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Abstract—This paper investigates the problem of false
data injection attack on the communication channels in a
multi-agent system executing a consensus protocol. We
formulate a non-convex optimisation problem for an attack
strategy with minimal one-step attack energy to guarantee
instability of the consensus system. We propose an algo-
rithm based on ADMM to solve the problem efficiently in
case standard solvers are not available. Numerical simu-
lations are provided to illustrate the effectiveness of the
attack strategy.

Index Terms— Multi-agent systems, networked control
systems, integrity attack, optimization

[. INTRODUCTION

ULTI-AGENT systems have gained much attention in
both academic and industrial communities thanks to its
vast potential in various areas, including logistic management,
distributed computing and robotics, to name but a few. The
consensus problem refers to the objective for a set of agents
to reach a mutually agreeable state, i.e., consensus. This
is particularly useful in applications such as multi-vehicular
networks, formation control and distributed optimisation.
The control protocol for the multi-agent consensus prob-
lem has been well studied in the past decade [1-5]. Olfati-
Saber et al. [1,2] introduced a consensus protocol for both
discrete and continuous time multi-agent control systems,
which have been the foundations for much work in this
area. While the protocol can achieve consensus exponentially,
it requires continuous communication among agents and is
hence impractical in many applications. To resolve this, event-
triggered communication protocols have been proposed under
which the agents only exchange information when a certain
event-based threshold is exceeded. Dimarogonas et al. [6]
proposed a centralised event-triggered mechanism and a self-
triggered counterpart that does not require continuous tracking
of neighbour information. Yi et al. [7] proposed a dynamic
event-triggering law that further reduces the communications
with a dynamic threshold function.
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While much research effort on multi-agent systems fo-
cused on control and event-triggering protocol, fewer works
considered security-related problems such as jamming and
false data injection attacks. Kikuchi er al. [8] considered
malicious jamming attack and showed that the system can still
reach consensus under the proposed algorithm. Xu et al. [9]
considered a similar problem and proposed a self-triggered
protocol able to handle unreliable networks. Sundaram and
Hadjicostis [10] considered the multi-agent consensus problem
with malicious agents. LeBlanc et al. [11] considered a similar
problem but with restriction of using only local information.
The literature on injection attacks on multi-agent system is
limited. Ma et al. [12] considered injection attacks to the
communication channels but limited to zero-mean random
attacks. Most emphasis in the literature has been on the per-
spective of the agents instead of the adversaries. It is therefore
of interest to investigate false data injection attacks on the
communication channels in multi-agent systems with specific
adversarial models capturing capabilities and resources.

In this paper, we consider an injection attack problem
for a discrete-time multi-agent consensus system. We first
analyse the stability of the consensus error dynamics and
derive condition to deprive the system of convergence. We
show that this condition can be formulated as an optimisation
problem. The main contribution of this paper are twofold:

1) We propose an optimisation-based approach to design
an injection attack strategy to a multi-agent system
executing a consensus control protocol and

2) We transform the non-convex optimisation problem to a
convex problem with strongly convex objective that can
be efficiently solved with alternating direction method
of multipliers (ADMM).

The remainder of the paper is organised as follows. We
introduce the mathematical preliminaries in Section II. We
formulate the attack problem as an non-convex optimisation
problem to minimise the one-step attack energy under attack
constraints and conditions for non-convergence of the con-
sensus protocol in Section III. We present an algorithm to
transform and relax the optimisation problem to a convex
one that can be solved efficiently with guaranteed feasibility
in Section IV. Section V provides numerical simulations to
illustrate the effectiveness of the proposed algorithm and
presents some insights into the results. Finally, Section VI
concludes the paper and discusses some future directions.



Il. PRELIMINARIES
A. Notations

We denote an n x n identity matrix by [, and a vector
with all entries being 1 by 1,,. For any two matrices X,Y,
the operation X ® Y represents the Kronecker product. The
function ||z||o is the cardinality operator to count the number
of zero entries in x. For any function g(z), the notation
g(z)* denotes max{0, g(z)} element-wise. For any matrix
M, M\;(M) denotes the i-th largest eigenvalue and p(M) =
max; |A;(M)]| is the spectral radius.

B. Algebraic Graph Theory

We represent a multi-agent system with N agents by a
weighted, undirected graph G = (V,£) where node i € V =
{1,2,..., N} represents agent ¢ and the edge (i,j) € £ is a
bidirectional communication link between agents ¢ and j. The
adjacency matrix G = [G;;] is used to characterise the graph
with G;; being the weights of the edge (i,j) € £ and G;; =0
if (i,7) ¢ £. In addition, we assume that there is no self-loop
in the graph G, or in other words, G;; = 0 for all 4 € V. The
Laplacian matrix L = [L;;] is defined as L;; = Zﬁi:l Gim
and Lij = —Gij for ¢ 75 j

I1l. PROBLEM FORMULATION

Consider the problem of injection attack on a multi-agent
consensus control systems, where each agent is a scalar linear
time-invariant (LTT) system:

$Z+1 = A:ﬂ};+u};+wi (1)
y, = Cx, + vy, (2)

where xi,u};,y}; € R are the state, control input and mea-
surement of agent i at time k respectively. The noises w},
and v}, are i.i.d. Gaussian random variables with covariances
Q; and R, respectively. We assume the system is (4, C)-
observable. At each time k, each agent obtains the minimum
mean-square-error (MMSE) estimate of its own state, denoted
a%};, by a Kalman filter. Let ez =zl — ;%}f It is well known
that E [} ] = 0 with P} = E[ej el ] given by the following
recursion:

. i . . -1 i
Piy =P — Pli+1\kCT (CP;CT + R;) CPpyik

where Pp,,, = AP/A" + Q;. We make the standing
assumption that G is connected. We consider the following
multi-agent consensus control protocol:

N
uj, = €y Giy(#, — #}) + (1 — A)d; 3)
j=1

where jfc is the MMSE estimate of ] received by the
neighbours of agent j. The parameter ¢ is supposed to fulfil
the condition ¢ < (max; L;;)~! which is sufficient for the
system to reach consensus exponentially in the absence
of disturbances [2]. Similar to the man-in-the-middle attack
model [13-16], we consider the case where an attacker can
gain access and has the ability to alter the data transmitted

by any K agents at each k. Let zi be the attack input on the
broadcast data from agent j, then

7 =342 “4)
ul, :ez:c:ij(:i{c — 2 +2) + (1= Ay, 5)
Jj=1

N N
=—€Y Lijil+ey Gizl+(1—A)ij, (6
j=1 j=1

We further let x5, = vec(|z}, zY]) and similarly for
Tk, Uk, Wks Uk, Yk» €k, 2k- Inspired by the work of Guo et al.
[14], we restrict the form of attack input to a linear false data
injection attack strategy:

ZE = Tkii'k (7)

where T}, € RV*¥ js the attack matrix to be designed and
Ty, = 0 corresponds to no attack. We then obtain the compact
form of the system dynamics as follows:

Tpy1 = T + (IN ® A)(:Z?k — :i‘k) —eLzy + eGTp2) + wg
:(IN—Fk)a:k—F(Fk—F(A—1)IN)€k+wk (8)

where Fj, = e(L — GT}). The linear attack strategy makes
it possible to incorporate the attack strategy in the internal
dynamics of the agents, as shown in (8). This is conducive to
deriving a necessary condition for the system to be internally
unstable. In addition, if this structurally simplistic attack
strategy is effective, a more complex strategy may not be
necessary to use for the adversary. Let €, = x —Zo1y where
To=+ Zf\il z{ is the initial average state of all agents. The
objective of the system is to reach average consensus, i.e.,
€r — 0 or become as small as possible due to the presence
of disturbances. We assume throughout this paper that 7o = 0
without loss of generality due to linearity. We can rewrite (8)
as follows:

k41 = (IN—Fk)€k+(Fk+(A—1)IN)€k+wk 9

The system (9) is internally stable only if p(Iny — Fy) < 1
leading to consensus in expectation, i.e., limy_,oo E [e] = 0.
It is however important to note that the violation of this
condition does not necessarily mean divergence, or even lack
of convergence.

We aim to design T} such that the system is unstable while
there are at most K agents being attacked at each time k. In
addition, we would like to minimise the one-step attack energy
||z&]|3. In view of this, we consider the following optimisation
problem:

min | T3
st. p(Iy — Fk) >1
[rkllo < K

(PD)

where 7, € {0,1}" is a binary vector indicating whether or
not each agent is attacked at time k, i.e., 1 = 0if T} ;; =0
for all j and ry,; = 1 otherwise while ry ;, T} ;; are the i-th
element of r; and the (4,7)-th element of T}, respectively.
Both constraints of the optimisation problem (P1) are non-
convex. In view of this, relaxation and other techniques are
adopted to solve the problem.



IV. MAIN RESULTS

In this section, we will transform the problem (P1) into a
convex optimisation problem that is efficiently solvable with
the ADMM algorithm described in [17].

A. Lagrangian Relaxation

Instead of a hard constraint on the cardinality of 7, we
consider a new objective function as a combination of attack
energy and ||rg||o, i.e.,

min || Tidxl3 + Bllrello
T (P2)
S.t. p(INka) >1

where 8 > 0 is a penalty weight on the cardinality of ry.
The cardinality term in the objective can be replaced by an
equivalent one expressed in 7. Note that

T
. N N
diag (TkaT) = [Ej:l Tkz,lj T Zj:l Tl?,Nj}

From the definition of r;, we have the convenient equality
rxllo = ||diag (T%T}L) |lo- The optimisation problem (P2) can
then be rewritten as follows:
min || Tyd |3 + Blldiag (T T3 ) llo
T (P3)
S.t. p(IN — Fk) >1

B. Majorisation-Minimisation Algorithm

For the relaxed problem (P3), the objective function includes
a non-convex cardinality term. We approximate the cardinality
operator to one that is easier to manipulate while maintaining
sufficient resemblance. Traditionally, the cardinality operator is
approximated by /; norm such as in lasso regression. However,
it is a poor approximator as shown in Fig. 1. In view of this,
we adopt the following approximation [18]:

lzllo = fs(z) =1 —log; (z + 0)

for scalar 2 and some 0 < § < 1. Note that lims_,q f5(z) =
l|lz|lo. For simplicity, let M}, = diag(T}T}') and My ; be the
i-th element of My, in other words, M, ; = Zj\;l T,f,ij >

SN fs(Mys) = N —

} Izl

0. Now we have || Mglo =
SN logs (My; + ).

Fig. 1: Approximation of cardinality operator

The objective function remains non-convex as it is a sum
of convex and concave functions. To overcome this, we

adopt the technique of Majorisation-Minimisation (MM) by
exploiting the concavity of the approximation, also known as
the reweighted /; -minimisation method [18]. The basic idea is
to replace the non-convex term Zfil f5(My,;) by a surrogate
function and optimise the problem iteratively. As fs(My ;) is
concave, its linearisation s(Mk,i, M, ,Et)) is a suitable surrogate:

%

s (Mkvi7 M]E:f’?)

=1—logs (M,gtz) +6) + (Myi — M)

where M, lgtf is the t-th iterative solution of Mj ; given the
constraints. By replacing the concave term in the objective
function by the surrogate and ignoring the constant terms

thereof, we then have the following optimisation problem:

N

min [ Tedel3 + 8w My
k i=1
S.t. p(IN — Fk) >1

(P4a)

-1
where wgt) = (log 6t (M,gtv) + 6)) . At each iteration ¢,
(t)

i

. t .
increases for smaller values of M ,E Z) and vice
,

versa. The contribution wgt)Mkﬂ» is minimal when M litl) and

M, ; are zero. In other words, the MM algorithm encourages
the elements of My ; to be as small as possible, promoting
sparsity in the solution T}. Recall the definition of My ; =
Zj.vzl T7, we can rewrite (P4a) as

the weight w

min || Thiwl|3 + BIW O T3
T (P4b)
S.t. p(INka) >1

with convex objective and W) = diag (w(t))l/2 .

C. Spectral Radius Constraint

To eliminate the last non-convex constraint, we construct

a sufficient condition to ensure feasibility and prove that the

new constraint is always feasible, thus not over-restrictive. It
is straightforward to show that
1

p(In — Fy) > N;Ai(IN—Fk) (10)

—1+ % (Tr(GTy,) — Te(L)) (11

A sufficient condition for p(Iy — Fj) > 1 is therefore
Tr(GTy,) > Tr(L). As a result, we have

min || Tudr |3 + BIW O Ti 7
R (P5)
s.t. Tr(GTg) > Tr(L)

We have yet to show that problem (P5) is feasible when the
original problem (P1) is feasible.

Proposition 1. Problem (P5) is always feasible.

Proof. Since G is connected, there exists an index pair (I, m)
where | # m, l,m = 1,2,..., N such that G;;;, # 0. Now



consider the most restricted form of T}:

T, (i,j)=(m),l#m
Thij = 0

otherwise
for some T # 0. Then we have Tr(GT}y) = Gy, T. If we as-
sign T such that T > Gy, "' Tr(L) = Gy " Zf\;l Z;V:l Gi;
then the constraint Tr(GT}) > Tr(L) in (P5) is satisfied. Thus
(PS) is always feasible. O

D. Additional Ad-Hoc Constraints

To study specific attack scenarios, it is sometimes relevant
to include additional constraints in (P5). For example, we can
include the cosntraint (Iy — Fj)1 < —1 or (Iy — Fj)1 >
(1 +¢)1 to ensure that the system cannot reach non-average
consensus for some ¢ > 0. Should the agents reach consensus
at zj, = cl, the agents will oscillate in states for the former
constraint as

Tp, = cl
Thot1 = (In — Fi)xp, < —cl + Wy,
Trote = (IN — Fi)Trg+1 > €1 — cwiy + Wiyt1

for ¢ > 0 with the inequality signs reversed for ¢ < 0 where
wy = (Fj + A)wg. As for the latter constraint, the agents will
diverge with dynamics

k—ko

zp > (14 6)FRo1 4+ ) " (14 Ry i

i=1
for ¢ > 0 with the signs reversed for ¢ < 0. Since L1 = 0,
we obtain two variants of (P5):

H%in | Thaxl3 + BIW O T3
k

st. Tr(L—GTy) <0 (P6a)
—(GTy +<IN)1 <0
min | Tixll3 + BIW T |13
st. Tr(L—GTy) <0 (P6b)

(GTy, +2¢'IN)1 <0

E. ADMM

We present an ADMM algorithm to solve (P6a) and (P6b)
adopting an extension to ADMM. We first reformulate prob-
lem (P6a) and (P6b) as follows:

2

. a2 O 2)
Tonz 2_; (HTk,zka2+BHW T, ill 7
st. Tr(L—GTp1)t =0 (P7)
9(Ti2)" =

Tpi=2 Vie{l,2}

where ¢(Ty,) = —(GT; + <In)1 for problem (P6a) and
9(Tx) = (eGTy+2IN)1 for (P6b). The augmented Lagrangian
for (P7) is

L”](Tk,i7 Za Hi, AZ)

N
=3 (IThidel3 + BIW ™ T il + Te (AT (Ths - 2)))

(1L = 6Tea) )" + lg(Tra) 13)

N
ZTr (Thi — 2)" (Ths — 2))
i=1

+mTr(L — GTy )" + MQTQ(TIC72)+

where p;, A; are Lagrangian multipliers (dual variables) and
n > 0 is the step size for dual ascents. We can then solve (P7)
with the following update rules

T]Ei,erl) = argmin Ln (Tk,i7 Z(t,m)’ ugt,M)7A§t,m)>

Th,s

Ztm+l) argmin L, (T,gt;m+1), Z, ugt’m), Agt’m))
g )
+
) = ) e (1 - Gl )
+
;m+1 ,m ,m—+1
St em) (ng,tz + ))
A(t7m+1) _ A(t,m) . (Tét3m+1) _ Z(t’m'H))

Theorem 1. The updates rule for Ty, ; is given by
T,if;mﬂ) = vec™! (S_l vec (nZ(t’m) - A(t’m)>>

if the above solution satisfies the constraints Tr(L —
GTy1) < 0 and g(Ty2) < 0 respectively, where S =
(ZﬁIN QWM 4 2Xg +nln)® IN). Otherwise, it is the
solutions to the nonlinear matrix equations

T 12X + nly) 4+ 28WOT, 1 + AP™ — pzEm)
— (41 + 1o (Te(L — GTi1))) Ha(Tie1)G = 0

Th2(2X5 +nly) + 28W O Ty 5 + AS™ —yztm)
N
+ ) (42 + nha (9(Tk 2):)) Ha2i (T 2)Gi = 0

i=1
where ho(z) = o 'In(1+exp(az)), with derivative
h.(z) = exp(az)/(1 + exp(az)), H,(T) = R (Tr(L —
GT1)), Hapi(T) = ho(9(Th2)i) [Gilmn = —Gim for
(P6a), |Gilmn = €Gim for (P6b) and the update for Z is

2
Z(tm+1) _ 1 ( (tm+1) A(_t,m))
2,’7; n ki + %
Proof. Since L, (Ty;, Z, p;, A;) is strongly convex, it has a
unique minimiser. However, it is not a smooth function at
Tr(L — GTy1) = 0 and g(Tk,2) = 0. In view of this, we
replace all f(-)™ by hq o f() in the augmented Lagrangian.
This transformation is due to lim, o0 ho(2) = 2+ and it
becomes strongly convex and smooth in T} ; and Z. Note
that any positive value of « leads to a feasible solution, but
a larger « results in a more accurate solution and slower



convergence as it becomes less Lipschitz continuous. We can
then seek to solve the equations Vry | L) (Tk,i, Z, pts, Ai) = 0
and Vz Ly, (Ty;, Z, i, A;) = 0 for the unique minimiser:

2
VzLy(Thi, Z, pi, Ai) = ZW(Z —Tii) =N =0
i=1
E
Z= o > (T + M)

i=1
Let X, = #4471 and for large a,

V1, Ly (This Z, i, As)
= 2T 1 Xy, + 28W I Ty 1 + iy Ho (Ty 1) GT
+ Nho (Tr(L — GTy 1)) Ho(Ti1)GT + Ay +0(Th 1 — Z)
=T (2Xs +1In) +28WOT, 1 + A —nZ
+ (11 + nha(Te(L — GTy 1)) Ha(Tk1)G
If the Sylvester equation T} 1 (2Xy + nln) + ZBW(t)Tk,l +
A1 —nZ =0 has a solution satisfying Tr(L — GTj 1) <0, it
is the optimal solution minimising the augmented Lagrangian
because the last term would be zero should the condition be

met. Also, the above Sylvester equation can be written as
Svec(Ty,1) = vec(nZ — A1) as S is invertible:

Ty = vec™! (S*1 vec(nZ — Al))

12)

If the condition is not satisfied, one would need to solve the
nonlinear matrix equation (12) set to 0. Similarly for T} o, if
the above solution does not satisfy the constraint g(7% 2) <
0, one should solve the following nonlinear equation for the
update of T} o from the gradient L,;:

T 22Xy + nly) + 28W DT 5 + A§t7m)

N
—nZ™ 3" (2 + nha (9(Tk2)i) Ha,2i(Th2)Gi = 0

i=1

thus concluding the proof. O

V. SIMULATION RESULTS

In this section, some simulation results with the proposed
linear false data injection attack algorithm are presented. We
consider the following graph:

0 0 44 23
0 0 19 0.2
G= 4419 0 1.1
230211 0

withn=1,4=0.8,C=12,Q;,=R;=0foralliec V.

We first simulate the problem (P5) with 5 = 100 and
the initial states ro = [1,—1.5,3.5,—3]7 and Wg)) =1
for all 4,5 in the finite time horizon k£ = 1,2,...,100.
The agent states, relative consensus errors and attack inputs
are plotted in Fig. 2a-2c. The agents diverged from z, with
diminishing rate as k grows but did not converge within the
time horizon. The attacker continuously attacked agent 1 and
3 with maxy, ||zx|l2 =~ 4.1 while the attack inputs gradually
decayed for k > 14.

We then solve problem (P6a) with ¢ = 0.1, shown in
Fig. 2d-2f. It can be observed that the agents also diverged
but at a much higher rate, approximately 7 times, than (P5).
The relative consensus errors =} — %) were bounded within
+4 while maxy, || zx|| &~ 12.4. Similar to (P5), the attack input
also gradually decayed after k > 44.

On the other hand, the solution for (P6b) showed an entirely
different behaviour where the agents converged to a fixed
point at x;, = [0.6974,1.0267, —0.3055, —0.1743]7 without
consensus. The attack input peaked at ||zs]l2 ~ 5.8 and
converged to z = [—1.606,0,1.458,0]7 at k = 35.

Of the three problems considered in this simulation, (P6b)
is the most capable as it generates low attack energy ||z ||3
while keeping the agents from consensus. In addition, it also
keeps the agents state finite to promote stealthiness.

VI. CONCLUSION AND FUTURE WORK

We considered a linear injection attack against communica-
tion links in the multi-agent consensus protocol. We presented
a formulation of the problem as an optimisation problem
aiming to minimise one-step attack energy while ensuring
instability of the system, as well as an algorithm to solve the
non-convex problem efficiently. Numerical examples showed
that it is possible to drive the multi-agent system to diverge
by attacking only one agent at each time step with bounded
average attack power.

A main limitation of this work is that we did not consider
any attack detection or countermeasure. This is important as
it relates to how the attacker should choose the strategy in
order to avoid detection. A plausible direction to overcome
this drawback is to formulate the two problems simultaneously
in a game setting and seek for the Nash equilibrium to analyse
the system performance.
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