s(u[k], y[k])

subject to: (4), ∀k0 ≤ k ≤ k1,
x[k0] = x, x[k1] = 0.

(11)

Subtracting k0 to the time variables, defining N = k1 − k0,
and using (9) yields

V a[0, N ](x) , sup
u∈`2e

−(‖yr‖2[0,N ] − ‖yp‖2[0,N ])

subject to: (4), ∀0 ≤ k ≤ N,
x[0] = x, x[N ] = 0.

(12)
The required supply function is defined as

V r[k0, k1](x) , inf
u∈`2e

k1−1∑
k=k0

s(u[k], y[k])

subject to: (4), ∀k0 ≤ k ≤ k1,
x[k0] = 0, x[k1] = x,

(13)

which corresponds to the minimum supply needed to drive
the system from the origin to a given final state. For later
convenience, we rewrite the required supply function when
time goes from 0 to N . Changing the time variables by
subtracting k0, defining N = k1 − k0, and using (9) yields

V r[0, N ](x) , inf
u∈`2e

‖yr‖2[0,N ] − ‖yp‖2[0,N ]

subject to: (4), ∀0 ≤ k ≤ N,
x[0] = 0, x[N ] = x.

(14)

A third storage function is of particular interest in this
work, namely the free end-point available storage func-
tion [7], which is defined as

V af,[0, N ](x) , sup
u∈`2e

−(‖yr‖2[0,N ] − ‖yp‖2[0,N ])

subject to: (4), ∀0 ≤ k ≤ N,
x[0] = x,

(15)

where the end-point x[N ] is free. Given these three storage
functions, the following relations are known.

Lemma 1: The following relation holds for any storage
function V[0, N ](x):

V a[0, N ](x) ≤ V[0, N ](x) ≤ V r[0, N ](x).

In addition, for any non-negative storage function V[0, N ](x),
the following also holds:

0 ≤ V af,[0, N ](x) ≤ V[0, N ](x) ≤ V r[0, N ](x).

Proof: The proofs in the present paper have been
omitted due to space limitations and may be found in [11].

Without loss of generality, for quadratic supply rates (8)
and linear time-invariant systems, the storage functions can
be taken as quadratic functions of the state of the form
V (x[k]) = x[k]>Px[k], with P = P>.

The next result, essential to the derivations presented in
the next section, immediately follows from Lemma 1 and the
definition of dissipative system.

Proposition 1: Consider the LTI system Σ described
in (4), which is assumed to be controllable and dissipative
with respect to the quadratic supply rate s(u, x). The follow-
ing statements are equivalent:

1) the free end-point available storage function V af,[0, N ]

exists, i.e., +∞ > V af,[0, N ] ≥ 0;
2) there exists a positive semi-definite matrix P � 0 such

that the following linear matrix inequality (LMI) holds:[
A>PA− P A>PB

B>PA B>PB

]
−Q � 0. (16)

IV. STRATEGIC STEALTHY ATTACKS: A DISSIPATIVE
SYSTEMS APPROACH

With the framework of dissipative discrete-time systems
at hand, let us revisit the strategic attack policy (6). In
particular, the following result characterizes the optimal
value of (6) in terms of the existence of a positive semi-
definite storage function.

Theorem 1: Consider the LTI system Σ described in (4)
and the strategic attack policy (6). The optimal value of the
strategic attack policy is given by ‖Σ‖2`2e,yp←yr = γ?, where
γ? is the solution to the convex optimization problem

min
P,γ

γ

s.t. P � 0, γ > 0,

R(P,Σ)− γ[CrDr]
>[CrDr] + [CpDp]

>[CpDp] � 0,
(17)

with

R(P,Σ) =

[
A>PA− P A>PB

B>PA B>PB

]
. (18)

2585



A. Unbounded output-to-output gain

We now derive necessary and sufficient conditions for
‖Σ‖2`2e, yp←yr to have an unbounded value. To do so, we
first characterize a set of necessary and sufficient conditions
on the output signals yp and yr, which are later restated as
conditions on Σ.

Consider the inequality constraint of (6), i.e., ‖yr‖2[0,∞] ≤
1, and note that this inequality implies that yr belongs to
the `2 signal space, for which a necessary condition is that
yr[∞] = 0. On the other hand, for ‖Σ‖2`2e, yp←yr to be
unbounded, a necessary condition is for yp not to belong to
`2, that is, ‖yp‖`2 = +∞. Together, these two conditions are
necessary and sufficient for ‖Σ‖2`2e, yp←yr to be unbounded,
as formalized in the following statement.

Lemma 2: Consider the system Σ. The value of
‖Σ‖2`2e, yp←yr is unbounded if and only if, for any scalar
ε > 0, there exists an input signal u ∈ `2e and integer N ≥ 0
such that the following inequalities hold:

1) ‖yr‖[N,∞] ≤ ε;
2) ‖yp‖[N,∞] ≥ ε−1.

As a preliminary step, the following lemma characterizes
a set of necessary conditions on x and yr, which are useful
to establish results in terms of Σ.

Lemma 3: Consider the system Σ. The value of
‖Σ‖2`2e, yp←yr can only be unbounded if, for any scalar
ε > 0, there exists an input signal u ∈ `2e and integer N ≥ 0
such that the following inequalities hold:

1) ‖yr‖[N,∞] ≤ ε;
2) ‖x‖[N,∞] ≥ ε−1.

In fact, the existence of an input u ∈ `2e satisfying the
conditions in Lemma 3 with ε = 0 and a sufficiently large
N can be precisely characterized in terms of (A,B,Cr, Dr).
The following definition is required for such characterization.

Definition 1: Consider a discrete-time linear time-
invariant system with the state-space realization (A,B,C,D)
and the equation[

λI −A −B
C D

] [
xλ
gλ

]
=

[
0
0

]
, (19)

with λz ∈ C and xλ 6= 0. For a given solution to the previous
equation (λ, gλ, xλ), denote λ as the invariant zero, gλ as
the input-zero direction, and xλ as the state-zero direction.
Furthermore, the tuple (λ, gλ, xλ) is denoted as a zero-tuple
of the system (A,B,C,D). Additionally, we denote a tuple
(λ, gλ, xλ) satisfying (20) with |λ| ≥ 1 as an unstable zero-
tuple, or simply unstable zero.

Lemma 4: Consider the system Σ with x[0] = 0. There
exists an input signal u ∈ `2e satisfying the conditions of
Lemma 3 with ε ≥ 0 if and only if there exist a non-zero
reachable state x[N ] = xλ, a complex vector gλ ∈ Cnu , and
a complex number λ ∈ C with |λ| ≥ 1 satisfying[

λI −A −B
Cr Dr

] [
xλ
gλ

]
=

[
0
0

]
. (20)

Note that the input characterized in Lemma 4, if it exists,
also satisfies Lemma 3 for all ε > 0. Furthermore, it
prescribes a class of attack signals that behave as two-
stage attacks: first drive the system from the x[0] = 0 to
x[N ] = xλ, then use u[k] = λk−Ngλ for k ≥ N . Using
lemmas 2, 3, and 4, we now derive the following necessary
and sufficient conditions for ‖Σ‖2`2e,yp←yr to be finite.

Theorem 2: Consider the LTI system Σ described in (4)
and the strategic attack policy (6). The optimal value of the
strategic attack policy is finite if and only if either of the
following conditions hold:

1) the system (A,B,Cr, Dr) has no unstable zeros asso-
ciated with a reachable xλ;

2) the unstable zeros of the system (A,B,Cr, Dr) as-
sociated with a reachable xλ are also zeros of
(A,B,Cp, Dp).

Theorem 2 indicates that zero-dynamics attacks are indeed
strategic in the sense of the attack policy (6), since they lead
to unbounded gains. A standing open-question is whether
such conclusion extends to the case where the adversary’s
knowledge is not accurate, which is addressed in the Sec-
tion V. Before dealing with model uncertainty, we illustrate
the earlier results through a simple numerical example.

B. Numerical Example

Consider the system Σ = (A,B,C,D) with

A =

[
2 0
−1 1

]
, B =

[
1
0

]
, Cr =

[
1 1

]
, Dr = 1,

Cp =
[
2 + δ 2

]
, Dp = 0,

(21)

for some δ ∈ R. We are interested in characterizing the
output-to-output `2-gain of the system for different values
of δ. First, note that the system (A,B,Cr, Dr) has two
zero-tuples, namely (λs, xλs , gλs) = (0, [1 1],−2) and
(λ, xλ, gλ) = (2, [1 − 1]>, 0). The second tuple is the only
unstable zero, so it is the only candidate to yield an un-
bounded gain. Since the system is controllable, all conditions
of Lemma 4 are met. In fact, the candidate input signal u is
given by u[0] = 1, u[1] = −1, and u[k] = λk−2g = 0 for
all k ≥ 2, for which the system reaches x[2] = xλ and then
follows the zero-dynamics for k ≥ 2. The existence of such
input signal implies that condition 1) of Theorem 2 does
not hold. Therefore, the finiteness of ‖Σ‖2`2e,yp←yr depends
only on the second condition of Theorem 2, which we next
analyze for different values of δ.

From condition 2) of Theorem 2, the gain ‖Σ‖2`2e,yp←yr
is finite if and only if (λ, xλ, gλ) is also a zero of Σp =
(A,B,Cp, Dp). From Definition 1 and having (λ, xλ, gλ)
as a zero of Σr, we observe that the latter condition is
equivalent to have [CpDp][x

>
λ g>λ ]> = 0, which only holds

for δ = 0. Thus, we conclude that ‖Σ‖2`2e,yp←yr is finite if
and only if δ = 0. In fact one can verify that, for δ = 0, the
optimization problem (17) has the optimal solution (P ?, γ?),
with P ? = 4[1 1]>[1 1] and γ? = 4. In the present
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example, one can easily verify that the candidate input signal
u actually yields such gain, thus being the optimal input even
when ‖Σ‖2`2e,yp←yr is finite.

V. STRATEGIC STEALTHY ATTACKS WITH UNCERTAINTY

The example in the previous section indicates that the
strategic attacks are robust to certain model uncertainties,
in the sense that they yield unbounded gains even in the
presence of uncertainties. In this section, we formally tackle
this matter and characterize the robustness of strategic attacks
w.r.t uncertainties. In particular, we relax the adversary’s
model knowledge and suppose that the adversary only has
access to a set of uncertain linear systems, ΩΣ, where a given
system Σ̃ = (Ã, B̃, C̃, D̃) ∈ ΩΣ is of the form

Σ̃ ,


x[k + 1] = Ãx[k] + B̃u[k][
yp[k]
yr[k]

]
︸ ︷︷ ︸
y[k]

=

[
C̃p
C̃r

]
︸ ︷︷ ︸
C̃

x[k] +

[
D̃p

D̃r

]
︸ ︷︷ ︸
D̃

u[k], (22)

where [
Ã B̃

C̃ D̃

]
=

[
A B
C D

]
+

[
∆A ∆B
∆C ∆D

]
, (23)

with (A,B,C,D) being the nominal system and
(∆A,∆B,∆C,∆D) ∈ Ω∆ denoting the model uncertainty.
Additionally, let Ω∆ define the uncertainty set of interest,
which is assumed to be closed and bounded and to include
the zero uncertainty (∆A,∆B,∆C,∆D) = (0, 0, 0, 0).

Given the uncertain set of linear systems ΩΣ, we define
the robust strategic attack policy as

‖ΩΣ‖2`2, yp←yr , inf
Σ̃∈ΩΣ

‖Σ̃‖2`2e,yp←yr (24)

Theorem 3: Consider the class of linear systems ΩΣ de-
scribed in (22) and the robust strategic attack policy (24).
The optimal value of the robust strategic attack policy is
unbounded if and only the system (A,B,Cr, Dr) has a non-
empty set of unstable zeros, denoted as Zr, and there exists
a tuple (λ, gλ, xλ) ∈ Zr satisfying the following conditions:

1) (λ, gλ, xλ) ∈ Zr is also a zero of all Σ̃r ∈ ΩΣr
;

2) xλ is reachable from the origin for all Σ̃ ∈ ΩΣ;
3) (λ, gλ, xλ) ∈ Zr is not a zero of any Σ̃p ∈ ΩΣp .

The latter result can be used to derive algebraic conditions
on the model uncertainties such that the robust strategic
attack policy yields finite values.

Lemma 5: The robust strategic attack policy yields an
finite value if and only if there exists a given uncertainty
(∆A,∆B,∆C,∆D) ∈ Ω∆ such that the equality[

Cp + ∆Cp Dp + ∆Dp

] [xλ
gλ

]
= 0 (25)

holds for all [x>λ g>λ ]> such that:
1) xλ is reachable from the origin;
2) the equality [

∆A ∆B
∆Cr ∆Dr

] [
xλ
gλ

]
= 0 (26)

holds for all (∆A,∆B,∆Cr,∆Dr) ∈ Ω∆r
;

3) (λ, gλ, xλ) ∈ Zr, for some λ ∈ C with |λ| ≥ 1.

Since algebraic necessary and sufficient conditions for
‖ΩΣ‖2`2, yp←yr to be finite are given in Lemma 5, one may
conclude that stealthy attacks yielding unbounded disruption
levels are, in fact, quite sensitive to unstructured model
uncertainty. As a particular example, define the model uncer-
tainty set as Ω∆(δ) = {(∆A,∆B,∆C,∆D)| ∆B = ∆C =
∆D = 0,∆A = δI}. It is straightforward to verify that
condition (26) in Lemma 5 does not hold for an arbitrarily
small δ > 0 and xλ 6= 0, from which we conclude that
‖ΩΣ‖2`2, yp←yr is finite.

VI. CONCLUSIONS

In this work, considered threat scenarios where malicious
adversaries inject false-data in order to maximize the sys-
tem’s operational cost, while remaining stealthy with respect
to anomaly detectors. Specifically, the set of strategic stealthy
false-data injection attacks were characterized as a non-
convex optimization problem that lead to a system sensitivity
metric denoted as the output-to-output gain. Computational
methods to obtain this gain were proposed using the theory
of dissipative systems. Necessary and sufficient conditions
for the output-to-output gain to be unbounded were derived,
which were formulated as properties of the system’s invariant
zeros. In addition, the effect of model uncertainty was also
analyzed. Interesting future directions include the design of
controllers and anomaly detectors yielding reduced output-
to-output gains.
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