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Abstract— Risk assessment is an inevitable step in the im-
plementation of cost-effective security strategies for control
systems. One of the difficulties of risk assessment is to estimate
the impact cyber-attacks may have. This paper proposes a
framework to estimate the impact of several cyber-attack
strategies against a dynamical control system equipped with an
anomaly detector. In particular, we consider denial of service,
sign alternation, rerouting, replay, false data injection, and bias
injection attack strategies. The anomaly detectors we consider
are stateless, cumulative sum, and multivariate exponentially
weighted moving average detectors. As a measure of the attack
impact, we adopt the infinity norm of critical states after a fixed
number of time steps. For this measure and the aforementioned
anomaly detectors, we prove that the attack impact for all of
the attack strategies can be reduced to the problem of solving a
set of convex minimization problems. Therefore, the exact value
of the attack impact can be obtained easily. We demonstrate
how our modeling framework can be used for risk assessment
on a numerical example.

I. INTRODUCTION

The necessity of improved cyber-security of industrial
control systems has been demonstrated by a number of high-
profile cyber-attacks [1]–[3], as well as by numerous research
studies [4]–[8]. The overall recommendation for improving
the cyber-security of these systems is to implement the so
called defense-in-depth strategies, which consist of several
layers of security measures [9]. Unfortunately, the large
amount of legacy equipment within many industrial control
systems, combined with their complexity and real-time re-
quirements, can make the deployment and maintenance of
security measures costly.

In order to implement defense-in-depth strategies in a cost-
effective manner, it is crucial to conduct risk assessment
prior to deployment of security measures [9]. The first step
of risk assessment is to identify security vulnerabilities.
Subsequently, the likelihood of each vulnerability being
exploited, and the impact that may occur in that case are
estimated. Once the risk assessment is completed, one can
prioritize which vulnerabilities should be treated first based
on estimates of the impact and likelihood. Given that cyber-
attacks against control systems may endanger the physical
world, it is natural to use models of physical dynamics to
estimate the attack impact.
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In this paper, we focus on the problem of estimating the
impact of cyber-attacks in control systems equipped with
various types of anomaly detectors. Aspects of this problem
were earlier investigated in studies [10]–[12]. Cárdenas et
al. [10] considered a control system equipped with a cumu-
lative sum (CUSUM) anomaly detector, and proposed several
attack strategies that can be used to quantify the attack
impact. Ahmed et al. [11] investigated the performance of
stateless and CUSUM anomaly detectors in presence of false
data injection and zero alarm attacks. In order to compare
different types of anomaly detectors, Urbina et al. [12]
introduced a novel metric and an attack model that can be
used for that purpose.

We identify two main directions in which these studies
can be extended. Firstly, the aforementioned works mostly
considered an attacker that is very resourceful. For instance,
the attacker possesses full model knowledge, controls a
considerable number of components within the system, and
is able to inject arbitrary signals to sensors and actuators it
controls. Simpler attack strategies, which are also more likely
to happen, were not considered. Some of these strategies
include denial of service [13], [14], rerouting [15], [16],
sign alternation [17], [18], and replay [19] attacks. Secondly,
it is often unclear from the literature how the worst case
attack impact is calculated. The problem of estimating the
attack impact usually represents a constrained maximization
problem, and algorithms that return the exact solution of
these problems are rarely available. However, in previous
work [20], the authors introduced infinity norm of the states
as a measure of impact, and formulated the problem of
finding the attack impact as an optimization problem that
yields the exact solution. Thus, we adopt this metric to
quantify the impact of the attack strategies we consider in
this paper.

The contributions of this paper are as follows. Firstly, we
propose a unified framework for quantifying the attack im-
pact in control systems equipped with an anomaly detector.
Our framework is flexible, and can be used to quantify the
impact of both simple attack strategies such as denial of
service, sign alternation, rerouting, replay, and bias injection,
but also more complex false data injection attacks with
full model knowledge. Secondly, our analysis is valid for
both stateless and CUSUM anomaly detectors observed in
previous work, but we also extend our analysis to the multi-
variate exponentially weighted moving average (MEWMA)
detector [21]. Thirdly, for the impact measure introduced
in [20], we prove that the impact for all attack strategies
and all considered detectors can be obtained by solving a
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set of convex minimization problems (Propositions 1–4).
This implies that the exact value of the attack impact can
easily be obtained, since the algorithms for solving convex
minimization problems are well known. Finally, we illustrate
on a numerical example of a chemical process how our
framework can be used for risk assessment.

The remainder of the paper is organized as follows. In
Section II, we introduce a model of the control system under
attack, and models for anomaly detectors. In Section III,
we introduce several attack strategies, and prove that the
impact for these strategies can be obtained by solving a set of
convex minimization programs. In Section IV, we introduce
an illustrative example that demonstrates how the proposed
framework can be used for assessing the impact of cyber-
attacks. In Section V, we conclude the paper and outline
some directions for future work.

II. MODEL SETUP

We adopt the modeling framework introduced in [22],
where the control system was modeled as an interconnection
of the plant, the controller, the anomaly detector, and the
attacker. In what follows, we provide more detailed models
of each of these blocks.

A. Plant, Controller, and Anomaly Detector

The physical plant is modeled as

P :

{
x(k + 1) = Apx(k) +Bpũ(k)

y(k) = Cpx(k)
(1)

where x(k) ∈ Rnx is the state of the plant at time step
k, y(k) ∈ Rny is the vector of sensor measurements, and
ũ(k) ∈ Rnu is the control input applied to the process.

The plant is controlled with a controller of the form

F :

{
z(k + 1) = Afz(k) +Bf ỹ(k) +Kfyr(k)

u(k) = Cfz(k) +Df ỹ(k) + Efyr(k)
(2)

where z(k) ∈ Rnz is the state of the controller, ỹ(k) ∈ Rny

is the vector of sensor measurements used by the controller
to calculate the control signal u(k) ∈ Rnu , and yr(k) ∈ Rnyr

is the bounded reference signal. In particular, we assume

−δyr ≤ yr(k) ≤ δyr (3)

where δyr ∈ Rnyr
+ is the predefined bound. The assumption is

that the controller is designed so that stability and acceptable
performances are achieved in the absence of anomalies.

During the nominal operation, the signals ỹ(k) and ũ(k)
are equal to y(k) and u(k), respectively. However, because of
an attack or a fault in the system, these values may differ. In
order to detect these anomalies, an anomaly detector is used.
The first step of the detection procedure is to calculate the
so called residual signal. We consider a residual-generating
filter of the form

D :

{
s(k + 1) = Ads(k) +Bdu(k) +Kdỹ(k)

r(k) = Cds(k) +Ddu(k) + Edỹ(k)
(4)

where s(k) ∈ Rns is the state of the filter, and r(k) ∈ Rnr

is the residual signal evaluated to detect potential anomalies.
We assume that the filter is designed such that the following
properties are satisfied:

1) the value of the residual r(k) converges asymptotically
to zero in absence of anomalies;

2) the residual r(k) is sensitive to attacks and anomalies,
and in case when ũ(k) 6= u(k) and/or ỹ(k) 6= y(k),
r(k) is different from zero except in pathological cases
such as zero dynamic attacks (see [22]).

These are standard assumptions adopted from the fault-
diagnosis literature [23].

The second step of the detection procedure is to process
the residual signal r(k) to obtain a security metric S(k+1).
When this metric exceeds a certain threshold δr > 0, an
alarm is raised. How S(k+ 1) is determined depends on the
detector used. In this paper, we are focused on the following
three anomaly detectors.

1) Stateless Detector: A stateless detector is defined as

S(k + 1) = ||Qrr(k)||2p
where Qr ∈ Rnr×nr represents a scaling matrix, and ||(.)||p
represents the p-norm. The common values for p used in the
literature are 2 or ∞.

2) CUSUM Detector: The CUSUM detector is a stateful
detector, which in its non-parametric form is defined as

S(k + 1) = max{S(k) + ||Qrr(k)||2p − δ, 0}

where δ > 0 is the forgetting factor. The metric S is reset
to zero once an alarm occurs, that is, when S(k + 1) > δr.

3) MEWMA Detector: The MEWMA detector is another
stateful detector, which is defined as

S̃(k + 1) = βQrr(k) + (1− β)S̃(k)

S(k + 1) =
2− β
β
||S̃(k + 1)||22

where β ∈ (0, 1] is the forgetting factor. As for the CUSUM
detector, S̃ is reset to zero if an alarm occurs.

B. System Under Attack

By exploiting some security vulnerability, the attacker is
able to manipulate the subsets of sensors Vy ⊆ {1, 2, . . . , ny}
and actuators Vu ⊆ {1, 2, . . . , nu}. The influence of the
attack on the signals y(k) and u(k) is modeled as

ỹ(k) = y(k) +Dyay(k) ũ(k) = u(k) +Duau(k) (5)

where ay(k) ∈ Rnay represents the attack against sensors,
au(k) ∈ Rnau represents the attack against actuators, and
the matrices Dy ∈ Rny×nay and Du ∈ Rnu×nau model the
influence of attacks on actuators and sensors, respectively.
We remark that the matrices Dy and Du depend on the sets
Vy and Vu. If the attacker is able to manipulate the sensors
measurements Vy = {j1, j2, . . . , jnay

}, then the elements
(j1, 1), (j2, 2), . . . , (jnay

, nay ) of the matrix Dy are equal
to one, and the remaining elements are equal to zero. The
matrix Du is defined in an analogous way.
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In order to formulate some of the attack strategies in a
more compact form, we introduce the augmented vectors

xe(k) = [xT (k) zT (k) sT (k)]T a(k) = [aTu (k) aTy (k)]T

which represent the extended state of the system and ex-
tended attack vector, respectively. We denote the dimension
of the vector xe(k) by ne = nx+nz+ns, and the dimension
of the vector a(k) by na = nau + nay . By combining (1),
(2), (4), and (5), the dynamics of the system under attack
can be expressed as

xe(k + 1) = Aexe(k) +Bea(k) +Keyr(k)

r(k) = Cexe(k) +Dea(k) + Eeyr(k)
(6)

where1

Ae =

 Ap +BpDfCp BpCf 0nx×ns

BfCp Af 0nz×ns

(Kd +BdDf )Cp BdCf Ad


Be =

 BpDu BpDfDy

0nz×nau
BfDy

0ns×nau
(BdDf +Kd)Dy

 Ke =

BpEfKf

BdEf


Ce =

[
(DdDf + Ed)Cp DdCf Cd

]
De =

[
0nr×nau

(DdDf + Ed)Dy

]
Ee = DdEf .

III. QUANTIFYING ATTACK IMPACT

The main goal of this paper is to estimate the impact
that can occur once the attacker exploits some security
vulnerability. To do that, we first introduce the criterion based
on which we characterize the impact of cyber-attacks. We
then introduce several attack strategies, and prove that the
impact of the attack in all cases can be obtained by solving
a set of convex minimization problems.

A. Criterion for Characterizing the Attack Impact

In order to estimate the impact of possible attacks, we use
the concept of critical states. Let Qc ∈ Rnc×ne be a matrix
that maps the extended state vector to a subset of critical
states

xc(k) = Qcxe(k).

These critical states may model levels in tanks with haz-
ardous materials that must not be overflown, or pressures that
should not exceed some safety limit. From the perspective of
the defender, we want to prevent the attacker in driving any
of these states far from the steady state. Therefore, one way
to estimate the impact would be to check if the attacker can
drive the critical states far from the steady state during some
time interval. For simplicity, we assume that the attack starts
at k = 0, and we observe how far the attacker can drive the
critical states in the time interval [0, N ]. The attack impact
I
(
Vy,Vu

)
can then be defined as I

(
Vy,Vu

)
= ||xc(N)||∞.

Besides driving the critical states as far as possible from
the steady state, we are interested to check if the attack can
stay undetected by an anomaly detector. The assumption is
that if we are able to detect the attack, we can start safety

10n×m represents the matrix filled with zeros with n rows and m
columns, while In represents the identity matrix with n rows and columns.

procedures in order to prevent the attacker from causing large
damage to the system. Therefore, we also want to check if the
attack can be conducted without triggering an alarm. Hence,
we impose the constraints S(k + 1) ≤ δr, k = 0, . . . , N ,
where S(k + 1) is calculated by using one of the detectors
we introduced in the previous section.

From (6), the system has two input signals–the reference
signal yr(k) and the attack signal a(k). Thus, during the
attack, the system trajectory depends on both of these signals.
Given that the reference signal is often a constant signal, we
adopt the following standing assumption.

Assumption 1: The reference signal is constant and equal
to the reference prior to attack yr(k) = yr, k = 0, 1, . . . , N .
The system has reached steady state before the attack hap-
pens, which implies S(0) = 0, r(0) = 0, xe(0) = Qssyr,
where Qss ∈ Rne×nyr represents the steady state gain of
the transfer function from the reference signal yr(k) to the
extended state xe(k) of the system. �

In what follows, we are performing off-line analysis of
the attack impact. Thus, the exact value of the reference
signal from the interval (3) at the beginning of the attack
is unknown to us. For this reason, throughout the paper we
identify the worst possible value of the reference yr when
estimating the attack impact.

B. Attack Strategies

The attacker can use different attack strategies in order to
conduct an attack. In this paper, we observe denial of service,
rerouting, sign alternation, replay, false data injection, and
bias injection attack strategies. We show that for all of
these attack strategies and for all of the anomaly detectors
we consider, the impact can be obtained by solving an
optimization problem of the following form.

Problem 1:

maximize
d

||Td||∞

subject to fi(d) ≤ δi i = 1, . . . , ni

where d ∈ Rnd is the decision variable, T is a matrix from
Rnc×nd , and fi(d) : Rnd → R are symmetric2 convex
functions. A convenient property of problems of this type
is that the optimal value can be obtained by solving nc
convex minimization problems. Given that algorithms that
return the optimal value of convex minimization problems
are well known, we are able to use these algorithms for
finding the exact value of the attack impact. In the following
lemma, we prove the aforementioned claim. We remark that
a less general result was introduced in [20].

Lemma 1: Let I be the optimal value of Problem 1, and
I ′ be the optimal value of the following set of nc convex
minimization problems

minimize
l∈{1,...,nc}

minimize
d

− T (l, :)d

subject to fi(d) ≤ δi i = 1, . . . , ni

2A function f(d) is symmetric if f(d) = f(−d).

333



where T (l, :) represents l-th row of the matrix T . Then the
equality I = |I ′| holds.

Proof: Let d∗ be an optimal solution of Problem 1, and
let the optimal value of this problem be defined with

I = ||Td∗||∞ = |T (l∗, :)d∗|

where l∗ is the row of T for which the optimal value is
achieved. Thus −|T (l∗, :)d∗| ≤ −T (l, :)d for every l ∈
{1, 2, . . . , nc}, and for every d that satisfies the constraints.
Given that the constraints on d are equivalent for both of the
problems, it follows that −I ≤ I ′. Assume that −I < I ′. By
the symmetry of the constraints, we have that both d∗ and
−d∗ are feasible points for both problems. However, that
implies that either T (l∗, :)d∗ or T (l∗, :)(−d∗) is less than
0. If we define I ′′ := min{−T (l∗, :)d∗, T (l∗, :)d∗} then it
follows that I ′′ = −I < I ′. This contradicts the assumption
that I ′ is the optimal value of the problem stated in the
lemma. Therefore, the only possibility is −I = I ′, which
concludes the proof.

In order to reduce the attack strategies to the form of
Problem 1, we use that the detector constraints are convex
and symmetric under a certain condition.

Lemma 2: Assume that S(0) = 0. If the residuals can
be expressed as r(k) = Tr(k)d, where Tr(k) ∈ Rnr×nd

and d ∈ Rnd , then the constraints S(k + 1) ≤ δr, k =
0, . . . , N , represent convex and symmetric constraints in d
for the stateless, CUSUM, and MEWMA detectors.

Proof: We first show that the stateless detector is
convex and symmetric in d. By using the definition of the
stateless detector, we have

S(k + 1) = ||Qrr(k)||2p = ||QrTr(k)d||2p ≤ δr.

Since every norm is symmetric and convex, and the square of
a convex function is convex, the stateless detector represents
convex and symmetric constraint in d.

Using r(k) = Tr(k)d in the definition of the CUSUM
detector leads to

S(k + 1) = max{S(k) + ||QrTr(k)d||2p − δ, 0}.

Since ||QrTr(k)d||2p is symmetric in d, then S(k + 1) is
also symmetric in d for every k. The proof that the CUSUM
detector represents convex constraints follows the same lines
as the proof of Proposition 2 in [20], for p = 2.

For the MEWMA detector we rewrite S̃(k) in terms of d

S̃(k) = β

k−1∑
i=0

(1− β)k−1−iQrr(i)

= β

k−1∑
i=0

(1− β)k−1−iQrTr(i)d.

If d is replaced by −d, then S̃(k) equals −S̃(k). Thus, S(k)
represents a symmetric constraint in d due to the symmetry
of the squared Euclidean norm. Given that S̃(k) represents
a linear transformation of d, it is a convex function. Hence,
S(k) = 2−β

β ||S̃(k)||22 is also convex in d for all k.

We now introduce the attack strategies, and prove that the
problem of finding the attack impact can be reduced to the
form of Problem 1 in all the cases.

1) Denial of Service Attack: In this attack strategy, the
attacker starts blocking some of the signals of the sensors
and actuators from reaching their destination. This can be
achieved by making physical damage to devices, overflowing
communication network with large amount of traffic, or
jamming the network [13]. One possible way of modeling
this type of attacks was suggested in [13], [14], where the
control signals and measurements during the attack were
modeled as

ũ(k) = Λuu(k) ỹ(k) = Λyy(k) (7)

where Λu ∈ Rnu×nu and Λy ∈ Rny×ny are diagonal
matrices defined as follows

Λu(i, i) =

{
0 i ∈ Vu
1 i /∈ Vu

Λy(i, i) =

{
0 i ∈ Vy
1 i /∈ Vy.

(8)

By combining (1), (2), (4), and (7), the dynamics of the
extended system under the denial of service attack can be
expressed as

xe(k + 1) = Ãexe(k) + B̃eyr

r(k) = C̃exe(k) + D̃eyr
(9)

where

Ãe =

Ap +BpΛuDfΛyCp BpΛuCf 0nx×ns

BfΛyCp Af 0nz×ns

(BdDf +Kd)ΛyCp BdCf Ad


C̃e =

[
(DdDf + Ed)ΛyCp DdCf Cd

]
B̃e =

BpΛuEfKf

BdEf

 D̃e = DdEf .

From (9), and by using the fact that xe(0) = Qssyr, the
critical states after N steps and the residual signal after k
steps can be expressed as

xc(N) = Txyr r(k) = Tr(k)yr (10)

where

Tx = Qc

(
ÃNe Qss +

N−1∑
i=0

ÃieB̃e

)

Tr(k) = C̃e

(
ÃkeQss +

k−1∑
i=0

ÃieB̃e

)
+ D̃e.

Note that the evolution of the system under the denial of
service attack is only dependent on the value of the reference
signal yr. Thus, what we need to investigate is if there exists
an yr inside of the operating region defined by (3), such that
the denial of service attack strategy drives some of the critical
states far from the steady state while remaining undetected
at the same time. Therefore, the problem of finding the worst
case impact I

(
Vy,Vu

)
in the case of this attack strategy can

be formulated as the following optimization problem.
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Problem 2:

maximize
yr

I
(
Vy,Vu

)
= ||Txyr||∞

subject to − δyr ≤ yr ≤ δyr
S(k + 1) ≤ δr k = 0, . . . , N.

In what follows, we prove that Problem 2 can be reduced to
the form of Problem 1.

Proposition 1: Problem 2 is an instance of Problem 1 for
the stateless, CUSUM, and MEWMA detectors.

Proof: The decision variable in Problem 2 is yr, so
d = yr. The objective functions are of the same form, thus
we only need to prove that all the constraints of the problem
are convex and symmetric. Let fk(d) = S(k + 1) ≤ δr,
k = 0, . . . , N . We know from (10) that r(k) = Tr(k)d for
every k, so it follows from Lemma 2 that f0(d), ..., fN (d)
represent convex and symmetric constraints in d. It remains
to prove that the reference constraint is symmetric and
convex in d. Let Qyr be the diagonal matrix from Rnyr×nyr

whose elements are defined by Qyr (i, i) = 1/δyr (i). We can
represent the constraint (3) as fyr (d) = ||Qyrd||∞ ≤ 1. This
constraint is a convex and symmetric constraint in d due to
infinity norm, which concludes the proof.

2) Rerouting Attacks: In this attack strategy, the attacker
permutes the values of some of the measurements or control
signals under its control. As stated in [16], the attacker can
conduct this attack by physically re-wiring the sensor cables,
or by modifying the sender’s address. Thus, the control inputs
and measurements during the rerouting attack are given by
ũ(k) = Λuu(k) and ỹ(k) = Λyy(k), where Λu ∈ Rnu×nu

and Λy ∈ Rny×ny are any permutation matrices that satisfy
the following constraints

Λu(i, i) = 1 i /∈ Vu Λy(i, i) = 1 i /∈ Vy.

Note that the way we define ũ(k) and ỹ(k) in this attack
strategy is identical to the way we defined them for the denial
of service attack strategy. The only difference is that Λu
and Λy represent permutation matrices. Therefore, for fixed
permutation matrices Λu and Λy , the problem of finding the
worst case impact of the rerouting attack strategy can be
reduced to Problem 2.

3) Sign Alternation Attack: In this attack strategy, the
attacker simply flips the sign of the measurement and control
signals under its control. Although simple, this attack can
for instance turn negative feedback into positive, and in that
way destabilize the system. Moreover, it was shown that
in certain configurations with a Kalman filter, this attack
strategy leads to strictly stealthy attacks [17], [18]. The
control signal and measurement signal during the attack
are given by ũ(k) = Λuu(k) and ỹ(k) = Λyy(k), where
Λu ∈ Rnu×nu and Λy ∈ Rny×ny are in this case defined as

Λu(i, i) =

{
−1 i ∈ Vu

1 i /∈ Vu
Λy(i, i) =

{
−1 i ∈ Vy

1 i /∈ Vy.

Therefore, the impact in case of this attack strategy can also
be reduced to Problem 2, as it was the case with the denial
of service and rerouting attack strategies.

4) Replay Attacks: This attack strategy is inspired by the
well known Stuxnet malware [2]. The attacker keeps sending
the steady state-sensor measurements from the sensors under
its control, while at the same time applies malicious control
signals to the actuators it controls. We assume the signals
sent to the actuators are constant, but the analysis can be
extended to scenarios where the attacker sends other forms
of signals, or simply blocks the corresponding control of
reaching the plant. The control signals and measurements
during the attack can then be modeled as

ũ(k) = u(k) +Duau ỹ(k) = Λ̃yy(k) + Λyy(0) (11)

where au ∈ Rnau is the malicious control signal sent to the
actuators, and Λy ∈ Rny×ny and Λ̃y ∈ Rny×ny are diagonal
matrices defined as

Λy(i, i) =

{
1 i ∈ Vy
0 i /∈ Vy

Λ̃y = Iny
− Λy.

From (1), (2), (4), (11), and

y(0) = [Cp 0ny×nz 0ny×ns ]Qssyr =: Qyssyr

it follows that the system under the replay attack propagates
according to the equations

xe(k + 1) = Ãexe(k) + B̃eau + K̃eyr

r(k) = C̃exe(k) + D̃eyr

where

Ãe =

 Ap +BpDf Λ̃yCp BpCf 0nx×ns

Bf Λ̃yCp Af 0nz×ns

(Kd +BdDf )Λ̃yCp BdCf Ad


B̃e =

 BpDu

0nz×nau

0ns×nau

 K̃e =

 Bp(Ef +DfΛyQ
y
ss)

Kf +BfΛyQ
y
ss

BdEf + (BdDf +Kd)ΛyQ
y
ss


C̃e =

[
(DdDf + Ed)Λ̃yCp DdCf Cd

]
D̃e = DdEf + (DdDf + Ed)ΛyQ

y
ss.

The critical states after N steps and the residual signal after
k steps are then given by

xc(N) = Tx

[
yr
au

]
r(k) = Tr(k)

[
yr
au

]
(12)

where

Tx = Qc

[
ÃNe Qss +

N−1∑
i=0

ÃieK̃e

N−1∑
i=0

ÃieB̃e

]
Tr(k) =

[
C̃e(Ã

k
eQss +

k−1∑
i=0

ÃieK̃e) + D̃e C̃e
k−1∑
i=0

ÃieB̃e

]
.

In what follows, we formulate the problem of finding the
worst-case impact of replay attacks.

Problem 3:

maximize
yr,au

I(Vy,Vu) =

∣∣∣∣∣∣∣∣Tx [yrau
]∣∣∣∣∣∣∣∣
∞

subject to − δyr ≤ yr ≤ δyr
S(k + 1) ≤ δr k = 0, . . . , N.
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This problem represents an instance of Problem 1.
Proposition 2: Problem 3 is an instance of Problem 1 for

the stateless, CUSUM, and MEWMA detectors.
Proofs of Propositions 2–4 follow the same lines as the proof
of Proposition 1, and are omitted due to the page limit.

5) False Data Injection Attacks: False data injection at-
tacks represent very sophisticated attack strategy. The attack
signal a(0), . . . , a(N) is calculated based on the full model
knowledge and then fed into the system through the cor-
rupted sensors and actuators. Although very powerful, this
attack is more unlikely than for example denial of service
attack due to the need of full model knowledge.

This attack is additive in nature, thus the attack trajectory
of the extended system (6) can be divided into the trajectory
x0e(k), r0(k) driven by the initial value and the reference,
and the trajectory xae(k), ra(k) driven by the attack signal

xe(k) = x0e(k) + xae(k) r(k) = r0(k) + ra(k).

Under Assumption 1, the system has reached steady state
before the attack starts. Since the attack does not change
the system structure, it follows x0e(k) = xe(0), r0(k) = 0.
Based on the previous discussion, and using the extended
system equations (6), the critical states after N steps and the
residual signal after k steps can be expressed as

xc(N) = Tx

[
yr
a0:N

]
r(k) = Tr(k)a0:k

where a0:k = [a(0)T . . . a(k)T ]T , and

Tx = Qc[Qss A
N−1
e Be . . . Be 0ne×na ]

Tr(k) = [CeA
k−1
e Be . . . CeBe De].

(13)

The worst case impact of the false data injection attacks can
then be obtained by solving the following problem.

Problem 4:

maximize
yr,a0:N

I(Vy,Vu) =

∣∣∣∣∣∣∣∣Tx [ yr
a0:N

]∣∣∣∣∣∣∣∣
∞

subject to − δyr ≤ yr ≤ δyr
S(k + 1) ≤ δr k = 0, . . . , N.

This problem is also reducible to the form of Problem 1.
Proposition 3: Problem 4 is an instance of Problem 1 for

the stateless, CUSUM, and MEWMA detectors.
6) Bias Injection Attack: Compared to the false data

injection attack, the bias injection attack is less sophisticated
since the attacker injects a constant bias in the corrupted
signals instead of a time-varying signal [11]. The control
inputs and measurements during the bias injection attack can
be expressed as

ũ(k) = u(k) +Duau ỹ(k) = y(k) +Dyay.

Let a = [aTu aTy ]T . By inserting a(0) = . . . = a(N) = a
in (13), the critical states after N steps and the residual signal
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Tank 2 
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Water 

Tank 3 

↑ Pump 2 

Valve 

S S 
Level 

Tank 2 
Temp. 

S 
Level 
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Cold 

Water 

Heater. 

Product 

Fig. 1. Chemical process with four actuators (two pumps, heater, and
valve), and three sensors (two level sensors and one temperature sensor).
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Router 1 Router 2 

Pump 1      Level   Temperature      Heater          Pump 2             Level               Valve 
                 Tank 2                                                                         Tank 3  
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Link 1 Link 2 

Fig. 2. Cyber infrastructure of the process.

after k steps can be expressed as

xc(N) = Qc

(
Qssyr +

N−1∑
i=0

AieBea

)
=: Tx

[
yr
a

]

r(k) =

(
Ce

k−1∑
i=0

AieBe +De

)
a =: Tr(k)a.

The problem of finding the worst case bias injection attack
can then be formulated as follows.

Problem 5:

maximize
yr,a

I(Vy,Vu) =

∣∣∣∣∣∣∣∣Tx [yra
]∣∣∣∣∣∣∣∣
∞

subject to − δyr ≤ yr ≤ δyr
S(k + 1) ≤ δr k = 0, . . . , N.

Proposition 4: Problem 5 is an instance of Problem 1 for
the stateless, CUSUM, and MEWMA detectors.

IV. SIMULATIONS

In this section, we illustrate how the attack models we
proposed can be used to conduct risk assessment. We observe
a part of a chemical process [23] shown in Figure 1. The
control objective is to keep a constant liquid level and a
constant temperature in Tank 2. This objective is achieved
by injecting hot water from Tank 1, and cold water from
Tank 3. The cyber infrastructure of the system is assumed
to be as shown in Figure 2. The communication links that
connect the routers with the controller are unprotected, and
our task is to decide which one is more important to protect.

The states of the system are the volume in Tank 3 (x1), the
volume in Tank 2 (x2), and the temperature in Tank 2 (x3).
All three states are measured. The control signals are the
flow rate of Pump 2 (u1), the openness of the valve (u2), the
flow rate of Pump 1 (u3), and the power of the heater (u4).
We choose δyr = 1, N = 20 for the attack length, Qr = I3,
Qss = [I3 I3 I3]T , and Qc = [02×1 I2 02×6] such that
the critical states correspond to x2 and x3. The MEWMA
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TABLE I
IMPACT I(Vy ,Vu) OF DIFFERENT ATTACK STRATEGIES.

Attack strategy Link 1 Link 2

Denial of Service 1.2107 1.3773
Rerouting 1.7271 1.0506

Sign Alternation 1.4488 1.6064
Replay ∞ 1.7843

False Data Injection ∞ 3.6314
Bias Injection 3.4919 1.6071

detector with parameters δr = 1 and β = 0.2 is used to
detect anomalies. For the attack on Link 1, the attacker can
manipulate components V1

u = {3, 4} and V1
y = {2, 3}, while

for the attack on Link 2 we have V2
u = {1, 2} and V2

y = {1}.
For the given configuration, we derive the impact

I(Vy,Vu) of the presented cyber-attacks. The results are
shown in Table 1. We see from the table that the false
data injection and replay attack can have devastating impacts
on the system if the attacker has access to Link 1. This
is according to expectation, since an attack on Link 1
can directly manipulate the measurements of the critical
states x2 and x3, and these states are not measurable from
sensors measurements transmitted over Link 2. In that case,
ker(Tr) 6⊆ ker(Tx(l, :)) for l ∈ {1, 2}, so the attacker can
make an arbitrary large impact. This also shows that in
certain cases simpler attack such as a replay attack, might be
equally as dangerous as false data injection attacks with full
model knowledge. We can also see that the attack impact
on Link 1 is not always larger than the attack impact on
Link 2. In particular, the impact of denial of service and
sign alternation attacks on Link 2 is larger than the impact on
Link 1. Nevertheless, given that the attack impact on Link 1
is higher for most of the attack strategies, the resources
should be allocated to protect this link.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a framework that can be used for
conducting risk assessment in industrial control systems. The
framework can be used to estimate the impact of both simple
and more complex attack strategies, and it is applicable
for several types of anomaly detectors. Possible extensions
of this work will be to include process and measurement
noises into the framework, and to evaluate the attack impact
under novel types of estimators and detectors, such as those
proposed in [8], [24].
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