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Abstract— In this paper, we consider a secure distributed fil-
tering problem for linear time-invariant systems with bounded
noises and unstable dynamics under compromised observa-
tions. A malicious attacker is able to compromise a subset
of the agents and manipulate the observations arbitrarily.
We first propose a recursive distributed filter consisting of
two parts at each time. The first part employs a saturation-
like scheme, which gives a small gain if the innovation is
too large. The second part is a consensus operation of state
estimates among neighboring agents. A sufficient condition is
then established for the boundedness of estimation error, which
is with respect to network topology, system structure, and the
maximal compromised agent subset. We further provide an
equivalent statement, which connects to 2s-sparse observability
in the centralized framework in certain scenarios, such that
the sufficient condition is feasible. Numerical simulations are
finally provided to illustrate the developed results.

I. INTRODUCTION

Cyber-physical systems (CPSs) are systems controlled and
monitored by computer-based algorithms. Through a CPS,
physical processes and cyber components can be effectively
integrated. During the recent years, numerous applications
of CPSs such as sensor network, vehicle network, process
control, smart grid, etc, have been well investigated in
academia and industry. With higher integration of large-
scale computer networks and complex physical processes,
the CPSs are confronting more security issues both in
software and physical layers. Thus, the research topics on
CPS security are attracting more and more attention.

In a CPS, sensor observations can be utilized to obtain
state estimate or to design output feedback signal to control
the physical process. Due to the vulnerabilities of sensors,
the malicious attacker may insert faulty data into observa-
tions of the compromised sensors. Then, the estimates or
controller based on the compromised observations will be
unreliable, and even bring tremendous damage to the whole
system. Thus, some detection and identification schemes are
considered to find out whether the sensors are under attack,
and if so how to identify the attack signals inserted to
the systems. A study on attack detection and identification
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for CPSs was given in [1], where the design methods and
analysis techniques for centralized and distributed monitors
were discussed as well. In [2], the joint distributed attack
detection and state estimation were investigated in a Bayesian
framework. To obtain attack-resilient state estimates, in the
centralized framework, some state estimators or observers
were proposed based on optimization techniques [3]–[8],
recursive implementation [9], and probabilistic approach
[10]. Compared with centralized methods, on one hand, the
distributed ones have advantages in quite a few aspects,
such as the structure robustness, energy saving and parallel
processing. On the other hand, in the distributed framework,
since each agent has limited information from local ob-
servations and neighboring communications, the distributed
state estimation methods are essentially different from the
centralized ones. In the distributed state estimation under
compromised sensors, observer-based methods were studied
for byzantine attacks, under which the compromised sensors
can send faulty information to other normal sensors [11]. In
[12], a distributed observer with attack detection layer was
proposed to deal with a class of biasing attacks. Distributed
estimation for a static parameter under compromised obser-
vations was studied in [13], where the sparse-observability
condition was required to guarantee the consistency of the
estimator.

In this paper, we study the secure distributed filtering or
estimation problem for linear time-invariant systems with
bounded noises and unstable dynamics. The main contri-
butions of this paper are three-fold. 1) We investigate the
secure distributed filtering problem under compromised ob-
servations. Unlike [12], we allow that the malicious attacker
manipulates the observations arbitrarily for an unknown
subset of the agents. Different from [11], [14] requiring some
robustness of communication graph, we simply assume the
connectivity of the graph. 2) We propose a novel secure
distributed filtering framework consisting of two parts, which
is essentially different from the centralized methods [3]–[10]
or the distributed methods [11], [12]. The first part employs a
saturation-like scheme, which gives a small gain if the inno-
vation is too large. The second part is a consensus operation
of state estimates among neighboring agents. 3) We establish
a sufficient condition for the boundedness of estimation error
and provide an equivalent statement, which connects to 2s-
sparse observability in the centralized framework in certain
scenarios, such that the sufficient condition is feasible.

The remainder of the paper is organized as follows: Sec-
tion II is on preliminaries and problem formulation. Section
III considers the secure distributed filter. Section IV provides
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the performance analysis for the filter. Section V gives the
numerical simulation results. The conclusions of this paper
are given in Section VI.

II. PROBLEM FORMULATION

A. Notations

The superscript “T” represents the transpose. Rn×m is
the set of real matrices with n rows and m columns. Rn
is the n-dimensional Euclidean space. In stands for the n-
dimensional square identity matrix. 1N stands for the N -
dimensional vector with all elements being one. diag{·} rep-
resents the diagonalization operator. A⊗B is the Kronecker
product of A and B. ‖x‖2 is the 2-norm of a vector x. ‖A‖2
is the induced 2-norm, i.e., ‖A‖2 = sup

x 6=0

‖Ax‖2
‖x‖2

. λ2(A) and

λmax(A) are the second minimal eigenvalue and maximal
eigenvalue of A, respectively. |Γ| is the cardinality of the set
Γ.

B. Graph Preliminaries

In an undirected graph G = (V, E), V stands for the set
of nodes, E ⊆ V × V is the set of edges. If there is an
edge (i, j) ∈ E , node i can exchange information with
node j, and node j is called a neighbor of node i. Let
the neighbor set of agent i be Ni := {j ∈ V|(i, j) ∈
E}. The graph G is connected if for any pair of nodes
(i1, il), there exists a path from i1 to il consisting of
edges (i1, i2), (i2, i3), . . . , (il−1, il). L is the Laplacian ma-
trix whose definition is referred to [15]. On the connectivity
of a graph, we have the following proposition.

Proposition 1: [15] The undirected graph G is connected
if and only if λ2(L) > 0.

C. System model

Consider the following plant observed by N agents (e.g.,
sensors),

x(t+ 1) = Ax(t) + w(t)

yi(t) = Cix(t) + vi(t) + ai(t), i = 1, . . . , N,
(1)

where x(t) ∈ Rn is the unknown system state, w(t) ∈ Rn
is the process noise, vi(t) ∈ R is the observation noise, and
ai(t) ∈ R is the attack signal inserted by some malicious
attacker, all at time t. yi(t) ∈ R is the observation of agent
i. Moreover, A ∈ Rn×n is the system state transition matrix,
and Ci ∈ R1×n is the observation vector of agent i.

Remark 1: The essential problem is to study the influence
of scalar attack signal to the estimation performance with
certain number of compromised observation elements, like
[13]. Thus, we consider the observation equation with scalar
outputs for each agent. This conforms with the centralized
framework, where each row vector of centralized observation
matrix stands for the observation vector of one agent.

Definition 1: (One-step collective observability) The sys-
tem (1) is called one-step collectively observable if∑N
i=1 C

T
i Ci is a positive definite matrix.

Remark 2: On the relation between one-step collective
observability, which requires N ≥ n, and n-step collec-
tive observability (i.e., (A,C) is observable, where C =

[CT1 , . . . , C
T
N ]): If A is a diagonal matrix such as A = In, the

two definitions are equivalent. For general system matrices,
n-step collective observability is milder than the one-step
collective observability. Notice also that one-step collective
observability does not mean local observability, i.e., (A,Ci)
could be unobservable or undetectable, ∀i = 1, . . . , N .

In this paper, the following assumptions are in need.
Assumption 1: The following conditions hold

‖A‖2 = a ≥ 1, ‖w(t)‖2 ≤ bw, ‖vi(t)‖2 ≤ bv,
‖x̂i(0)− x(0)‖2 ≤ ηi ≤ η0, i = 1, · · · , N,

where x̂i(0) is the estimate of x(0) by agent i. Besides, the
bounds are known to each agent.

Assumption 2: The system (1) is one-step collectively
observable, i.e.,

∑N
i=1 C

T
i Ci � 0. The observation vector

Ci is normalized, i.e., ‖Ci‖2 = 1, i = 1, · · · , N .
Assumption 3: The communication graph G = (V, E) is

undirected and connected, where V = {1, 2, . . . , N}
Remark 3: To design a non-trivial filtering algorithm with

guaranteed bounded estimator error, we assume ‖A‖2 ≥ 1 in
Assumption 1. Otherwise, one can easily design a filter such
that estimation errors keep bounded. The proposed methods
and results also apply to the case where ‖A‖2 < 1. Assump-
tion 2 requires a collective observability condition utilized
in the existing literature on distributed estimation [16]–
[18]. The normalized observation vectors can be obtained by
reconstructing the system (1). Different from [11] requiring
some robustness of communication graph, the connectivity
of Assumption 3 is a standard condition for distributed
estimation. If the graph is not connected, the problem can
be studied for the connected subgraphs separately.

A typical distributed filtering problem is to design an
online filter or state estimator for each agent (e.g., agent
i) to estimate the system state x(t) by employing the
known local noisy observations {yi(l)}tl=1 and the messages
received from neighboring agents. However, if observations
of some agents are compromised by a malicious attacker,
the observation quality may be tremendously affected, which
will bring big challenges in design and analysis of distributed
filtering algorithms. In the following, we introduce the attack
model.

D. Attack model

To deteriorate the estimation performance of filtering algo-
rithms, the malicious attacker aims to persistently destroy the
observation data of some targeted agents. However, due to
resource limitation, the attacker has limited power to attack
the set of agents. Assume that the set of compromised agents
is fixed over time, and consists of no more than s agents.
Since the knowledge of the attacker makes a big difference
to its ability in deteriorating the estimation performance, we
assume the following knowledge scope of the attacker.

Assumption 4: The attacker has full knowledge on the
system (1), the network topology, and the filter of all agents.
Furthermore, the observation ai(t) can be arbitrary for a
compromised agent i.
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Under Assumption 4, we have

ai(t) ∈ R, i ∈ A, with |A| ≤ s
ai(t) = 0, i ∈ N = V −A,∀t ∈ N,

(2)

where A is the set of agents whose observations are com-
promised by the malicious attacker. N is the set of normal
agents without being affected by the attacker. Note that the
sets A and N are unknown to each agent.

Remark 4: In Assumption 4, we consider the worst sce-
nario on compromised observations that the attacker can
access the full information without requiring any concrete
attack models, which is more general than results in the
existing literature [12].

We further require the following definitions.
Definition 2: (s-sparse observability) The linear system

defined by (1) is said to be s-sparse observable if for every set
Γ ⊆ {1, . . . , N} with |Γ| = s, the pair (A,CΓ̄) is observable,
where CΓ̄ is the remaining matrix by removing Cj , j ∈ Γ
from [CT1 , C

T
2 , . . . , C

T
N ].

Definition 3: (One-step s-sparse observability) The linear
system defined by (1) is said to be one-step s-sparse observ-
able if for every set Γ ⊆ {1, . . . , N} with |Γ| = s, the pair
CT

Γ̄
CΓ̄ =

∑N
i=1,i/∈Γ C

T
i Ci � 0, where CΓ̄ is the remaining

matrix by removing Cj , j ∈ Γ from [CT1 , C
T
2 , . . . , C

T
N ].

Remark 5: Definition 2 and Definition 3 correspond to
the n-step (collective) observability (i.e., (A,C) is observ-
able) and one-step (collective) observability in Definition
1. If the system matrix A is diagonal, Definition 2 and
Definition 3 are equivalent. In the centralized framework, if
the observations of s agents are compromised, the system
should be 2s-sparse observable to guarantee the effective
estimation of system state [19]. The connection between 2s-
sparse observability and the condition required in this work
will be investigated in Theorem 2 and Lemma 1.

E. Problems of interest
We mainly consider the following problems in this paper.
1) How to design secure distributed filter for each agent

by employing the local noisy observations potentially com-
promised by the malicious attacker?

2) What conditions can guarantee the bounded estimation
error of the distributed filter in presence of the attacker (2).
How can we quantify the estimation performance of the
distributed filter?

III. SECURE DISTRIBUTED FILTER

In this section, we will design a secure distributed filter
for each agent.

We consider the filtering algorithm with two stages,
namely, observation update and consensus. In the stage of
local observation update, we design a saturation-like scheme
to utilize the observation yi(t) as follows

x̃i(t) =Ax̂i(t− 1) + ki(t)C
T
i (yi(t)− CiAx̂i(t− 1)), (3)

where

ki(t) =

{
1, if |yi(t)− CiAx̂i(t− 1)| ≤ β,

β
|yi(t)−CiAx̂i(t−1)| , otherwise.

(4)

Different from the gain designs of common filters or
state estimators, the gain ki(t) in this work is related to
the value of innovation (i.e., yi(t) − CiAx̂i(t − 1)). The
design of ki(t) in (4) makes sense, since if the estimation
innovation is very large, the observation yi(t) is more likely
to be compromised. By the designed gain ki(t), we have
|ki(t)(yi(t) − CiAx̂i(t − 1))| ≤ β, which ensures that the
attacker has limited influence to the local update stage of the
filter.

In the consensus stage, we suppose that each agent can
communicate with its neighbors for L ≥ 1 times between
two time instants. For l = 1, 2, . . . , L,

x̂i,l(t) = x̂i,l−1(t)− α
∑
j∈Ni

(x̂i,l−1(t)− x̂j,l−1(t)), (5)

with x̂i,0(t) = x̃i(t) and we denote x̂i(t) = x̂i,L(t). For each
communication, agent j will transmit its estimate x̂j,l−1(t)
to its neighbors, l = 1, . . . , N.

Remark 6: The parameter β in (4) reflects the usage
tradeoff between normal observations and compromised
observations. If β is very large, then almost all normal
observations will be utilized without scaling. But, it will
give much space that the attacker can use to deteriorate the
estimation performance. If β is very small, although the most
possible attack signals may be filtered by the designed gain
ki(t), many normal observations will contribute little to the
estimation performance. As a result, the filtering error of
each agent will probably be divergent due to ‖A‖ ≥ 1. The
condition on β will be discussed in next section.

Remark 7: The term α
∑
j∈Ni

(x̂i,l−1(t) − x̂j,l−1(t)) is
to make the agents reach consensus. The consensus step is
vital to guarantee bounded estimation error of distributed
filters especially for the case that each subsystem is not
observable (i.e., (A,Ci) is not observable). The parameter
α can increase the consensus speed if it is well designed.
It can be proven that if the consensus step L goes to
infinity and the parameter α is properly designed, then
the estimates {x̂i(t)}Ni=1 will converge to the same vector.
However, different from resilient algorithms in [20], [21]
which require the states or estimates reach consensus, the
consensus step L is not required to approximate infinity in
this work. The requirement of the step L and the design of α,
related with the system structure and performance demand,
is given in next section.

By (3), (4) and (5), we obtain the secure distributed
consensus filter (SDCF) in Algorithm 1.

IV. PERFORMANCE ANALYSIS

In this section, we will focus on performance analysis
of the proposed SDCF. Specifically, we will study the
conditions to guarantee the boundedness of estimation error,
and quantify the estimation performance under compromised
observations.

Since the filtering gains {ki(t)} are related to the state esti-
mates and potential compromised observations, the common
stability analysis approaches, such as Lyapunov methods,
may not be directly utilized to analyze the stability or
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Algorithm 1 Secure Distributed Consensus Filter (SDCF):
1: Update: Agent i uses its own observation to update the

estimate
x̃i(t) = Ax̂i(t− 1) + ki(t)C

T
i (yi(t)− CiAx̂i(t− 1))

ki(t) = min{1, β
|yi(t)−CiAx̂i(t−1)|},

2: Consensus for L steps: x̂i,0(t) = x̃i(t)
For lth consensus, l = 1, . . . , L:

For ith agent, i = 1, . . . , N :
Agent i receives x̂j,l−1(t) from neighbor agent j,
x̂i,l(t) = x̂i,l−1(t)−α

∑
j∈Ni

(x̂i,l−1(t)−x̂j,l−1(t))
end

end
3: Output step: x̂i(t) = x̂i,L(t).

boundedness of estimation error by its dynamics. This is the
main challenge for the problem of distributed recursive filter
under compromised observations.

A. Boundedness of estimation error

In this subsection, we will study the conditions to guar-
antee the boundedness of estimation error for the SDCF in
Algorithm 1. Denote λ0 := λmin

(∑
i∈N∗ CTi Ci

)
, where

N ∗ is the agent set such that λmin
(∑

i∈N C
T
i Ci

)
is minimal

within all sets {N} obtained by removing any |A| agents
from V . Besides, for convenience, we give the following
notations

γ =
λmax(L)− λ2(L)

λmax(L) + λ2(L)
,

p∗0 = aγL
√
Nη0 +

√
NβγL

1− aγL
,

k∗ = min{1, β

a(p∗0 + η0) + bw + bv
},

µ0 = a

(
1− k∗

N
λ0

)
, (6)

Q0 = (1− |A|
N

)(bw + bv + ap∗0) + bw,

ϑ0 = 1− Q0

η0

(
1− β|A|

Nη0

)−1

,

m0 = ϑ0

(
1− β|A|

Nη0

)(
1− k∗λ0

N

)−1

.

On the boundedness of estimation error by SDCF, we have
the following result.

Theorem 1: Let Assumptions 1 - 3 hold and α =
2

λ2(L)+λmax(L) . If there exist a set of scalars L > 0, β > 0,
η0 > 0, such that

1 ≤ a < min
{
m0, γ

−L} , (7)

then the estimation error of SDCF(L, β), i.e., ei(t) = x̂i(t)−
x(t), ∀i ∈ V , satisfies

lim
t→∞

‖ei(t)‖2 ≤
NQ0 + |A|β
N(1− µ0)

+

√
NβγL

1− aγL
<∞. (8)

Proof: See Subsection IV-C.

Remark 8: The parameters β, L are given in the imple-
mentation of SDCF. Although η0 is a bound of initial estima-
tion error, we can adjust it bigger to meet the requirement.
Under Assumption 3 and Proposition 1, we have γ ∈ (0, 1),
then we obtain γ−L > 1 and lim

L→∞
γ−L = +∞. Also,

m0 > 0 is guaranteed if β < η0.
Remark 9: Theorem 1 shows that by taking proper pa-

rameters L, β, η0, the SDCF (i.e., Algorithm 1) can guarantee
the boundedness of estimator error for a class of unstable
dynamics. The condition (7) can be examined offline with
global knowledge. To improve the estimation performance,
one way is to lower the bound in (8) by designing a proper
parameter β offline based on global knowledge.

B. Feasibility of condition (7)
Since the condition (7) is complex, its feasiblity needs to

be testified, i.e., whether there exist a set of positive param-
eters L, β, η0 such that (7) is satisfied. In this subsection, we
study the feasibility of (7).

Theorem 2: Condition (7) has a feasible solution on β, η0

and L, if and only if

λ0 > |A|. (9)
Proof: We prove the conclusion from sufficiency and

necessity. 1) Sufficiency. If λ0 > |A|, we have λ0

|A| > 1. For
a small β and large η0, we have k∗ = β

a(p∗0+η0)+bw+bv
< 1.

Then we consider β
η0k∗

=
a(p∗0+η0)+bw+bv

η0
> 1. By choosing

a sufficiently large L and η0, let a approximate 1 sufficiently
from the side larger than 1. Then, β

η0k∗
can approximate

1 sufficiently. As a result, we can guarantee λ0

|A| >
β

η0k∗
,

which means
(

1− β|A|
Nη0

)(
1− k∗λ0

N

)−1

> 1. Besides, we
can choose a sufficiently large η0, such that ϑ0 approximates
1 from the side smaller than 1. Then, m0 > 1, which
means we can find feasible scalars β, η0, L such that for any
‖A‖2 = a ∈ [1,m0), the condition (7) is satisfied. Therefore,
the sufficiency holds. 2) Necessity. We use the contradiction
method. If λ0 > |A| does not hold, i.e., λ0 ≤ |A|, then

we have
(

1− β|A|
Nη0

)(
1− k∗λ0

N

)−1

< 1 due to k∗ < β
η0

.
Since ϑ0 < 1, then m0 < 1, which means that there is no
feasible a ≥ 1, such that the condition (7) is satisfied. Thus,
the necessity holds.

Remark 10: Recall λ0 := λmin
(∑

i∈N∗ CTi Ci
)
, which

reflects the one-step sparse observability of the system by
removing any |A| agents. Since the compromised subset of
agents is fixed over time, we can calculate λ0 and compare
it with |A|.

The direct relationship between (9) and the one-step sparse
observability is given in the following.

Lemma 1: A necessary condition to guarantee λ0 > s :=
|A| is that the system (1) is one-step 2s-sparse observable.
If the observation vectors are orthogonal and A is a diag-
onal matrix, then one-step 2s-sparse observability is also a
sufficient condition to guarantee λ0 > |A|.

Proof: The proof of this lemma can refer to [13].
Remark 11: From Lemma 1 and Theorem 2, on Algo-

rithm 1, we have that if the observations of any s agents are
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under attacks, the system (1) should be one-step 2s-sparse
observable to achieve the effective estimation of system state.
For the case that A is a diagonal matrix, the condition (9)
conforms to the centralized framework that the system is
2s-sparse observable [19].

C. Proof idea of Theorem 1

In this section, we provide the main idea for the proof of
Theorem 1. Let ei(t) be the estimation error of agent i by
Algorithm 1, i.e., ei(t) = x̂i(t)−x(t). Then we have ei(t) =
x̂i(t)−x(t) = ẽ(t)+ ēi(t), where ēi(t) := x̂i(t)− x̂avg , and
ẽ(t) = x̂avg − x(t), and x̂avg(t) := 1

N

∑N
i=1 x̂i(t). The idea

for analyzing the boundedness of estimation error ei(t) is to
find conditions that can guarantee the boundedness of ēi(t)
and ẽ(t) simultaneously. As a result, the boundedness of ei(t)
can be guaranteed. In the following, Lemma 2 and Lemma
3 study the boundedness of ēi(t) and ẽ(t), respectively.

Lemma 2: Consider Algorithm 1 with L ≥ 1, and let
Assumptions 1 - 3 hold. If α = 2

λ2(L)+λmax(L) , and ‖A‖2 =

a < γ−L, then

‖ēi(t)‖2 ≤ p
∗(L, t), (10)

where p∗(L, t) = (aγL)t
√
Nη0 +

√
NβγL 1−at−1γL(t−1)

1−aγL .

Furthermore, supt≥1{p∗(L, t)} ≤ aγL
√
Nη0 +

√
NβγL

1−aγL ,
p∗0 <∞, and

lim
L→∞

p∗(L, t) = 0,

lim
t→∞

p∗(L, t) =

√
NβγL

1− aγL
<∞.

Lemma 3: Consider Algorithm 1 with L ≥ 1, and assume
that Assumptions 1 - 3 hold, α = 2

λ2(L)+λmax(L) , and
‖A‖2 = a < γ−L. If

|A|β +NQ0

Nη0
≤ 1− µ0, (11)

then

lim
t→∞

‖ẽ(t)‖2 ≤
NQ0 + |A|β
N(1− µ0)

. (12)

Remark 12: Lemma 2 shows that the error between each
state estimate and the average estimates can be upper
bounded by p∗(L, t), which is uniformly upper bounded by a
constant scalar p∗0 and has some asymptotic properties w.r.t.
consensus step L and time t. Lemma 3 provides a sufficient
condition to guarantee the boundedness of network tracking
error (i.e., x̂avg(t) − x(t)). For given bw, bv, λ0 and a, we
can design β and L based on the condition (11) to guarantee
(12).

From (7) and aγL < 1, we have the condition (11). By
Lemma 2, Lemma 3 and the notations in (6), the conclusion
of Theorem 1 holds.

V. SIMULATION RESULTS

In this section, we carry out a numerical simulation to
show the effectiveness of the proposed algorithm.

Regarding the system (1), we assume A = [ 1.01 0.1
0.1 1.1 ] with

‖A‖2 = 1.16. The observation vectors are randomly selected

from the set
{
C1 = [1, 0], C2 = [0, 1], C3 = [

√
2

2 ,
√

2
2 ]
}

. The
process noise w(t) and observation noises vi(t), i =
1, . . . , N , all follow the uniform distribution between [0, 1].
The bounds are assumed to be bv = 1, bw = 1, ηi =
1, i = 1, . . . , N. We suppose the time t = [0, 100] with
sampling interval 1. The sparse network given in Fig. 1 has
N = 100 nodes with λ2(L) = 4.1 and λmax(L) = 21.3.
We choose β = 3, the trails of Monto Carlo experiments
are 100. Suppose that the attacker will insert the signal
ai(t) = 2(Cix(t) + vi(t)) if agent i is compromised.

For one realization with consensus step L = 8 and the
number of compromised agents 25, we obtain the network
tracking performance in Fig. 2. It shows that each element of
the system state, i.e., x1(t) and x2(t), can be well estimated
by agents over the network with small bounded estimation
errors. The influence of consensus step L to the mean values
(averaged by 100) of the maximal error norms among all
agents is studied in Fig. 3 with the number of compromised
agents 25, which shows that a bigger consensus step can
lead to smaller estimation errors. In Fig. 4 with L = 4, we
investigate the influence of compromised agent number to
estimation errors. We see that with the increasing of com-
promised number, the estimation errors will become larger,
and even diverge when the number is 66. The phenomena
conform with former analysis, since not enough information
can support an effective estimator if too many agents are
compromised. Based on the above results, the utility of the
proposed SDCF is validated.

Fig. 1. A random sparse connected graph with 100 nodes.

VI. CONCLUSIONS

This paper studied the secure distributed filtering problem
for linear time-invariant systems with bounded noises and
unstable dynamics under compromised observations, where
a malicious attacker can compromise a subset of agents and
manipulate the observations arbitrarily. First, we proposed
a consensus-based distributed filter. Then, we provided a
sufficient condition to guarantee the boundedness of esti-
mation error. The feasibility condition was analyzed through
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Fig. 2. Network tracking performance for each element over one realiza-
tion.
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Fig. 3. The influence of consensus step to error norm dynamics.
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Fig. 4. The influence of compromised agent number to error norm
dynamics.

an equivalent statement, which connects to 2s-sparse observ-
ability in the centralized framework in certain scenarios.
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