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Abstract: In this paper, we consider a state estimation problem for stochastic linear dynamical
systems in the presence of bias injection attacks. A Kalman filter is used as an estimator, and
a chi-squared test is used to detect anomalies. We first show that the impact of the worst-case
bias injection attack in a stochastic setting can be analyzed by a deterministic quadratically
constrained quadratic program, which has an analytical solution. Based on this result, we
propose a criterion for selecting sensors to secure in order to mitigate the attack impact.
Furthermore, we derive a condition on the necessary number of sensors to secure in order for
the impact to be less than a desired threshold.
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1. INTRODUCTION

Many physical processes nowadays are integrated with
computing and networking devices, forming so called
cyber-physical systems (CPSs). CPSs are envisioned to
improve our world in many aspects. Power grids with high
penetration of renewable energy, smart traffic lights that
reduce congestions, and energy efficient buildings are just
some of numerous examples. However, the fusion of cyber
with the physical world also creates new threat. By gaining
unauthorized control over some of the cyber components of
a CPS, malicious attackers are able to endanger the phys-
ical world. Successful cyber-attacks could increase cost of
operation, cause physical damage, and even pose a threat
on a national scale (Slay and Miller, 2007; Zeller, 2011;
Kushner, 2013). Therefore, in order to be able to exploit
all the benefits that CPSs have to offer, the problem of
cyber-security has to be addressed from all relevant fields
including control engineering.

One type of cyber-attacks that attracted considerable in-
terest within the control community are so called false-
data injection attacks. In these attacks, the attacker inter-
cepts and alters some of the measurement and/or control
signals in a coordinated way. Not only can these attacks
accomplish malicious goal such as destabilizing the system
or considerably increase the estimation error, but they
can also be designed to remain undetected by some of
existing anomaly detection algorithms (Mo et al., 2010; Liu
et al., 2011; Cárdenas et al., 2011; Smith, 2011; Pasqualetti
et al., 2013; Amin et al., 2013; Teixeira et al., 2015; Guo
et al., 2016). Various approaches for detecting these types
of attacks (Teixeira et al., 2012; Pasqualetti et al., 2013;
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Mo et al., 2015) and mitigating their impact (Kim and
Poor, 2011; Vukovic et al., 2012) have been proposed.

In one of the approaches for attack mitigation (Kim and
Poor, 2011; Vukovic et al., 2012), the authors consider
localizing and placing additional security measures on the
most vulnerable components in the system. These studies
were made in the context of state estimation of power
grids. The grid was modeled as a linear static noiseless sys-
tem, and a bad data detector (BDD) was used for detection
of anomalies. The mitigation methods included data au-
thentication, multi-path routing of some sensor measure-
ments, video surveillance, and temper proof components.
The authors proposed securing those sensors that make the
BDD most vulnerable against undetectable bias injection
attacks. Although the approach showed promising results,
it is applicable only to static linear systems with BDD.
The extension of this work to stochastic system models,
and other types of estimators and anomaly detectors, have
not been addressed so far to the best of our knowledge.

In this paper, we study the problem of security allocation
in stochastic linear dynamical systems. We consider a state
estimation problem where a Kalman filter is used as an
estimator, and a chi-squared test is used to detect anoma-
lies. As a first step, we focus our analysis on protection
against bias injection attacks (Teixeira et al., 2015). In
these attacks, the attacker’s goal is to increase the mean
square estimation error by adding a constant bias to some
of the sensor measurements, while remaining undetected.
Our aim is to find a criterion for selecting sensors to secure
in order to mitigate the attack impact.

The contributions of this paper are the following. First,
we extend the bias injection attack to the stochastic
state estimation problem. This generalizes (Teixeira et al.,
2015), where these attacks were studied in a deterministic
setting, and phenomena such as false alarms in stochastic

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

8723



systems were neglected. Second, we prove in Theorem 1
that the problem of finding the worst case bias injection
attack in the stochastic setting can be transformed to a
quadratically constrained quadratic program, similar to
the deterministic case. Based on this result, we propose
a criterion for selecting sensors to secure. Third, in Theo-
rem 2, we derive a condition on the necessary number of
sensors to secure in order for the bias attack impact to be
less than a desired threshold.

The paper is organized as follows. In the remainder of
this section, we revisit some results from linear algebra
that we use. In Section II, we introduce the problem of
estimation in the presence of cyber-attacks. In Section III,
we formulate the problem of finding the worst case bias
injection attacks. In Section IV, we provide analysis of the
attack impact, propose a criterion for selecting sensors to
secure, and derive a condition on the necessary number of
sensors to be secured. In Section V, we conclude the paper.

Preliminaries. We briefly revisit some results from linear
algebra related to generalized eigenvalues.

Definition 1. Let M,N be matrices in Cn×n. The set of
generalized eigenvalues of the matrix pencil(pair) (M,N)
is defined as

λ(M,N) = {λ ∈ C : det(M − λN) = 0}.
The generalized eigenvector x of (M,N) is a nontrivial
solution of the equation Mx = λNx with λ ∈ λ(M,N).

We are interested in the case of real pencils, with N � 0
and M � 0. In that case, the pencil (M,N) has exactly
n real nonnegative generalized eigenvalues (Golub and
Van Loan, 2012, Section 7). Moreover, the following result
holds (Avron et al., 2009, Special case of Theorem 3.4).

Lemma 1. Let M � 0, N � 0, with M,N ∈ Rn×n, and let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn be the generalized eigenvalues of
the pencil (M,N). Then for any j ∈ {1, ..., n} we have

λj = min
U⊆Rn

dim(U)=j

max
x∈U
x 6=0

xTMx

xTNx
,

where U represents a subspace of the vector space Rn.

2. MODEL SETUP

In this section, we consider an estimation problem in the
presence of cyber-attacks. The Kalman filter is used to
estimate the system state, and a chi-squared test is used for
detection of anomalies. At some point, the attacker starts
changing the sensor measurements that it controls. Our
aim is to characterize how the corrupted measurements
influence the state estimate, and the signal from the
anomaly detector.

2.1 Plant Model

The plant is modeled as a linear time-invariant system

x(k + 1) = Ax(k) + v(k),

y(k) = Cx(k) + w(k),
(1)

where x(k) ∈ Rn is the system state at time step k, v(k) ∈
Rn is the process noise, y(k) ∈ Rm is the vector of sensor
measurements, and w(k) ∈ Rm is the measurement noise.
The processes {v(k)} and {w(k)} are independent, zero

mean, Gaussian white processes with covariance matrices
Σv � 0 and Σw � 0, respectively. The initial state of
the system x(0) is a Gaussian random variable with mean
value x̄(0) and covariance matrix Σx(0) � 0, independent
of {v(k)} and {w(k)}. We assume the pair (C,A) is

detectable, and the pair (Σ
1/2
v , A) is stabilizable.

The state vector x(k) is estimated using the Kalman
filter. Under stabilizability and detectability assumptions
we introduced, filter reaches a steady state. The state
estimate then evolves according to the equation

x̂(k + 1|k) = (A−KC)x̂(k|k − 1) +Ky(k), (2)

where x̂(k|k−1) represents the one step ahead prediction,
and

K = AΣeC
T (CΣeC

T + Σw)−1,

represents the steady state Kalman gain. The matrix
Σe represents the steady state covariance matrix of the
estimation error

e(k) = x(k)− x̂(k|k − 1),

and it is obtained by solving a steady state Riccati
equation

Σe = A(Σe − ΣeC
T (CΣeC

T + Σw)−1CΣe)A
T + Σv.

The matrix A−KC of the Kalman filter is asymptotically
stable (Anderson and Moore, 2012, Chapter 4).

In order to detect possible anomalies, a chi-squared test is
used. The first step of the anomaly detection procedure is
to generate a residual signal

r(k) = y(k)− Cx̂(k|k − 1). (3)

Note that Cx̂(k|k − 1) is the estimate of y(k), thus r(k)
represents the difference between y(k) and its modeled
behavior. In the absence of anomalies, {r(k)} is a white
Gaussian process with zero mean and covariance matrix

Σr = CΣeC
T + Σw.

The statistical approach we use assumes that the presence
of anomalies would change the distribution of r(k). Thus,
the second step of the anomaly detection procedure is
to define a suitable test to judge if the residual r(k)
comes from the Gaussian distribution that we mentioned
previously, or if an anomaly occurred and the distribution
changed. A simple method that is used for this purpose is
to test if the squared distance measure

χ2(k) = rT (k)Σ−1r r(k) = ‖Σ−1/2r r(k)‖22,
is greater than a sufficiently large threshold τ > 0. The
random variable χ2(k) is distributed according to a chi-
squared probability distribution, which is the reason why
this test is called a chi-squared test.

In absence of anomalies, the random variable χ2(k) takes
relatively small values most of the time. The cases when
this signal exceeds the threshold τ might be an indication
that an anomaly occurred. However, it is important to
realize that any threshold τ will occasionally be breached
even when anomalies are not present. These false alarms
happen due to the random noise, with probability

P(‖Σ−1/2r r(k)‖22 > τ) =: α.

Large values of τ would decrease the false alarm probabil-
ity α, but also the sensitivity to anomalies. On the other
hand, a small value of τ would result in high probability
of false alarms, which is also undesirable. Hence, τ has
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to be chosen as a reasonable trade-off between these two
phenomena.

The presence of false alarms makes attack detection dif-
ficult. If an alarm occurs when the attack is present,
and if the attack does not change distribution of χ2(k)
considerably, the alarm may be classified as a consequence
of noise.

2.2 Attack Model

Suppose that at the time instant k = k0 the attacker
starts changing the values of the measurements it can
influence. From that point onwards, the measurement
equation becomes

ya(k) = y(k) +Da(k), k ≥ k0, (4)

where the vector a(k) ∈ Rma represents the signal the
attacker injects, and ma is the number of measurements
the attacker controls. The matrix D ∈ Rm×ma is a matrix
that maps a(k) to corresponding measurements in the
following way. Denote by j1 < j2 < ... < jma

indices of the
measurements in vector y(k) that are under the attacker’s
control. Then the elements (j1, 1), (j2, 2)..., (jma

,ma) of
matrix D are one, and the rest are zero.

As we mentioned in the introduction, additional security
measures are introduced on certain number of sensor mea-
surements. Examples of these security measures could be
encryption of the communication channel through which
sensor measurements are transmitted, multi path routing
of the measurements, or making the sensors harder to
physically access. We assume that secured sensors cannot
be corrupted by the attacker, which implies that rows of
the D matrix that correspond to secured sensors are equal
to zero.

In case the attack is not detected, the attacked measure-
ments ya(k) are used to construct the state estimate. Due
to the linearity of the Kalman filter, the attacked estimate
x̂a(k) is the sum of the responses to y(k) and a(k), i.e.,

x̂a(k) = x̂(k|k − 1) + ∆x̂(k), (5)

where ∆x̂(k) is dependent just on the attack signal and
propagates by

∆x̂(k + 1) = (A−KC)∆x̂(k) +KDa(k). (6)

The error between state x(k) and the corrupted estimate
x̂a(k) now becomes

x(k)− x̂a(k) = e(k)−∆x̂(k). (7)

The attack influences the residual signal r(k) as well. From
(3), the attacked residual signal changes to

ya(k)− Cx̂a(k) = r(k) + ∆r(k),

where ∆r(k) can be obtained from (4) and (5) as

∆r(k) = Da(k)− C∆x̂(k). (8)

The goal of the attacker is to increase the mean square
of estimation error (7), and at the same time remain
undetected. In next section, we introduce bias injection
attacks as one of the possible strategies to construct signal
a(k) that accomplishes this goal.

3. BIAS INJECTION ATTACKS

In the bias injection attack scenario, the attack signal a(k)
slowly converges to some constant vector a (Teixeira et al.,

2015). In this section, we formulate the problem of finding
a vector a that maximizes mean square estimation error
in steady state, and does not increase alarm probability
more then a certain threshold.

By substituting a(k) with a in (6), we get

∆x̂(k + 1) = (A−KC)∆x̂(k) +KDa.

As we mentioned earlier, matrix A − KC of the Kalman
filter is asymptotically stable, hence both ∆x̂(k) and
∆r(k) reach steady states. The steady state equations for
∆x̂(k) and ∆r(k) are

∆x̂ = (A−KC)∆x̂+KDa, (9)

∆r = Da− C∆x̂. (10)

Since A − KC is stable, In − A + KC is invertible, thus
the solution of (9) is unique and given by

∆x̂ = (In −A+KC)−1KDa =: Gx̂Da. (11)

Combining (11) with (10) gives

∆r = Da− CGx̂Da = (Im − CGx̂)Da =: GrDa. (12)

Remark 1. Note that the previous discussion holds in case
that the bias injection attack is not detected during the
transient phase. We will assume that this is not the case
since the attacker can make the transient smooth by
increasing the attack slowly (Teixeira et al., 2015).

We define the attacker’s objective as to increase the mean
square of error (7) once ∆x̂(k) reaches steady state ∆x̂,
that is

maximize
a∈Rma

E{‖e(k)−∆x̂‖22}. (13)

The objective can be rewritten as

E{‖e(k)−∆x̂‖22} = E{‖e(k)‖22 − 2∆x̂T e(k) + ‖∆x̂‖22}.
The term E{2e(k)T ∆x̂} is equal to zero because ∆x̂ is
constant, and e(k) is zero mean. The term E{‖e(k)‖22} =
Tr(Σe) is constant, since it represents the part of the error
coming from the noise. Thus, in order to maximize (13),
the attacker needs to find a that maximizes

E{‖∆x̂‖22} = ‖Gx̂Da‖22.

The constraint for the attacker is that it wants to remain
undetected. The bias injection attacks preserves the na-
ture of residual distribution, since it remains Gaussian.
However, since the attack changes the mean value of the
distribution, the alarm probability can increase. For this
reason, we assume that the constraint for the attacker is
to not considerably increase the alarm probability. This
constraint can be modeled as

P(‖Σ−1/2r (r(k) + ∆r)‖22 > τ) ≤ α+ ∆α ≤ 1,

where ∆α > 0 and is a threshold that models the attacker’s
willingness to risk detection. For example, say that the
false alarm probability is α = 5%. In case that the alarm
probability in presence of attacks raises to α+∆α = 5.5%,
the alarms will probably be classified as a consequence of
noise, and the attack will remain undetected. However,
in case that the alarm probability in presence of attack
changes to α + ∆α = 25%, the attack will most likely be
detected.

Based on the previous discussion, the problem the attacker
wants to solve can be formalized as:

Problem 1.
maximize

a∈Rma
‖Gx̂Da‖22, (14a)
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s.t. P(‖Σ−1/2r (r(k) + ∆r)‖22 > τ) ≤ α+ ∆α. (14b)

Note that Problem 1 in general has many parameters that
are not necessarily known to the attacker. In this paper
we are interested in studying the worst case scenario, thus
we adopt the following assumption about the attacker.

Assumption 1. The attacker:

• knows the structure of Problem 1;
• is able to gain control over all the sensors that are not

secured.

In order to find the solution of Problem 1, we will prove
that it can be transformed into

Problem 2.
maximize

a∈Rma
‖Gx̂Da‖22, (15a)

s.t. ‖Σ−1/2r GrDa‖22 ≤ δ2. (15b)

Problem 2 is a quadratically constrained quadratic pro-
gram that has an analytical solution. We will show that
for a particular choice of δ, Problem 1 is equivalent to
Problem 2.

The intuition behind the proof is the following. The ran-

dom variable Σ
−1/2
r r(k) has Gaussian distribution with

unit covariance and zero mean. This distribution is spher-
ically symmetric, and the alarm probability is equal to the
integral of the distribution outside the spherical constraint.
The bias injection attack is just affecting the mean value
of the distribution, i.e., the attack shifts the distribution

from zero to Σ
−1/2
r ∆r. Because of the spherical symmetry

of the distribution, as well as the spherical symmetry of
the integrated area, the direction of the shift does not play

any role. It is only the magnitude ‖Σ−1/2r ∆r‖2 that affects
the alarm rate. The following lemma is used in the proof.

Lemma 2. The alarm probability

P(‖Σ−1/2r (r(k) + ∆r)‖22 > τ),

is strictly increasing in ‖Σ−1/2r ∆r‖22 = ‖Σ−1/2r GrDa‖22.

Proof. The random variable Σ
−1/2
r (r(k) + ∆r) is Gaus-

sian with mean value Σ
−1/2
r ∆r = Σ

−1/2
r GrDa and

covariance matrix E{Σ−1/2r r(k)rT (k)(Σ
−1/2
r )T } = Im.

Thus, ‖Σ−1/2r (r(k)+∆r)‖22 represents the non-central chi-
squared random variable (Seber, 1963). The non-central
chi-squared distribution is defined by two parameters. The
first one is the number of degrees of freedom, and it is equal
to the dimension of the random variable m. The second
parameter is called the non-centrality parameter, and it is

equal to the magnitude of the mean value ‖Σ−1/2r GrDa‖22.

The alarm probability represents the complementary cu-
mulative distribution function of the non-central chi-
squared random variable. It is known that this function is
equal to the Marcum Q-function (Sun et al., 2010). It was
proven in the same work (Sun et al., 2010, Section III), that
the generalized Marcum Q-function is strictly increasing in
the non-centrality parameter for m, τ > 0. In our case the

non-centrality parameter equals to ‖Σ−1/2r GrDa‖22, so the
claim of the lemma follows. 2

Using the previous result, we are ready to prove the
equivalence between Problem 1 and Problem 2.

Theorem 1. If Assumption 1 holds, then there exists δ ∈ R
such that Problem 1 is equivalent to Problem 2.

Proof. Let r̄ ∈ Rm be any unit vector, and let δ be such
that

P(‖Σ−1/2r r(k) + δr̄‖22 > τ) = α+ ∆α, (16)

is satisfied. Such δ exists, since the alarm probability is
the Marcum Q-function, and this function is continuous
and strictly increasing in δ2 for m, τ > 0 (Sun and Baricz,
2008).

The objective functions (14a) and (15a) of the problems
are the same, thus it is sufficient to prove that the feasible
domains specified by the constraints are equal. We will use
a contradiction argument to prove this. Assume that there
exists a that satisfies constraint (14b)

P(‖Σ−1/2r (r(k) +GrDa)‖22 > τ) ≤ α+ ∆α, (17)

but violates constraint (15b)

||Σ−1/2r GrDa||22 > δ2.

In that case, we have that

||Σ−1/2r GrDa||22 > δ2 = ||δr̄||22,
and from (16) and (17)

P(‖Σ−1/2r (r(k) +GrDa)‖22 > τ) ≤
P(‖Σ−1/2r r(k) + δr̄‖22 > τ).

This is in contradiction with Lemma 2 where it was proven
that the alarm probability is strictly increasing function

of ||Σ−1/2r GrDa||22. In a similar manner, we disprove the
existence of a that satisfies the quadratic constraint, but
violates the probability constraint. 2

Remark 2. Since there is no simple closed form for the
Marcum Q-function, finding the δ that satisfies

P(‖Σ−1/2r r(k) + δr̄‖22 > τ) = α+ ∆α,

needs to be done either numerically, or by using a Monte
Carlo method.

It is interesting to note that the optimization Problem 2
is of the same form as the one in (Teixeira et al., 2015),
which was obtained by analyzing bias injection attacks in
a deterministic setting.

4. ATTACK IMPACT MITIGATION

In this section, we address the problem of systematically
mitigating the impact of bias injection attacks. Based on
an analysis of the solution of Problem 2, we propose a
criterion for selecting the best combination of sensors to
secure. Furthermore, we also provide a condition on the
necessary number of sensors to secure in order for the bias
injection attack impact to be less than a desired threshold.

It is always of interest to first check if the attacker is able
to inflict arbitrary large damage while staying undetected
at the same time. The following result shows that for
the problem we consider, this is possible only in a very
restricted case.

Proposition 1. A necessary condition for the optimal value
of Problem 2 to be unbounded is that the matrix A has
an eigenvalue equal to 1.
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Proof. Assume that the attacker is able to increase the
error arbitrarily. A necessary condition for that is existence

of Da 6= 0 such that Σ
−1/2
r GrDa = Σ

−1/2
r ∆r = 0. Since

matrix Σ−1r is positive definite, it follows ∆r = GrDa = 0.
In that case, from (10) we have Da = C∆x̂. But then it
follows from (9) that

∆x̂ = (A−KC)∆x̂+KDa

= A∆x̂+K(Da− C∆x̂) = A∆x̂.

We see that the last equation has a nontrivial solution only
in case that matrix A has an eigenvalue equal to 1. 2

Corollary 1. Note that if A does not have eigenvalue equal
to 1, it follows from the proof that null(Gr) = {∅}.

Since matrix A has eigenvalue equal to 1 only in ex-
ceptional cases, which can be treated independently, we
introduce the following assumption without significant loss
of generality.

Assumption 2. We assume A does not have eigenvalue
equal to 1.

Under Assumption 2, the solution of Problem 2 can be
found analytically.

Lemma 3. (Teixeira et al., 2015, Theorem 11) Suppose
Assumption 2 holds. The solution of Problem 2 is then
given by

a∗ = ± δ

‖Σ−1/2r GrDv∗‖2
v∗,

where v∗ is the unit length generalized eigenvector that
corresponds to the maximal generalized eigenvalue λ∗ of
the matrix pencil

(DTGT
x̂Gx̂D,D

TGT
r Σ−1r GrD). (18)

The maximal increase of the mean squared error is

‖Gx̂Da
∗‖22 = λ∗δ2. (19)

It follows from the result that the attack impact is the
product of two essentially different parts. The first part
is δ2, which models that the attack can increase the
impact by increasing the risk of being detected. This
part cannot be influenced by securing sensors. The second
part is λ∗, and it is dependent on the properties of the
matrix pencil (18). We next explain how this matrix pencil
changes by securing some of the sensors.

The only parameter that changes in the matrix pencil (18)
with securing sensors is the matrix D. Assume we want
to secure l sensor measurements. Under Assumption 1,
matrix D has m rows and m − l columns. Recall that we
assumed that secured sensors cannot be corrupted by the
attacker, so rows that correspond to those measurements
are equal to zero. Therefore, the problem is to choose
which l rows of D should be zero, such that the maximal
generalized eigenvalue of the pencil (18) is minimal. This
is a combinatorial problem, and can be solved by going
through all possible combinations. This is feasible in
practice as long as the problem size is not too large.

Besides the largest generalized eigenvalue, the other
ones prove to be useful for the attack analysis. As-
sume that none of the sensors are secured, so that
D = Im and the matrix pencil (18) is equal to
(GT

x̂Gx̂, G
T
r Σ−1r Gr). Under Assumption 2, null(Gr) = {∅},

which implies that GT
r Σ−1r Gr is positive definite and the

pencil (GT
x̂Gx̂, G

T
r Σ−1r Gr) has exactly m real nonnegative

generalized eigenvalues (see Preliminaries). It turns out
that the impact of the worst case bias injection attack
with any p sensors is always larger than p–th generalized
eigenvalue of the matrix pencil (GT

x̂Gx̂, G
T
r Σ−1r Gr).

Theorem 2. Suppose Assumption 2 holds. Denote by 0 ≤
λ1 ≤ λ2 ≤ ... ≤ λm the generalized eigenvalues of
(GT

x̂Gx̂, G
T
r Σ−1r Gr). Assume the attacker has control over

p ∈ {1, ...,m} sensors. Then the maximal impact (19)
conducted with any combination of p sensors cannot be
less than λpδ

2.

Proof. In case that the attacker controls p measurements,
the attack signal Da is sparse with p non-zero components.
Define by Ip = {Da ∈ Rm|card(Da) ≤ p} the set of
all possible bias injection attacks that the attacker is
able to construct using p measurements (card(Da) returns
the number of non-zero elements in vector Da). Using
Lemma 1, it follows

λ∗p = min
U⊆Ip

dim(U)=p

max
Da∈U

aTDTGT
x̂Gx̂Da

aTDTGT
r Σ−1r GrDa

≥

min
U⊆Rm

dim(U)=p

max
x∈U

xTGT
x̂Gx̂x

xTGT
r Σ−1r Grx

= λp, (20)

since Ip ⊆ Rm. Recall that the attack impact is given
by (19). By multiplying (20) with δ2, it follows that
minimal impact conducted with p sensors cannot be less
than λpδ

2, which completes the proof. 2

In order to illustrate Theorem 2 and other results from
this section, we consider the following example.

Example 1. Consider the system

A =

0.9 0 0.3 0
0 0.9 0 0.3
0 0 0.9 0
0 0 0 0.9

 Σv = 10−2

 0.8 0.2 2.7 0.7
0.2 0.8 0.7 2.7
2.7 0.7 9.0 2.3
0.7 2.7 2.3 9.0


C = I4 Σw = diag(2.5, 2.5, 0.5, 0.5).

We assume for simplicity that δ2 = 1, so the attack
impact (19) is equal to the largest generalized eigenvalue.

Assume first that none of the sensors are secured, that is,
D = Im and the pencil (18) is equal to (GT

x̂Gx̂, G
T
r Σ−1r Gr).

The generalized eigenvalues are then λ1 = 0.02, λ2 = 0.02,
λ3 = 66.05, and λ4 = 115.72. Thus, in case we do not
secure any sensors, the worst case impact is 115.72.

Assume now we want to secure a certain number of sensors,
so that impact is less than, say 5 for δ2 = 1. We can
then use Theorem 2 to decide the necessary number of
sensors to secure. Since the second highest generalized
eigenvalue is λ3 = 66.05, it follows from Theorem 2 that
we cannot reduce the impact to be less than that value
if we secure only one sensor. We also see that the third
largest eigenvalue is equal to 0.02, so securing two senors
could be more beneficial.

The maximal generalized eigenvalues for different combi-
nation of attacked measurements are shown in Table 1.
We can see from the table that by securing sensors {3, 4}
we achieve the best result, reducing the maximal impact
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Table 1. Maximal Generalized Eigenvalue for
Different Combinations of the Secured Sensors

Secured
sensors

λ∗
Secured
sensors

λ∗

∅ 115.72 {2,3} 2.15

{1} 84.86 {2,4} 84.79

{2} 84.86 {3,4} 1.45

{3} 85.01 {1,2,3} 2.15

{4} 85.01 {1,2,4} 2.15

{1,2} 2.27 {1,3,4} 1.43

{1,3} 84.79 {2,3,4} 1.43

{1,4} 2.15 {1,2,3,4} 0

by 115.72/1.45 ≈ 80 times. Note as well that the bound
from Theorem 2 could be quite loose. For example, the
maximal attack conducted with two sensors is 84.79, while
the bound from Theorem 2 is equal to λ2 = 0.02. 2

5. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of bias injection
attacks against the Kalman filter equipped with the chi-
squared detector. We proved that the problem of finding
a worst-case bias injection attack can be reduced to
quadratically constrained quadratic program. Based on
the analysis of the solution, we derived a criterion based
on which we select sensors to secure. We also derived a
condition on the necessary number of sensors to secure in
order for the bias attack impact to be less than a desired
threshold.

There are two main challenges that we plan to address in
the future work. Firstly, we plan to extend the problem
of protection to more general types of attacks. Secondly,
we saw that the problem of securing sensors was com-
binatorial in nature. For large-scale systems, it may be
computationally expensive to check all possibilities, and
algorithms that could solve these particular combinatorial
problems fast might be required.
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