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Abstract—We study the problem of securely estimating
the states of an unstable dynamical system subject to non-
stochastic disturbances. The estimator obtains all its infor-
mation through an uncertain channel, which is subject to
nonstochastic disturbances as well, and an eavesdropper
obtains a disturbed version of the channel inputs through a
second uncertain channel. An encoder observes and block
encodes the states in such a way that, upon sending the
generated codeword, the estimator’s error is bounded and
a security criterion is satisfied, thereby ensuring that the
eavesdropper obtains as little state information as possible.
Two security criteria are considered and discussed with the
help of a numerical example. A sufficient condition on the
uncertain wiretap channel, i.e., the pair formed by the un-
certain channel from the encoder to the estimator and the
uncertain channel from the encoder to the eavesdropper is
derived, which ensures that a bounded estimation error and
security are achieved. This condition is also shown to be
necessary for a subclass of uncertain wiretap channels. To
formulate the condition, the zero-error secrecy capacity of
uncertain wiretap channels is introduced, i.e., the maximal
rate at which data can be transmitted from the encoder to
the estimator in such a way that the eavesdropper is unable
to reconstruct the transmitted data. Finally, the zero-error
secrecy capacity of uncertain wiretap channels is studied.

Index Terms—Secure state estimation, uncertain wiretap
channel, zero-error secrecy capacity.
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I. INTRODUCTION

W ITH the increasing deployment and growing importance
of cyberphysical systems, the question of their security

has recently become a focus of research activity in control theory
[1]. One central vulnerability of networked control or estima-
tion is the communication channel from the system, which is to
be controlled/estimated by the controller/estimator, and possi-
bly the feedback channel. A possible attack on the channels is
to actively interfere with transmitted information, with the goal
of degrading the control or estimation performance. However,
if the state of a system is estimated remotely, e.g., in order to
decide on the next control action at a remote controller, another
possible attack is eavesdropping. An adversary might have the
chance to overhear the transmitted information, to make its own
state estimate, and thus obtain sensitive information. For exam-
ple, if the system processes health information, leakage of its
state might breach privacy. If the system is a production line,
knowledge of its state could be valuable information for com-
petitors or for criminals. This paper addresses the question of
how to protect the transmitted information from such attackers.

We consider an unstable scalar, discrete-time, time-invariant
linear system subject to nonstochastic disturbances, where both
the initial state and the disturbances are arbitrary elements of a
bounded interval. An estimator has the goal of estimating the
system states in such a way that the supremum over time of the
absolute differences between the true state and its estimate is
bounded uniformly over all possible system state trajectories.
We call this reliability. The estimator does not have a direct
access to the system states. Instead, an encoder observes the
system state and is linked to the estimator through an uncertain
channel, where every input is disturbed in a nonstochastic man-
ner, and the input and output alphabets are possibly finite. The
encoder transforms blocks of state observations into codewords
using an encoding function, while the estimator applies a decod-
ing function for estimating the system states from the channel
outputs. Together, the encoding and decoding functions form a
transmission scheme.

Through another, different, uncertain channel, an adversary
called the eavesdropper obtains a disturbed version of the en-
coder’s channel input, and hence information about the system
state. In addition to reliability, our goal is to make the infor-
mation transmission from the encoder to the estimator secure
in such a way that the eavesdropper obtains as little informa-
tion as possible about the system state, in a sense to be defined.
The main question of this paper is regarding conditions under
which there exists a transmission scheme such that reliability
and security are achieved simultaneously (see Fig. 1).
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Fig. 1. Unstable system has to be estimated remotely. It obtains the
state information through an uncertain wiretap channel. The outputs
obtained by an eavesdropper at the other channel output need to satisfy
an operational security criterion.

Contributions: We introduce the uncertain wiretap channel,
defined as the pair consisting of the uncertain channel from the
encoder to the estimator and the uncertain channel from the en-
coder to the eavesdropper. We also define the zero-error secrecy
capacity of the uncertain wiretap channel, which describes the
maximal block-encoding data rate, such that not only the estima-
tor can decode the transmitted message, but also at the same time
the eavesdropper always has at least two messages, of which
the one that was actually transmitted cannot be distinguished.
We show that it either equals zero or the zero-error capacity of
the uncertain channel between the encoder and the estimator.
The latter capacity was introduced by Shannon [2]. By defini-
tion, it is the maximal rate at which, using block-encoding, data
can be transmitted from the encoder to the estimator through the
uncertain channel in such a way that every possible channel out-
put is generated by a unique message. A criterion to distinguish
the cases of zero and positive zero-error secrecy capacity can be
given in a special case. For the study of the zero-error secrecy
capacity of uncertain wiretap channels, we introduce a hyper-
graph structure on the input alphabet in addition to the graph
structure, which is applied in the study of the zero-error capacity
of uncertain channels and which also goes back to Shannon’s
original paper [2].

With these information-theoretic tools, we address the main
question formulated earlier. We define two security criteria for a
secure estimation. The first, called d-security, is that there is no
possibility for the eavesdropper to process the data it receives in
order to obtain a bounded estimation error. The other security
criterion is v-security, which requires that the volume of the
set of system states at a given time that are possible according
to the eavesdropper’s information should tend to infinity. We
identify a sufficient condition that says that reliability and both
d- and v-security are achievable if the zero-error secrecy capac-
ity of the uncertain wiretap channel is strictly larger than the
logarithm of the coefficient of the unstable system. In the con-
struction of reliable and d- or v-secure transmission schemes,
we separate quantization/estimation from channel coding. We
also give bounds on the speed of growth of the eavesdropper’s
estimation error and of the volume of the set of states at a given
time that are possible according to the eavesdropper’s informa-
tion. A necessary condition for the simultaneous achievability
of reliability and d- and v-security can be given for a subclass
of uncertain wiretap channels.

Related work: Good overviews over the area of estimation
and control under information constraints can be found in the
introduction of [3] and in [4]. Matveev and Savkin [3] proved
that if the system and channel disturbances are stochastic and
the estimator’s goal is to obtain an almost surely bounded

estimation error, the crucial property of the channel is its Shan-
non zero-error capacity. This led Nair [5] to introduce a non-
stochastic information theory for studying the zero-error ca-
pacity of uncertain channels and to consider the problem of
estimation and control of linear unstable systems, where the in-
formation between the sensor and estimator has to be transmitted
over an uncertain channel.

There exists a large body of work on information-theoretically
secure communication (see [6] and [7]). Stochastic wiretap
channels were introduced by Wyner [8]. Security in the con-
text of estimation and control has so far mostly meant security
against active adversaries, e.g., as in [9]–[13]. To our knowl-
edge, only Li et al. [14] and Tsiamis et al. [15] have combined
estimation and security against a passive adversary for an un-
stable system so far. Li et al. [14] consider general stochastic
disturbances in the system and a stochastic wiretap channel
with Gaussian noise and use a nonoperational security crite-
rion based on entropy, whose implications are not immediately
clear. Tsiamis et al. [15] consider a linear system with Gaus-
sian disturbances and Gaussian observation noise, whereas the
stochastic wiretap channel randomly and independently deletes
input symbols. As a security criterion, Tsiamis et al. [15] require
that the eavesdropper’s estimation error tends to infinity.

Uncertain channels were introduced by Nair [5] but were
previously considered implicitly in the study of the zero-error
capacity of channels with stochastic disturbances, as introduced
by Shannon [2]. The calculation of the zero-error capacity is
known to be a difficult problem, which nowadays is mainly
treated in graph theory [16].

Notations: The cardinality of a finite set A is denoted by �A.
If �A = 1, we call A a singleton. An interval I will also be
written I = [Imin , Imax]. We define the length of I by |I|. For
two subsets A and B of the real numbers and a scalar λ, we set
λA + B := {λa + b : a ∈ A, b ∈ B}. A sequence (a(t))t1

t=t0
is

denoted by a(t0 : t1), where t1 is allowed to equal ∞.
Outline: In Section II, uncertain wiretap channels are intro-

duced and the main results concerning their zero-error secrecy
capacity are stated. The problem of secure estimation is formu-
lated and the corresponding results are presented in Section III.
In Section IV, the quantizers applied in this paper are introduced
and analyzed. This analysis is used in Section V for the proof
of the results on secure estimation. Section VI discusses d- and
v-security, including a numerical example. After the conclusion
in Section VII, Appendix A contains the proofs from Section II
and some additional discussion, and Appendix B provides the
proofs from Section IV.

II. UNCERTAIN CHANNELS AND UNCERTAIN

WIRETAP CHANNELS

Before we can present the model for secure estimation, we
need to introduce the model for data communication between
the encoder and receiving parties. This model is the uncertain
wiretap channel. Since it is new and some results concerning
uncertain wiretap channels are relevant for secure estimation,
we devote the complete section to this topic. Our model for
secure estimation will be defined in Section III.

1) Uncertain channels: Let U and V be arbitrary nonem-
pty sets. An uncertain channel from U to V is a mapping U :
U → 2V∗ := 2V \ {∅}. For any u ∈ U , the set U(u) is the family
of all possible output values of the channel given the input u.
When transmitting u, the output ofUwill be exactly one element
of U(u). Here, U(u) �= ∅ for all u means that every input
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generates an output. Note that every mapping ϕ : U → V can be
regarded as an uncertain channel Φ : U → 2V∗ with singletons as
outputs, i.e., Φ(u) = {ϕ(u)}. Henceforth, we will not make any
notational difference between a mapping and the corresponding
uncertain channel.

Remark 1: Note that there are no probabilistic weights on the
elements of U(u). Thus, U models a channel with nonstochastic
noise, where U(u) describes the effect of the noise if the input
is u.

We call the set ran(U) := ∪u∈UU(u) the range of U. Given
two uncertain channels U1 : U → 2V∗ and U2 : V → 2W∗ , then
first applying U1 and then U2 leads to a new uncertain chan-
nel U2 ◦ U1 : U → 2W∗ called the composition of U1 and U2 .
Formally, for any u ∈ U , we have

(U2 ◦ U1)(u) := U2(U1(u)) :=
⋃

v∈U1 (u)

U2(v).

Every uncertain channel U defines a reverse channel U−1 :
ran(U) → 2U∗ by

U−1(v) = {u ∈ U : v ∈ U(u)}.
Obviously, U−1 again is an uncertain channel.

Remark 2: We call U−1 the reverse instead of the inverse be-
cause usually �U−1(U(u)) > 1. We have U−1(U(u)) = {u}
for all u ∈ U if and only if every output v ∈ ran(U) is generated
by exactly one input u. If this is the case, we call U injective.
If the uncertain channel U is injective, then U−1 is an ordinary
mapping, in the sense that U−1(v) is a singleton.

Given uncertain channels Ui : Ui → 2Vi∗ (1 ≤ i ≤ n), their
product is the channel

U1 × · · · × Un : U1 × · · · × Un −→ 2V1
∗ × · · · × 2Vn

∗

(U1 × · · · × Un )(u(1 :n)) = U1(u1) × · · · × Un (un ).

If U1 = · · · = Un =: U, we write U1 × · · · × Un =: Un .
The reverse of U1 × · · · × Un is given by U−1

1 × · · · × U−1
n .

We write U−n for the reverse of Un .
2) Zero-error codes: An M -code on an alphabetA is a col-

lection {F(m) : 0 ≤ m ≤ M − 1} of nonempty and mutually
disjoint subsets of A. This is equivalent to an uncertain channel
F : {0, . . . , M − 1} → 2A∗ with disjoint output sets; thus, we
will often denote such a code just by F. The elements of ran(F)
are called codewords. If �F(m) = 1 for all 0 ≤ m ≤ M − 1,
then we call F a singleton code. Zero-error codes, which are not
singleton codes, are introduced here for the first time.

Let T : A → 2B∗ be an uncertain channel over which data are
to be transmitted. A nonstochastic M -code F on A is called a
zero-error M -code for T if for any m,m′ ∈ {0, . . . , M − 1}
with m �= m′

T(F(m)) ∩ T(F(m′)) = ∅. (1)

Thus, every possible channel output y ∈ ran(T ◦ F) can be
associated with a unique message m. In other words, the chan-
nel T ◦ F is injective, or equivalently, F−1 ◦ T−1 is an or-
dinary mapping associating with each output y the message
F−1(T−1(y)) by which it was generated (cf. Remark 2) [see
Fig. 2(a) for an illustration].

3) Uncertain wiretap channels and zero-error wiretap
codes: Given an additional finite alphabet C, an uncertain wire-
tap channel is a pair of uncertain channels (TB : A → 2B∗ ,TC :
A → 2C∗). The interpretation is that the outputs of channel TB

Fig. 2. (a) Uncertain channel T. If one sets F(0) = {a1}, F(1) = {a3},
then F is a zero-error 2-code for T. (b) Uncertain wiretap chan-
nel (TB , TC ). The uncertain channel F : {0, 1, 2} → 2A∗ defined by
F(0) = {a1}, F(1) = {a2 , a3}, F(2) = {a4} is a zero-error wiretap 3-
code for (TB , TC ).

are received by an intended receiver, whereas the outputs of TC

are obtained by an eavesdropper, who should not be able to learn
the data transmitted over TB .

An M -code F is called a zero-error wiretap M -code for
(TB ,TC ) if it is a zero-error M -code for TB , and additionally

�F−1(T−1
C (c)) ≥ 2 (2)

for every c ∈ ran(TC ◦ F). Thus, every output c ∈ ran(TC ◦
F) can be generated by at least two messages. Due to the lack
of further information, such as stochastic weights on the mes-
sages conditional on the output, the eavesdropper is unable to
distinguish these messages [see Fig. 2(b) for an example].

4) Zero-error capacity and zero-error secrecy capacity:
Given an uncertain channel T : A → 2B∗ , an M -code F on An

is called a zero-error (n,M)-code for T if it is a zero-error M -
code for Tn . We call n the blocklength of F. We set NT (n) to be
the maximal M such that there exists a zero-error (M,n)-code
for T and define the zero-error capacity of T by

C0(T) := sup
n

log NT (n)
n

. (3)

Due to the superadditivity of the sequence log NT (0 :∞) and
Fekete’s lemma [17], see also [18, Lemma 11.2], the supre-
mum on the right-hand side of (3) can be replaced with a
limn→∞. Thus, C0(T) is the asymptotically largest exponential
rate at which the number of messages, which can be transmitted
through T, free of error, grows in the blocklength.

Given an uncertain wiretap channel (TB ,TC ), a zero-
error (n,M)-code F for TB is called a zero-error wiretap
(n,M)-code for (TB ,TC ) if it is a zero-error wiretap M -
code for (Tn

B ,Tn
C ). We define N(TB ,TC )(n) to be the maxi-

mal M such that there exists a zero-error wiretap (M,n)-code
for (TB ,TC ). If no zero-error wiretap (n,M)-code exists,
we set N(TB ,TC )(n) = 1. The zero-error secrecy capacity of
(TB ,TC ) is defined as follows:

C0(TB ,TC ) := sup
n

log N(TB ,TC )(n)
n

. (4)

Again, by superadditivity and Fekete’s lemma [17], [18], the
supremum in (4) can be replaced with a limit. Obviously,
C0(TB ,TC ) ≤ C0(TB ).

5) Capacity results: The zero-error capacity of general un-
certain channels is unknown, only a few special cases have been
solved so far [16]. However, it is possible to relate the zero-error
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secrecy capacity of an uncertain wiretap channel (TB ,TC ) to
the zero-error capacity of TB in a surprisingly simple way.

Theorem 1: The zero-error secrecy capacity of an uncertain
wiretap channel (TB ,TC ) either equals 0 or C0(TB ).

The proof of this result can be found in Appendix A. The
simple observation behind the proof is that the possibility of
sending one bit securely over (TB ,TC ) as a prefix to an arbi-
trary zero-error code F for TB generates a zero-error wiretap
code for (TB ,TC ), whose rate is approximately the same as
that of F.

A necessary and sufficient criterion for the zero-error secrecy
capacity to be positive is missing in Theorem 1. We can give
one when TB is injective and the input alphabet is finite.

Theorem 2: Let (TB ,TC ) be an uncertain wiretap chan-
nel with finite input alphabet A such that TB is injective.
Then, C0(TB ,TC ) = 0 if and only if N(TB ,TC )(1) = 1. If
C0(TB ,TC ) > 0, then C0(TB ,TC ) = log(�A).

The proof can be found in Appendix A. Theorem 2 gives a
characterization of the positivity of the zero-error secrecy capac-
ity if TB is injective, which only involves (TB ,TC ) at block-
length 1. Its proof also contains a simple procedure for finding
N(TB ,TC )(1). If TB is not injective, finding N(TB ,TC )(1) is
harder but can be done by brute-force search for reasonably
sized alphabets. More importantly, if TB is not injective, it
is possible that N(TB ,TC )(1) = 1 and C0(TB ,TC ) > 0, see
Example 3 in Appendix A. For general uncertain wiretap chan-
nels, one can use the procedure from the proof of Theorem 2 to
reduce a zero-error code for TB to a zero-error wiretap code.
However, the code thus generated might have rate 0 although
C0(TB ,TC ) > 0. The question when C0(TB ,TC ) > 0 for
general uncertain wiretap channels seems to be a hard problem
and has to be left open for now. Further discussion of zero-error
secrecy capacity is included in Appendix A.

6) Degree of eavesdropper ignorance: In order to mea-
sure the achieved degree of security in greater detail, we intro-
duce the number of messages that can generate a given eaves-
dropper output as an additional parameter. We call a zero-error
wiretap (n,M)-code a zero-error wiretap (n,M, γ)-code if for
every c(1 :n) ∈ ran(Tn

C ◦ F)

�F−1(T−n
C (c(1 :n))) ≥ γ. (5)

Clearly, M ≥ γ ≥ 2. This parameter can be interpreted as a
measure of the minimal eavesdropper’s confusion about the
transmitted message guaranteed by the (n,M, γ)-code. It will
be important in the analysis of one of the security criteria we
apply for secure estimation.

III. SECURE ESTIMATION OVER UNCERTAIN CHANNELS

A. Model

Let I0 be a closed real interval, and let Ω ≥ 0 and λ > 1
be real numbers such that |I0 | + Ω > 0. We then consider the
real-valued time-invariant unstable linear system

x(t + 1) = λx(t) + w(t) (6a)

x(0) ∈ I0 . (6b)

The initial state x(0) can assume any value in I0 and is not
known before its observation. The noise sequence w(0 : ∞)
can be any sequence in [−Ω/2,Ω/2]∞. We call x(t) the system
state at time t. The system states are directly observable. Due to

|I0 | + Ω > 0, the system suffers from nontrivial disturbances
in the initial state or in the evolution. The set of possible system
trajectories x(0 : t) until time t is denoted by X0:t .

Assume that an entity called the encoder is located at the
system output and at time t, it records the corresponding system
state x(t). At every system time step, it has the possibility of
using an uncertain wiretap channel (TB : A → 2B∗ ,TC : A →
2C∗) exactly once, i.e., the system (6) and the channel are syn-
chronous. At the output of TB , an estimator has the task of
obtaining reliable estimates of the system states. An eavesdrop-
per has access to the outputs of TC , which should satisfy a
security criterion.

At time t, the encoder only knows x(0 : t) and the system
dynamics (6), i.e., it has no acausal knowledge of future states.
The estimator and the eavesdropper know the system dynamics
(6), but the only information they have about the actual system
states is what they receive from the encoder through TB and
TC , respectively. The eavesdropper also knows the transmission
protocol applied by the encoder and the estimator.

The encoder also has knowledge of the complete uncertain
wiretap channel, in particular the characteristics of the uncer-
tain channel to the eavesdropper. This knowledge can be justified
by assuming that the eavesdropper is part of the communication
network without access rights for the system state, e.g., an “hon-
est but curious” node in the home network. Uncertain wiretap
channels can also be regarded as models of stochastic wiretap
channels where the transition probabilities are unknown. In the
other direction, there exist information-theoretic techniques for
wiretap channels that do not require precise knowledge about
the channel to the eavesdropper, but the case with eavesdropper
channel knowledge serves as a building block and as a bench-
mark [19], [20].

The allowed protocols are defined in the following.
Definition 1: A transmission scheme consists of a positive

integer n called the blocklength of the transmission scheme
together with a sequence of pairs (fk , ϕk )∞k=0 . Setting τk :=
kn + 1 and tk := (k + 1)n, for every k ≥ 0, we have the fol-
lowing:

1) the kth encoding function fk : X0:τk −1 → 2A
n

∗ is an un-
certain channel;

2) the first decoding function ϕ1 : Bn → R is an ordinary
mapping;

3) for k ≥ 2, the kth decoding function ϕk : Btk → Rn is
an ordinary mapping.

The concept is illustrated in Fig. 3. The encoding function
fk takes the system path x(0 :τk − 1) until time τk − 1 as input
and maps this into a codeword of length n. The blocks of new
observations also have length n, except for the first one of length
1. Thus, the initial state gets a special treatment, but this is a
technical detail the reason of which will become clear in the
proof of Theorem 3. We allow fk to be an uncertain channel for
two reasons. One is that we do not have to distinguish between
open- and closed quantizing sets—if a path or state is on the
boundary, we make an uncertain decision. The more important
reason is that uncertain encoding has to be allowed in order for
uncertain wiretap channels to achieve capacity (see Example 2
in Appendix A).

The decoder ϕk takes the first tk outputs of TB and calcu-
lates an estimate of the states x(τk−1), . . . , x(τk − 1) (where
we set τ−1 = 0), which have not been estimated before. When
we define the performance criterion for a transmission scheme,
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Fig. 3. kth step of a transmission scheme (fk , ϕk )∞k=0 with blocklength
n.

it will be seen that we do not lose generality by not allowing ϕk

to be an uncertain channel.
Next, we come to the definition of reliability and security of

a transmission scheme (fk , ϕk )∞k=0 . Every such transmission
scheme induces the (uncertain) channels

f0:k := f0 × · · · × fk , ϕ0:k := ϕ0 × · · · × ϕk .

Observe that, given a sequence x̂(0 :τk − 1) of system estimates,
i.e., of outputs of ϕ0:k , we can write the set of system states that
can generate this output sequence as (f−1

0:k ◦ T−tk

B ◦ ϕ−1
0:k )(x̂(0 :

τk − 1)).
Let T be a positive integer or ∞. The ∞-norm of a real

sequence y(0 :T ) is given by

‖y(0 :T )‖∞ :=
{

max0≤t≤T |y(t)|, if T < ∞
sup0≤t<∞ |y(t)|, if T = ∞.

For a set E ⊂ RT +1 , where T is a positive integer or infinity,
we define its diameter as

diamT +1(E)

:= sup{‖y(0 :T ) − y′(0 :T )‖∞ : y(0 :T ), y′(0 :T ) ∈ E}.
Definition 2: The transmission scheme (fk , ϕk )∞k=0 is called

reliable if the estimation error is bounded uniformly in the es-
timates, i.e., if there exists a constant κ > 0 such that for every
possible1 x̂(0 :∞) ∈ ran(ϕ0:∞ ◦ T∞

B ◦ f0:∞), we have

sup
k

diamτk

(
(f−1

0:k ◦ T−tk

B ◦ ϕ−1
0:k )(x̂(0 :τk − 1))

)
≤ κ. (7)

Remark 3: One would not gain anything by allowing the
decoding functions ϕk to be uncertain channels since this gen-
eralization could only increase the left-hand side of (7).

1Due to the application of the∞-norm, the reliability criterion is a “pointwise”

criterion. Using p-norms of the form ‖y(0 :T )‖p := (
∑T

t=0 |y(t)|p )1/p for
some 1 ≤ p < ∞ would always lead to an infinite estimation error if Ω > 0 and
TB can transmit at most a finite number of messages in finite time, since the
sequence |x(t) − x̂(t)| : t ≥ 0 would not tend to zero for all state sequences
x(0 :∞).

A transmission scheme only defines a decoder at the output
of the estimator’s channel TB , but every system path x(0 :∞)
also generates a sequence c(0 :∞) ∈ T∞

C (f0:∞(x(0 :∞))) of
outputs obtained by the eavesdropper. The two security criteria,
we define next, require the state information to be secure, no
matter how the eavesdropper further processes its channel output
sequence. The first criterion just ensures that the eavesdropper’s
estimation error grows unbounded with time.

Definition 3: The transmission scheme (fk , ϕk )∞k=0 is called
d-secure if there exists a function δ(k) with

diamτk

(
(f−1

0:k ◦ T−tk

C )(c(0 : tk − 1))
)
≥ δ(k)

for all c(0 :∞) ∈ ran(T∞
C ◦ f0:∞) and δ(k) → ∞ as k → ∞.

Upon receiving any sequence c(0 :∞) of channel outputs gen-
erated by a d-secure transmission scheme, the eavesdropper’s
estimate of the system path x(0 :∞) that generated c(0 :∞)
grows to infinity2 uniformly in c(0 : ∞). Note that since X0:t

is bounded for every t ≥ 0, the diameter of (f−1
0:k ◦ T−tk

C )(c(0 :
tk − 1)) cannot be infinite for any k. Thus, the eavesdropper’s
estimation error will always be finite, though increasingly large,
in finite time.

Next, one can ask the question of how many system paths
could be the possible generators of an eavesdropper sequence
c(0 :∞). This is considered in the following secrecy criterion.
For a set E of real sequences of finite length T + 1 and 0 ≤
t ≤ T , we write E|t := {x ∈ R : x = x(t) for some x(0 :T ) ∈
E}. The volume vol(E′) of a subset E′ of the real numbers is
measured in terms of the Lebesgue measure.

Definition 4: A transmission scheme (fk , ϕk )∞k=0 is called
v-secure if there exists a function ν(k) such that

vol((f−1
0:k ◦ T−tk

C )(c(0 : tk − 1))|τk −1) ≥ ν(k)

for all c(0 :∞) ∈ ran(T∞
C ◦ f0:∞) and ν(k) → ∞ as k → ∞.

Similar to the definition of d-security, we require a uniform
divergence to infinity. Since X0:t is bounded for all t ≥ 0, the
volume in Definition 4 cannot be infinite in finite time.

Remark 4: Clearly, v-security implies d-security. The vol-
ume is measured at time τk − 1 because it would trivially
tend to infinity if the τk -dimensional volume of the set (f−1

0:k ◦
T−tk

C )(c(0 : tk − 1)) was measured. If the volume of the set of
states tends to infinity along τk − 1 as k → ∞, then the same
holds for the volume measured at all other infinite, increasing
sequences of time instances.

Remark 5: Note that reliability only concerns TB , while
both notions of security only concern TC . The task will be
to find a transmission scheme that simultaneously is reliable
with respect to TB and (d-/v-) secure with respect to TC .
The challenge is the combination of these properties.

B. Results for Secure Estimation

We first state a sufficient condition that the uncertain wiretap
channel has to satisfy for reliability as well as d- or v-security
to be possible.

Theorem 3: There exists a transmission scheme that is reli-
able, d-secure, and v-secure if C0(TB ,TC ) > log λ.

2Note that d-security, as defined via the ∞-norm, is stronger than the analo-
gous criteria with the p-norm instead of the ∞-norm for all 1 ≤ p < ∞ because
‖x(0 :∞)‖∞ ≤ ‖x(0 :∞)‖p .
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The proof of Theorem 3 can be found in Section V-A.
The transmission schemes applied there separate the quantiza-
tion/estimation from the coding for uncertain wiretap channels
by concatenating a quantizer defined, in the following, with a
wiretap zero-error code. Note that the condition C0(TB ,TC ) >
0 is weak; Nair [5] proved that C0(TB ) > log λ is sufficient
and C0(TB ) ≥ log λ is necessary to achieve reliability. Thus,
by Theorem 1, the additional requirement in Theorem 3 is noth-
ing but C0(TB ,TC ) > 0. This is the minimal condition one
would expect to be necessary to also achieve security. For gen-
eral (TB ,TC ), we do not know that C0(TB ,TC ) > 0 really
has to be satisfied for secure estimation to be possible.

For injective channels, however, the condition from Theo-
rem 3 is “almost” necessary to achieve reliability and d-security,
hence also for v-security.

Theorem 4: If TB is injective and C finite, then the existence
of a reliable and d-secure transmission scheme implies �A ≥ λ
and C0(TB ,TC ) > 0.

The proof of this theorem can be found in Section V-B.
Since TB is injective, the condition �A ≥ λ means nothing but
C0(TB ) ≥ log λ. As noted previously, C0(TB ) ≥ log λ was
shown by Nair [5] to follow from reliability for general un-
certain channels. The additional condition C0(TB ,TC ) > 0,
which follows from d-security, implies C0(TB ,TC ) ≥ log λ by
Theorem 1. The problem of finding a tight necessary condition
for secure estimation over general uncertain wiretap channels
(TB ,TC ) remains open. We conjecture that it depends on a
criterion for C0(TB ,TC ) to be positive. We only have such a
criterion when TB is injective from Theorem 2.

As a refinement of Theorem 3, we have a closer look at the
exponential rate at which the estimation error or the volume of
the set of states at a given time that are possible according to
the eavesdropper’s information tends to infinity. The higher the
speed of divergence, the higher is the degree of security.

Lemma 1: There exists a reliable transmission scheme
(fk , ϕk )∞k=0 such that for every c(0 :∞) ∈ ran(T∞

C ◦ f0:∞),
there exist system paths x(0 :∞), x′(0 :∞) ∈ (f−1

0:∞ ◦ T−∞
C )

(c(0 :∞)) satisfying the following:

lim
t→∞

log ‖x(0 : t) − x′(0 : t)‖∞
t

= log λ. (8)

This lemma is proved in Section V-A3. Clearly, log λ is the
largest exponential rate at which two trajectories can diverge.
For v-security, the speed of increase of the volume of the set
of possible states, according to the eavesdropper’s information,
will in general increase at an exponential rate smaller than log λ.

Lemma 2: For every zero-error wiretap (n,M, γ)-code F,
upon setting

log M

n
=: R,

log γ

n
=: Γ (9)

there exists a reliable transmission scheme (fk , ϕk )∞k=0 with
blocklength n such that for all c(0 :∞) ∈ ran(T∞

C ◦ f0:∞), we
have

lim
k→∞

log vol((f−1
0:k ◦ T−tk

C )(c(0 : tk − 1))|τk −1)
τk

≥
{

Γ + log λ − R, if Ω = 0
Γ log λ

R+2 log λ+εn
, if Ω > 0

(10)

where εn = εn (R, λ) is positive and εn → 0 as n → ∞.

This lemma is proved in Section V-A. For Ω = 0, a positive
rate is achievable by choosing R < Γ + log λ. Lemmas 1 and 2
are discussed in detail in Section VI.

IV. QUANTIZER ANALYSIS

Both Lemmas 1 and 2 follow from analyzing the transmis-
sion scheme we apply in the proof of Theorem 3. For proving
Theorem 3, we separate the quantization/estimation from the
channel coding. Next, we will, therefore, describe the quantizer
used in the proof of Theorem 3. More precisely, we analyze
the behavior of the system (6) with an appropriate quantization
of every single state x(t). Later, when concatenating the quan-
tizer with a channel code of blocklength n > 1, we will use an
analogous quantizer for the n-sampled version of (6).

Note that this quantizer is only one of possibly many that can
form part of a transmission scheme, achieving the performance
claimed in Theorem 3. Definition 1 does not put any restric-
tion on the quantizers one might want to use in a transmission
scheme. Since the state space of (6) is compact at every time
step, a finite-level quantizer is sufficient for reliability. In addi-
tion, an infinite-level quantizer could pose problems in proving
v-security, since the volume of the quantizer intervals might
tend to zero too quickly.

Definition 5: Consider the system (6) and let M ≥ 2 be an
integer, called the number of quantizer levels. Let x̂(m(0 :−1))
be the midpoint of I(m(0 :−1)) := I0 . For every integer t ≥
0 and every sequence m(0 : t) ∈ {0, . . . , M − 1}t+1 , we then
recursively set

P(m(0 : t)) := I(m(0 : t − 1))min

+
|I(m(0 : t − 1))|

M
[m(t),m(t) + 1] (11)

x̂(m(0 : t)) := midpoint of P(m(0 : t)) (12)

I(m(0 : t)) := λP(m(0 : t)) +
[
−Ω

2
,
Ω
2

]
(13)

[in (11), recall our notation for intervals]. Finally, we define for
every t ≥ 0 the tth quantizer channel, an uncertain channel Qt

that maps any message sequence m(0 : t − 1) and any x(t) ∈
I(m(0 : t − 1)) to an element of

Qt(x(t),m(0 : t−1))={m :x(t)∈P(m(0 : t−1),m)}. (14)

The setsP(·) will be referred to as quantizer intervals. The num-
bers 0, . . . ,M − 1 are messages. Equations (11)–(14) define the
quantizer of the system (6) with M quantizer levels.

Every state sequence x(0 :∞) generates a message sequence
m(0 :∞) via the uncertain channels Qt . Assume that the
state sequence x(0 : t − 1) has generated a message sequence
m(0 : t − 1) until time t − 1. The interval I(m(0 : t − 1)) con-
sists of all states x(t) that are possible in the next time step.
Upon observation of x(t), the message m(t) is generated as an
element3 of Qt(x(t),m(0 : t − 1)). From the sequence m(0 : t),
one can then infer that x(t) ∈ P(m(0 : t)). Accordingly, the
estimate of x(t) is x̂(m(0 : t)). Note that for every message
sequence m(0 :∞), there exists a system path x(0 :∞) that
generates m(0 :∞).

3m(t) is not determined deterministically from x(t) and m(0 : t − 1) be-
cause in this way we can have all intervals P(m(0 : t)) closed. Note that
� Qt (x(t), m(0 : t − 1)) ≥ 2 only if x(t) is on the boundary of two neigh-
boring quantizer intervals.
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Most of the quantizer analysis we do in the following serves
the proof of Lemma 2. We are interested in the disjointness of
quantizer intervals at a given time in order to find a lower bound
on the volume of the set of states that are possible according
to the eavesdropper’s information. If a set of quantizer intervals
at a common time instant is disjoint, the volume covered by
their union equals the sum over their individual volumes. Thus,
two questions need to be answered: 1) What is the volume of
a quantizer interval? 2) How many disjoint quantizer intervals
are there (from the eavesdropper’s view)? An answer to the first
question is the following lemma.

Lemma 3: If λ �= M , then for every t ∈ N and m(0 : t) ∈
{0, . . . , M − 1}t+1 , we have

|P(m(0 : t))| =
λt

Mt

(
|I0 |
M

− Ω
M − λ

)
+

Ω
M − λ

. (15)

In particular, we have supt |P(m(0 : t))| < ∞ for every infinite
message sequence m(0 :∞) if λ < M . In that case, we have

sup
t≥0

|P(m(0 : t))| = max
{
|I0 |
M

,
Ω

M − λ

}
.

Further, the length of P(m(0 : t)) only depends on t, not on
m(0 : t). Thus, we can define


t := |P(m(0 : t))|. (16)

The proof can be found in Appendix B. Lemma 3 not only is
useful in the security analysis but it also essentially establishes
the reliability for M > λ, a result that, of course, is not surprising
in view of the existing literature. Concerning question 2), life is
simple when Ω = 0 because of the following lemma.

Lemma 4: If Ω = 0, then at each time t ≥ 0, the interiors of
the intervals P(m(0 : t)) are disjoint, where m(0 : t) ranges over
{0, . . . , M − 1}t+1 .

For the proof, see Appendix B. Thus, at time t, we have Mt+1

disjoint quantizer intervals of the same length. If Ω > 0, then
the situation is more complicated; quantizer intervals belonging
to different message sequences of the same length can overlap.
This is the reason for the two different lower bounds on the rate
of volume increase in (10).

Example 1: Consider the system (6) with λ = 1.2, Ω = .1,
I0 = [−1, 1], and its quantizer with M = 3. Then, P(0) =
[−1,−1/3] and P(1) = [−1/3,+1/3]. In the next time step,
one has

P(0, 1) = [−.6,−.35] , P(1, 0) = [−.45,−.15] .

Thus, P(0, 1) and P(1, 0) are not disjoint. The closer a state
x(t) is to the origin (and the larger t), the more paths there are
which can be in this particular state at time t.

Example 1 shows that one can only hope to obtain disjoint
quantizer sets for a strict subset of all message sequences. To find
such a subset, we derive an important formula for the sequence
x̂(m(0 :∞)), given a message sequence m(0 :∞).

Lemma 5: Consider the system (6) and the quantizer for (6)
with M quantizer levels. Let m(0 :∞) be a message sequence.

Then, for every t = 0, 1, 2, . . ., we have

x̂(m(0 : t))

= λt

{
x̂(m(0 :−1))

+
1
2

t∑

i=0

(
ΩM

M−λ

(
1
λi

− 1
Mi

)
+
|I0 |
Mi

)(
2m(i)+1

M
−1

)}
. (17)

See Appendix B for the proof. In order to find disjoint quan-
tizer intervals, the idea is to look at the distance between points
x̂(m(0 : t)) and x̂(m′(0 : t)) and ask how the distances between
the estimate sequences will evolve in future.

Lemma 6: Assume that M > λ. Let m(0 :∞) and m′(0 :
∞) be two message sequences, and let T ≥ 0. If

|x̂(m(0 :T )) − x̂(m′(0 :T ))| ≥ Ω
M − λ

M − 1
λ − 1

+ 
T (18)

then, for every t ≥ 0, the interiors of the intervals P(m(0 :T +
t)) and P(m′(0 :T + t)) are disjoint.

The proof can be found in Appendix B. Finally, assume
that at each time instant at least γ different messages are pos-
sible according to the eavesdropper’s view. For every t ≥ 0,
let Mt := {mt,1 < mt,2 < · · · < mt,γ } ⊆ {0, . . . , M − 1} be
a subset of the possible messages at time t, which has exactly
γ elements. In particular, Mt may differ from Mt ′ for t �= t′.
Now, fix a T ≥ 1. For j ≥ 1 and ξ(1 :j) ∈ {1, . . . , γ}j , we de-
fine the message sequence mξ(1:j )(0 :jT − 1) as follows:

mξ(1:j )(s) = ms,ξ(i) ∈ Ms

if 1 ≤ i ≤ j and (i − 1)T ≤ s ≤ iT − 1. On the jth block of
times (j − 1)T, . . . , jT − 1, the sequences mξ(1:j )(0 :jT − 1),
where ξ(1 :j − 1) is kept fixed and ξ(j) ranges over {1, . . . , γ},
are an ordered set of γ message sequences with the order in-
duced by a componentwise ordering. The corresponding quan-
tizer intervalsP(mξ(1:j )(0 :jT − 1)), where 1 ≤ ξ(j) ≤ γ, will
therefore diverge due to the instability of the system (6). The
following lemma is proved in Appendix B.

Lemma 7: Let Ω > 0 and M > λ, and choose a T ∈ N sat-
isfying

T ≥ 1 +
log(M − 1) + log(M + λ − 1) − log(M − λ)

log λ
.

(19)
Then, for every j ≥ 1, the interiors of the sets P(mξ(1:j )(0 :
jT − 1)), where ξ(1 :j) ranges over {1, . . . γ}j , are disjoint.

Thus, we have obtained a lower bound on the number of
disjoint quantizer intervals at times t = jT − 1, for positive
j. This will be sufficient when we put everything together in
Section V to prove v-security and obtain the lower bound of
Lemma 2 when Ω > 0.

V. SECURE ESTIMATION—PROOFS

A. Proof of Theorem 3 and Lemmas 1 and 2

1) Definition of the Transmission Scheme: We start by
defining a transmission scheme (fk , ϕk )∞k=0 . We choose its
blocklength n such that M := N(TB ,TC )(n) > λn , which is
possible because C0(TB ,TC ) > log λ. Let γ ≥ 2 be chosen
such that there exists a zero-error wiretap (n,M, γ)-code F.
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Since we use the channel in blocks of length n, we also
observe the system only at intervals of length n. If we look
at the outputs of (6) at times 0, n, 2n, . . ., we obtain a new
dynamical system that satisfies the following:

x(n)(k + 1) = λnx(n)(k) + w(n)(k) (20a)

x(n)(0) ∈ I0 (20b)

where

w(n)(k) =
n−1∑

j=0

λn−j−1w(kn + j).

Note that w(n)(k) is a nonstochastic disturbance in the range
[−Ω(n)/2,Ω(n)/2] for

Ω(n) =
Ω

λ − 1
(λn − 1). (21)

Therefore, the quantizer for (20) with M quantization levels
is well defined as in Definition 5, and all results derived in
Section IV for (6) and its quantizer carry over to (20) with the
obvious modifications of the parameters.

We define the encoding and decoding functions of our trans-
mission scheme by separating the quantization/estimation from
the channel coding similar to how it has been done frequently
in settings without security, e.g., [21]. For every k ≥ 0, let Q(n)

k
be the kth quantizer channel of the quantizer of (20) [see (14)].
The transmission scheme is defined by recursively concatenat-
ing the Q(n)

k with F. We set f0(x(0)) = F(Q(n)
0 (x(0))) and for

k ≥ 1, assuming that the quantizer channels have produced the
message sequence m(0 :k − 1) so far, we set

fk (x(0 :τk − 1)) = F(Q(n)
k (x(n)(k),m(0 :k − 1))).

For the definition of the decoding functions, recall that F is
a zero-error code. Thus, for every k ≥ 0 and b(0 : tk − 1) ∈
ran(Ttk

B ◦ Fk+1), the set (F−(k+1) ◦ T−tk

B )(b(0 : tk − 1)) con-
tains precisely one element, namely the message sequence
m(0 :k) sent by the encoder. The zeroth decoding function has a
one-dimensional output, which is defined by ϕ0(b(0 : t0 − 1)) =
x̂(n)((F−1 ◦ T−t0

B )(b(0 : t0 − 1))). Here, x̂(n)(m(0 : k)), for
any m(0 : k), is the midpoint of the quantizer interval
P(n)(m(0 : k)) belonging to the quantizer of (20). For k ≥ 1,
the output of the kth decoding function ϕk is n dimensional. If,
with a little change of notation, we write ϕk (b(0 : tk − 1)) =:
(x̂τk −1 (b(0 : tk − 1)), . . . , x̂τk −1(b(0 : tk − 1))), then we set

x̂τk −1(b(0 : tk − 1)) = x̂(n)((F−(k+1) ◦ T−tk

B )(b(0 : tk − 1))).

Since (6) does not grow to infinity in finite time, the values
x̂τk −1 (b(0 : tk − 1)), . . . , x̂τk −2(b(0 : tk − 1)) can be defined in
an arbitrary way, as long as their distance from x̂τk −1(b(0 :
tk − 1)) is uniformly bounded in k and b(0 :∞).

2) Reliability: Although it is not surprising and well known
in the literature, we show the reliability of the transmission
scheme for completeness. Since the states of (6) cannot di-
verge to infinity in finite time, we only need to make sure that
the estimation errors at the observation times τ0 − 1, τ1 − 1, . . .
are bounded. To see this, let k ≥ 0 and m(0 :k) be any message
sequence and observe that

(f−1
0:k ◦ T−tk

B ◦ ϕ−1
0:k )(x̂(n)(m(0 :k)))|τk −1 = P (n)(m(0 :k)).

Since M > λn , the length of P (n)(m(0 :k)) is bounded by
Lemma 3. This shows that the transmission scheme is reliable.

3) d-Security and Lemma 1: Let c(0 :∞) ∈ ran(T∞
C ◦

f0:∞). Let m(0) �= m′(0) ∈ F−1(T−n
C (c(0 : t0 − 1))) and

m(k) ∈ F(T−n
C (c(tk−1 : tk − 1))). Then, there are two sys-

tem trajectories x(0 :∞), x′(0 :∞) such that x(τk − 1) =
x̂(n)(m(0 :k)) and x′(τk − 1) = x̂(n)(m′(0)m(1 :k)) for all
k ≥ 0. With Lemma 5, one immediately sees that x(0 :∞)
and x′(0 :∞) diverge at an exponential rate of log λ. Thus,
x(0 :∞)and x′(0 :∞) satisfy (8). This proves Lemma 1 and the
achievability of d-security.

4) v-Security and Lemma 2: For the proof of v-security
of the transmission scheme, we consider two subcases with
Ω = 0 and Ω > 0. We first assume Ω = 0; hence, |I0 | > 0. In
this case, hardly anything remains to be proved. By Lemma 4,
for given k ≥ 0, the interiors of all P(n)(m(0 :k)) are disjoint.
Now, assume that the eavesdropper receives the sequence c(0 :
tk − 1). Since F is an (n,M, γ)-code, �(F−(k+1) ◦ T−tk

C )(c(0 :
tk − 1)) ≥ γk+1 . Hence, we have the following:

vol((f−1
0:k ◦ T−tk

C )(c(0 : tk − 1))|τk −1)

=
∑

m (0:k)∈(F−(k + 1 ) ◦T−t k
C )(c(0:tk −1))



(n)
k

≥ γk+1

(n)
k =

(
γλn

M

)k
γ|I0 |
M

where 

(n)
k is the length of the quantizer intervals at time k of

the quantizer of (20). This gives the possibly negative growth
rate (log γ)/n + log λ − (log M)/n, as claimed in Lemma 2
for the case with Ω = 0. Since (log M)/n can be chosen as
strictly smaller than (log γ)/n + log λ, this also proves that v-
security is achievable for Ω = 0, and thus completes the proof
of Theorem 3 for the case with Ω = 0.

Next, we assume that Ω > 0. Define

T (n) :=
⌈
1 +

log M

n log λ
+

log(M + λn ) − log(M − λn )
n log λ

⌉
.

Choose a j ≥ 1, and set k(j) := jT (n) − 1. Let c(0 : tk(j ) − 1)
be an eavesdropper output sequence. Then, by choice of F, we
have

�(F−(k(j )+1) ◦ T
−tk ( j )

C )(c(0 : tk(j ) − 1)) ≥ γk(j )+1 . (22)

T (n) satisfies (19) for (20). By applying Lemma 7 to (20), within
the set on the left-hand side of (22), the γj message sequences of
the form mξ(1:j )(0 :k(j)) produce sets P(n)(mξ(1:j )(0 :k(j)))
with disjoint interiors. Therefore, we have

vol((f−1
0:k(j ) ◦ T

−tk ( j )

C )(c(0 : tk(j ) − 1))|τk ( j )−1)

≥
∑

ξ(1:j )∈{1,...,γ}j



(n)
k(j ) = γj 


(n)
k(j ) . (23)

Since 

(n)
k(j ) tends to a constant as j tends to infinity, the asymp-

totic rate of volume growth is lower bounded by

lim
k→∞

log(γj 

(n)
k(j ))

τk
=

log γ

nT (n) .
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With the notation (9) and setting

εn :=
log(M + λn ) − log(M − λn )

n

we obtain

log γ

nT (n) ≥ Γ log λ

R + 2 log λ + εn
.

Clearly, εn is positive and tends to 0 as n tends to infinity. This
proves that v-security can be achieved in the case with Ω > 0
as well and at the rate claimed in Lemma 2. Altogether, this
completes the proof of Theorem 3 and Lemmas 1 and 2.

B. Proof of Theorem 4

Assume that TB is injective and C is finite. Let (fk , ϕk )∞k=0
be a reliable and d-secure transmission scheme with blocklength
n. In particular, choose κ > 0 in such a way that (7) is satisfied
for every possible sequence of estimates x̂(0 :∞). The necessity
of C0(TB ) ≥ log λ was shown in [5]. Due to the injectivity of
TB , this condition can be reformulated as �A ≥ λ. It remains
to show that C0(TB ,TC ) > 0.

By the uniform divergence requirement in the definition of
d-security, it is possible to choose a k such that

diamτk
((f−1

0:k ◦ T−tk

C )(c(0 : tk − 1))) > κ (24)

for every c(0 : tk − 1) ∈ ran(Ttk

C ◦ f0:k ). Let c̃(0 : tk − 1) ∈
ran(Ttk

C ◦ f0:k ). Recursively, we define the sets T0(c̃(0 : tk −
1)) := ran(f0:k ) ∩ T−tk

C (c̃(0 : tk − 1)) and Tj (c̃(0 : tk − 1)) :=
ran(f0:k ) ∩ (T−tk

C ◦ Ttk

C )(Tj−1(c̃(0 : tk − 1))) for j ≥ 1. Let j∗
be the maximal j, which satisfies4 Tj (c̃(0 : tk − 1)) � Tj−1(c̃(0 :
tk − 1)). If a0(0 : tk − 1), . . . , aM −1(0 : tk − 1) is an enumera-
tion of the elements of Tj∗(c̃(0 : tk − 1)), then the (M, tk )-code
Gk defined by Gk (m) = {am (0 : tk − 1)} is a zero-error code.
This is due to the injectivity of TB .

However, Gk is also a wiretap zero-error code. To show
this, let c(0 : tk − 1) ∈ ran(Ttk

C ◦ Gk ). The definition of j∗ im-
plies that T−tk

C (c(0 : tk − 1)) ⊆ Tj∗(c̃(0 : tk − 1)) = ran(Gk ).
Due to (24) and since (fk , ϕk )∞k=0 satisfies (7), we have �(G−1

k ◦
T−tk

C )(c(0 : tk − 1)) = �T−tk

C (c(0 : tk − 1)) ≥ 2. Hence, c(0 :
tk − 1) can be generated by at least two different messages.
This implies that Gk is also a wiretap zero-error code; hence,
C0(TB ,TC ) > 0.

VI. DISCUSSION: D- AND V-SECURITY

We have a closer look at d- and v-security, in particular the
rates derived in Lemmas 1 and 2. First, consider the system (6)
with Ω = 0. Let (TB ,TC ) be any uncertain wiretap channel and
F an (n,M, γ)-code for (TB ,TC ). Then, the proof of Lemma 2
shows that the lower bound on the right-hand side of (10) is tight.
On the other hand, the growth rate log λ of the eavesdropper’s
estimation error, derived in Lemma 1, will in general be strictly
larger. This means that the set (f−1

0:k ◦ T−tk

C )(c(0 : tk − 1)) is
not connected, i.e., it has holes.

If Ω > 0, we have seen in Example 1 and the proof of
Lemma 2 that the situation is more complicated than for Ω = 0.

4Without going into the details, we would like to mention here that Tj∗ (c(0 :
tk − 1)) is an equivalence class in the taxicab partition of the joint range of
f0:k and the corresponding outputs of TC , see [5].

Fig. 4. State space of (6) with parameters as in the text. The thick gray
lines mark the outer bounds of the state space. For the received eaves-
dropper sequence c(0 :7) as in the text, the vertical black lines show
the set of states that are possible according to the eavesdropper’s view.
Further, for four possible message sequences m(0 : 7), the evolution of
the corresponding P(m(0 : 7)) is shown for illustration purposes.

For an illustration, let (TB ,TC ) and F be the channel and
code from Fig. 2(b). Assume the system (6) with λ = 1.2, I0 =
[−1, 1], and Ω = 1.2. As in the proof of Theorem 3, we construct
a blocklength-1 transmission scheme (fk , ϕk )∞k=0 by concate-
nating the quantizer for (6) with F by mapping the quantizer
message m to F(m). For example, if x(0) ∈ [1/3, 1], the quan-
tizer outputs message 2, which F maps to the set F(2) = {a4}.
Sending a4 through TC generates the output c2 , from which the
eavesdropper concludes that message 1 or 2 has been sent. By
the choice of parameters, the length of the quantizer intervals
remains constant over time. Fig. 4 illustrates this situation un-
der the assumption that the eavesdropper receives the symbols
c(0 :7) = c2c1c2c1c1c2c2c1 . There are 28 possible message se-
quences from the eavesdropper’s point of view, one of which
corresponds to the actual sequence generated by the quantizer.
Notice the growth of vol((f−1

0:7 ◦ T−8
C )(c(0 :7))), which also im-

plies the growth of the eavesdropper’s estimation error in the
sense of d-security. Further, observe how quantizer intervals
overlap and even “cross paths.”

Generally, if Ω > 0 and Γ = R, then the eavesdropper has
no information about the transmitted message, and vol((f−1

0:k ◦
T−tk

C )(c(0 : tk − 1))) grows at the rate log λ. The ratio of the
left- and the right-hand sides of (10) tends to 1 as λ ↘ 1. Thus,
the lower bound of Lemma 2 is asymptotically tight for λ tending
to the boundary of the instability region.

Moreover, the lower bound (10) for Ω > 0 is independent of
Ω and I0 . This behavior can be due to the asymptotic domi-
nance of λ in the system dynamics. Fig. 5 shows the numerical
evidence for the correctness of this independence. For the sys-
tem parameters, we fix λ = 1.2 and consider four variations of
Ω and I0 , as shown in Fig. 5. We assume the same uncertain
wiretap channel as in Fig. 4 and apply the same blocklength-1
transmission scheme. Because of the symmetry of the channel
and the transmission scheme, vol((f−1

0:k ◦ T−(k+1)
C )(c(0 :k))) is

independent of the eavesdropper’s received sequence and can be
calculated in closed form. For each of the four combinations of
Ω and I0 , we plot the ratio of the left-hand side of (10) (empiri-
cal rate) and the right-hand side of (10) (rate) versus time. After
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Fig. 5. Ratio of the left- and right-hand sides of (10) for different com-
binations of Ω and I0 , with other parameters as in the text.

different initial values, mainly due to the differing lengths of the
initial interval, the ratios converge. At time 100, the maximal
absolute value of all differences between them equals 0.417; at
time 1000, it reduces to 0.042.

The maximum ratio of empirical rate and rate in the previous
example at time 1000 equals 3.36, quite a bit away from 1. This
is due to the fact that vol((f−1

0:k ◦ T−(k+1)
C )(c(0 :k))) grows at

the rate log λ. The reason for this is that the symmetry of the
situation allows, without loss of generality, to assume that the
eavesdropper always receives the symbol c1 . The volume of
states compatible with this sequence is essentially given by
the difference between the largest and smallest paths that are
possible according to this information, which by Lemma 5 grows
at the rate log λ. Since the extreme paths compatible with a given
eavesdropper information always diverge at the rate log λ by
Lemma 1, a smaller volume growth rate is only possible if there
are gaps in the set of possible states, as in the case with Ω = 0
(see above). We expect these gaps to increase if the difference
between Γ and R increases.

A major problem for the general analysis of vol((f−1
0:k ◦ T−tk

C )
(c(0 : tk − 1))) is that a brute-force approach quickly becomes
infeasible because with every secure transmission scheme, at
least 2t+1 different message sequences are possible at time t
from the eavesdropper’s point of view. A general analysis with-
out relying on symmetry might require techniques from fractal
set theory. Symmetry, as in the previous example, is simpler to
analyze. To achieve this symmetry, the association of quantizer
messages with the code sets is crucial, an issue we have ne-
glected here. We also expect the gap between the left- and the
right-hand sides of (10) to decrease at higher blocklengths, not
least because the εn term in the lower bound, at blocklength
n = 1 and with M = 3, λ = 1.2 as in the example, equals 1.22
and is not negligible.

VII. CONCLUSION

In this paper, we introduced uncertain wiretap channels and
their zero-error secrecy capacity. We introduced methods from
hypergraph theory, which together with the already established
graph theoretic methods for the zero-error capacity of uncertain
channels facilitate the analysis of zero-error secrecy capacity.
We showed how the zero-error secrecy capacity of an uncertain

wiretap channel relates the zero-error capacity of the uncertain
channel to the intended receiver of the wiretap channel. In the
case where the uncertain channel to the intended receiver is in-
jective, we gave a full characterization of the zero-error secrecy
capacity of the corresponding uncertain wiretap channel.

We also analyzed how unstable linear systems can be esti-
mated if the system state information has to be transmitted to
the estimator through an uncertain wiretap channel, such that
the eavesdropper should obtain as little information about the
system states as possible. We introduced two security criteria,
called d-security and v-security. We gave a sufficient criterion
that uncertain channels have to satisfy in order for the estimator
to obtain a bounded estimation error as well as for both d- and
v-security to hold. In the case of an injective uncertain channel
from the encoder to the estimator, we showed that this suffi-
cient criterion essentially is necessary as well. We gave lower
bounds on the exponential rates at which the eavesdropper’s
state information diverges under the two security criteria.

Some problems have been left open in the paper, such as a
complete characterization of the zero-error secrecy capacity of
uncertain wiretap channels, a characterization of when a secure
estimation of unstable systems is possible over uncertain wiretap
channels, and a complete answer to the question of optimality of
the lower bounds from Lemma 2. Apart from that, there are sev-
eral points that can be extended in future. One would be that the
encoder has less knowledge about the uncertain wiretap channel.
Another one would be an extension to multidimensional secure
estimation, possibly with distributed observations. Finally, it
would be interesting to link the zero-error secrecy capacity of
uncertain wiretap channels to Nair’s nonstochastic information
theory [5] (cf. Footnote 5).

APPENDIX A
UNCERTAIN WIRETAP CHANNELS: PROOFS AND

FURTHER DISCUSSION

This appendix contains the proofs of Theorems 1 and 2 and
some additional discussion. First, we prove Theorem 1. For the
proof of Theorem 2, we then introduce a graph and a hypergraph
structure on the input alphabet induced by the uncertain wiretap
channel. Using these structures, we prove Theorem 2.

1) Proof of Theorem 1: Assume that C0(TB ,TC ) > 0,
which implies C0(TB ) > 0. Let F be a zero-error wire-
tap (n1 ,M1)-code, and let G be a zero-error (n2 ,M2)-code,
where M1 = N(TB ,TC )(n1) ≥ 2 and M2 = NTB

(n2). Con-
sider the concatenated (n1 + n2 ,M1M2)-code F × G. Clearly,
it is a zero-error code, but it also is a zero-error wiretap
code. Choose (m1 ,m2) ∈ {0, . . . ,M1 − 1} × {0, . . . , M2 −
1}, and choose c(1 :n1) ∈ Tn1

C (F(m1)) and c(n1 + 1:n2) ∈
Tn2

C (G(m2)). Since F is a zero-error wiretap code, there exists
an m′

1 ∈ (F−1 ◦ T−n1
C )(c(1 :n1)) with m′

1 �= m1 . Therefore,
the two different message pairs (m1 ,m2) and (m′

1 ,m2) can
generate the output c(1 :n1 + n2). Thus, F × G is a zero-error
wiretap code. This construction implies

log N(TB ,TC )(n1 +n2)
n1 + n2

≥
log N(TB ,TC )(n1)+log NTB

(n2)
n1 + n2

and the term on the right-hand side tends to C0(TB ) as n2 tends
to infinity. This proves Theorem 1.
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2) Zero-error capacity and graphs: It was observed by
Shannon [2] that the zero-error capacity of an uncertain channel
T : A → 2B∗ can be determined from a graph structure induced
on the input alphabet A by T. To see this, let n be a blocklength.
Two words a(1 :n), a′(1 :n) ∈ An cannot be used as codewords
for the same message if they have a common output word b(1 :
n) ∈ Bn . If we draw a line between every two elements of An

that generate a common output message b(1 :n), we obtain a
graph on An , which we denote by G(Tn ). Thus, G(Tn ) is
nothing but a binary relation ∼ on An , where a(1 :n) ∼ a′(1 :
n) if and only if Tn (a(1 :n)) ∩ Tn (a(1 :n)) �= ∅. Since the
blocklength should always be clear from the context, we omit it
in the ∼ notation.

We call a family {F(0), . . . ,F(M − 1)} of disjoint subsets
of An an independent system in G(Tn ) if for all m,m′ ∈
{0, . . . , M − 1} with m �= m′, we have a(1 :n) �∼ a′(1 :n) for
all a(1 :n) ∈ F(m), a′(1 :n) ∈ F(m′). Clearly, every indepen-
dent system consisting of M disjoint subsets of A is a zero-error
(n,M)-code for T and vice versa. Finding the zero-error capac-
ity of T, therefore, amounts to finding the asymptotic behavior,
as n → ∞, of the sizes of maximum independent systems of
the graphs G(Tn ).

Given two blocklengths n1 and n2 and elements a(1 :n1 +
n2) and a′(1 :n1 + n2) of An1 +n2 , note that a(1 :n1 + n2) ∼
a′(1 :n1 + n2) if and only if one of the following holds:

1) a(1 :n1)=a′(1 :n1) and a(n1 +1:n2)∼a′(n1 +1:n2);
2) a(1 :n1)∼a′(1 :n1) and a(n1 +1:n2)=a′(n1 +1:n2);
3) a(1 :n1)∼a′(1 :n1) and a(n1 +1:n2)∼a′(n1 +1:n2).

We can, therefore, say that G(Tn1 +n2 ) is the strong graph
product of G(Tn1 ) and G(Tn2 ), see [22, Definition 1.9.4].
In particular, G(Tn ) is the n-fold product of G(T) with
itself.

3) Zero-error secrecy capacity and hypergraphs: Let
(TB ,TC ) be an uncertain wiretap channel and n a blocklength.
In order to use the above-mentioned graph-theoretic framework
for zero-error capacity also in the treatment of the zero-error se-
crecy capacity of (TB ,TC ), we introduce an additional struc-
ture on An , which is induced by TC . Every output c(1 :n)
of Tn

C generates the set e(n)(c(1 :n)) := T−n
C (c(1 :n)) ⊆ An .

We set E(Tn
C ) := {e(n)(c(1 :n)) : c(1 :n) ∈ ran(Tn

C )}. Every
element e(n)of E(Tn

C ) is called a hyperedge and the pair
(An , E(Tn

C )) a hypergraph denoted by H(Tn
C ).

Now, let F be a zero-error (n,M)-code for TB . Then, by
definition, it is a zero-error wiretap (n,M)-code for (TB ,TC )
if and only if �{m : F(m) ∩ e(n)} ≥ 2 for every e(n) ∈ E(Tn

C ).
In other words, together with the aforementioned observation
about zero-error codes and graphs, we obtain the following
lemma.

Lemma 8: A family {F(0), . . . ,F(M − 1)} of disjoint sub-
sets of An is a zero-error wiretap (n,M)-code for (TB ,TC )
if and only if it is an independent system in G(Tn

B ) and if
�{m : F(m) ∩ e(n)} ≥ 2 for every e(n) ∈ E(Tn

C ).
Observe that every e(n) ∈ E(Tn

C ) has the form e1 × · · · × en

for some e1 , . . . , en ∈ E(TC ), and that every Cartesian product
e1 × · · · × en of elements of E(TC ) is an element of E(Tn

C ).
This means that H(Tn

C ) is the square product of H(TC ) (see
[23]). For the uncertain wiretap channel from Fig. 2(b), the

Fig. 6. (a) Pair (G(TB ), H (TC )) corresponding to the uncertain wire-
tap channel (TB , TC ) from Fig. 2(b). The black, solid line means that
a2 and a3 are adjacent to each other in G(TB ). The blue, dotted lines
are the boundaries of the hyperedges of H (TC ). (b) Number inscribed
on each node indicates to which set F(m) the node belongs, where F
is the zero-error wiretap code defined in Fig. 2(b).

Fig. 7. (a) Original graph/hypergraph pair (G(TB ), H (TC )) of some
uncertain wiretap channel (TB , TC ). a1 cannot be used in any zero-
error wiretap code. (b) If a1 is not used in any zero-error wiretap code,
then a2 is unusable as well. (c) Having eliminated a1 and a2 , there are
no singletons or cliques left among the hyperedges.

corresponding graph/hypergraph pair at blocklength 1 and a
zero-error wiretap code are illustrated in Fig. 6.

4) Proving Theorem 2: Theorem 2 will follow from a
slightly more general lemma that holds for general wiretap
channels. This lemma analyzes a procedure, to be presented
next, which eliminates elements a(1 :n) from An that do not
satisfy a necessary condition for being a codeword of a zero-
error wiretap code. The idea behind the procedure is that by
Lemma 8, no a(1 :n) ∈ An can be a codeword that is con-
tained in an e(n) ∈ E(Tn

C ), which is a singleton or where all
elements of e(n) are connected in G(Tn

B ). Thus, these elements
can be neglected when looking for a zero-error wiretap code.
This amounts to deleting those elements from the input alphabet
and to restricting the wiretap channel to the reduced alphabet,
but not using a certain subset of the input alphabet may gen-
erate yet another set of unusable input words. Thus, a further
reduction of the input alphabet may be necessary, and so on (see
Fig. 7). We now formalize this procedure and analyze the result.

We apply the graph/hypergraph language developed above
and start with introducing some terminology. Let (TB ,TC )
be an uncertain wiretap channel with input alphabet A. For
any subset A′ of A, one can consider the uncertain wiretap
channel restricted to inputs from A′, thus creating an uncertain
wiretap channel (TB |A′ : A′ → 2B∗ ,TC |A′ : A′ → 2C∗) satisfy-
ing TB |A′(a) = TB (a) and TC |A′(a) = TC (a) for all a ∈ A′.
Thus, TB |A′ generates a graph G(TB |A′) on A′ and TC |A′ gen-
erates a hypergraph H(TC |A′) onA′. If we say that we eliminate
a set V from G(TB ) or H(TC ), we mean that we pass from
G(TB ) to G(TB |A\V) or from H(TC ) to H(TC |A\V), respec-
tively. Further, a clique in G(TB ) is a subset V ⊆ A such that
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a ∼ a′ for all a, a′ ∈ V . We write

E(G(TB ),H(TC ))s,c

:= {e ∈ E(TC ) : � e = 1 or e is clique in G(TB )}.

Finally, we can formalize the procedure of deleting some of
the unusable input words from the input alphabet of an uncertain
wiretap channel. Let (TB ,TC ) be an uncertain wiretap channel
with input alphabet A, and fix a blocklength n ≥ 1. For the sake
of shorter notation, we use the notation an for the elements of
An in the rest of the section. Put A(n)

s,c (−1) = ∅ and for i ≥ 0,
set

G(n)(i) := G(Tn
B |An \A(n )

s , c (i−1)) (25)

H(n)(i) := H(Tn
C |An \A(n )

s , c (i−1)) (26)

A(n)
s,c (i) :={an: ∃ e(n)∈E(G(n)(i),H(n)(i))s,c : an ∈ e(n)}

∪ A(n)
s,c (i − 1). (27)

Note that A(n)
s,c (−1) ⊆ A(n)

s,c (0) ⊆ A(n)
s,c (1) ⊆ · · · . Define

I(n) := [min{i ≥ −1 : A(n)
s,c (i + 1) = A(n)

s,c (i)}]+

A(n)
s,c := A(n)

s,c (I(n))

where we set [x]+ = max{x, 0} for any real number x. Thus,
I(n) + 1 is the number of steps of the procedure (25)–(27),
where the input alphabet is strictly reduced. The reason for
defining I(n) in the way we have done will become clear in the
proof of Lemma 10. Since A is finite, clearly I(n) < ∞.

The next lemma states that not being an element of A(n)
s,c is

a necessary condition for any an ∈ An to be the codeword of a
zero-error wiretap code.

Lemma 9: If F is a zero-error wiretap (n,M)-code for
(TB ,TC ) and any M ≥ 2, then ran(F) ∩ A(n)

s,c = ∅.
Proof: We use induction over the reduction steps i. Let M ≥

2 and assume that F is a zero-error wiretap (n,M)-code for
(TB ,TC ). By Lemma 8, it is clear that ran(F) ∩ A(n)

s,c (0) = ∅.
Thus, F is also a zero-error wiretap M -code for the reduced un-
certain wiretap channel (Tn

B |An \A(n )
s , c (0) ,T

n
C |An \A(n )

s , c (0)). In par-

ticular, if e(n) ∈ E(G(n)(1),H(n)(1))s,c , then e(n) ∩ ran(F) =
∅. Now, note that the union of all e(n) ∈ E(G(n)(1),H(n)(1))s,c

equals A(n)
s,c (1) \ A(n)

s,c (0). Therefore, ran(F) ∩ A(n)
s,c (1) = ∅.

Repeating this argument I(n) times, one obtains the statement
of the lemma. �

The crucial point about the above-mentioned elimination pro-
cedure is that one can relate A(n)

s,c to A(1)
s,c , which in turn will

give us Theorem 2.
Lemma 10: For any uncertain wiretap channel (TB ,TC )

and every blocklength n ≥ 1, the corresponding set A(n)
s,c satis-

fies A(n)
s,c = (A(1)

s,c )n .
Before proving Lemma 10, we show how Theorem 2 follows

from it.
Proof of Theorem 2: Observe that one can restrict attention

to singleton zero-error wiretap codes because the injectivity of
TB implies that no vertices are connected in G(Tn

B ) for any n.

Further, since H(TC |An \A(n )
s , c

) has no singletons as hyperedges

by the construction of A(n)
s,c , we conclude that N(TB ,TC )(n) =

(�A)n − �A(n)
s,c . By Lemma 10, we have �A(n)

s,c = (�A(1)
s,c )n .

Thus, if A(1)
s,c is a strict subset of A, then

C0(TB ,TC ) = lim
n→∞

log N(TB ,TC )(n)
n

= log �A.

Otherwise, C0(TB ,TC ) obviously equals 0. �
Proof of Lemma 10: Fix n ≥ 2. We set σ := I(1) and define

a mapping ι : A → {0, . . . , σ} ∪ {∞}

ι(a) =

{
the i with a ∈ A(1)

s,c (i) \ A(1)
s,c (i − 1), if a ∈ A(n)

s,c

∞ otherwise.

We also define

ι(n)(an ) = (ι(a1), . . . , ι(an )).

Similarly, for e ∈ E(TC ) with e ⊂ A(1)
s,c , we set ι(e) :=

max{ι(a) : a ∈ e}, and for any e(n) ∈ E(Tn
C ), we define

ι(n)(e(n)) = (ι(e1), . . . , ι(en )).
For any in ∈ ({0, . . . , σ} ∪ {∞})n , we set

f(in ) = {an ∈ (A(1)
s,c )

n : ι(n)(an ) = in}, w(in ) =
n∑

t=1

it

and for μ ≥ 0

F (μ) :=
⋃

in ∈{0,...,σ}n :w (in )≤μ

f(in ).

Note that F (nσ) = (A(1)
s,c )n . We will now prove that

F (μ) = A(n)
s,c (μ), for 0 ≤ μ ≤ nσ (28)

I(n) = nσ = nI(1) . (29)

Together, (28) and (29) imply (A(1)
s,c )n = F (nI(1)) = A(n)

s,c ,
which is what we want to prove.

We first prove (28) by induction over μ. Let μ = 0. Then,
F (0) = (A(1)

s,c (0))n . This is equal to A(n)
s,c (0).

Next, let 0 ≤ μ ≤ nσ − 1 and assume (28) has been proven
for all 0 ≤ μ′ ≤ μ. We need to show that (28) holds for μ + 1.
First, we show that F (μ + 1) ⊆ A(n)

s,c (μ + 1).
Let in ∈ {0, . . . , σ}n with w(in ) = μ + 1. We have to show

that f(in ) ⊆ A(n)
s,c (μ + 1). Choose an an with ι(an ) = in .

Then, by (27), for every 1 ≤ t ≤ n, there exists an et ∈
E(TC ) such that an ∈ e(n) = e1 × · · · × en and ι(n)(e(n)) =
in . Therefore, we have

e(n) \ A(n)
s,c (μ)

(a)
= e(n) \ F (μ)

(b)
= (e1 \A(1)

s,c (ι(e1)−1))×· · ·×(en \A(1)
s,c (ι(en )−1)) (30)

where (a) is due to the induction hypothesis and (b) holds
because et \ A(1)

s,c (ι(et)) = ∅. By the definition of the map-

ping ι, every set et \ A(1)
s,c (ι(et) − 1) is a singleton or a clique,

hence, so is the right-hand side of (30). Thus, e(n) \ A(n)
s,c (μ) ∈

E(G(n)(μ + 1),H(n)(μ + 1))s,c ; hence, an ∈ A(n)
s,c (μ + 1).

This proves F (μ + 1) ⊆ A(n)
s,c (μ + 1).
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Now, we prove that A(n)
s,c (μ + 1) ⊆ F (μ + 1), which is

equivalent to showing that An \ F (μ + 1) ⊆ An \ A(n)
s,c (μ +

1). Let an ∈ An \ F (μ + 1). Thus, an ∈ An \ F (μ) = An \
A(n)

s,c (μ), where the equality is due to the induction hypothesis.

We need to show that e(n) \ A(n)
s,c (μ) �⊆ A(n)

s,c (μ + 1) for every

e(n) ∈ E(Tn
C ) containing an ; hence, an ∈ An \ A(n)

s,c (μ + 1).
Choose any e(n) = e1 × · · · × en ∈ E(Tn

C ) containing an .
Let in = ι(n)(an ). Thus, ι(et) ≥ it for every t ∈ {1, . . . , n}.
Choose any t∗ ∈ {1, . . . , n}. If 0 ≤ it∗ ≤ σ, there exists

an a′
t∗ ∈ et∗ \ A

(1)
s,c (it∗ − 2) with at∗ �∼ a′

t∗ . Otherwise, et \
A(1)

s,c (it∗ − 2) would be a singleton or a clique in G(1)(it∗ − 1);
hence, a subset of A(1)

s,c (it∗ − 1) contradicting ι(et∗) ≥ it∗ . A

similar argument shows that there exists an a′
t∗ ∈ A \ A(1)

s,c

with a′
t∗ �∼ at∗ if it∗ = ∞. Consequently, the sequence ãn =

(a1 , . . . , at∗−1 , a
′
t∗ , at∗+1 , . . . , an ) is an element of e(n) sat-

isfying an �∼ ãn because G(Tn
B ) is the n-fold strong graph

product of G(TB ). Notice that w(ãn ) ≥ w(an ) − 1 ≥ μ + 1
because ι(a′

t∗) ≥ it∗ − 1. In particular, ãn /∈ F (μ) = A(n)
s,c (μ).

Thus, we have found two different an , ãn ∈ e(n) \ A(n)
s,c (μ) that

are not adjacent to each other, which implies e(n) \ A(n)
s,c (μ) �⊆

A(n)
s,c (μ + 1). Therefore, An \ F (μ + 1) ⊆ An \ A(n)

s,c (μ + 1),
and this proves (28).

To show (29), observe that by the same argument as in the pre-
vious step, A(n)

s,c (nσ + 1) ⊆ F (nσ + 1) = F (nσ). Therefore,

A(n)
s,c (nσ + 1) = A(n)

s,c (nσ); hence, I(n) = nσ = nI(n) . �
5) Examples and discussion: Example 2 The uncertain

wiretap channel (TB ,TC ) shown in Fig. 2(b) is an ex-
ample of the fact that at finite blocklengths n, nonsingle-
ton zero-error wiretap codes may be necessary to achieve
N(TB ,TC )(n). If one applies the zero-error wiretap code F =
{{a1}, {a2 , a3}, {a4}}, then three messages can be distin-
guished at the intended receiver’s output, and every eavesdrop-
per output can be generated by two different messages. Hence,
F is a zero-error wiretap (1, 3)-code. On the other hand, the
maximal M for which a singleton zero-error wiretap (1,M)-
code exists is M = 2; for example, F = {{a1}, {a4}}. M = 4
is not possible because NTB

(1) = 3. For M = 3, either c1 or
c2 would be generated by only one message.

We conjecture that nonsingleton zero-error wiretap codes are
also necessary to achieve C0(TB ,TC ).

One can also construct examples that show the following: If
there exists a zero-error wiretap (n,M)-code, then it is neces-
sary to have nonsingleton codes to also find a zero-error wiretap
(M ′, n)-code for every 2 ≤ M ′ ≤ M .

Another open question is when the zero-error wiretap capacity
of general uncertain wiretap channels is positive.

Example 3: Consider the wiretap channel (TB ,TC ) from
Fig. 8 (a). Fig. 8(b) shows A with G(TB ) and H(TC ), and
Fig. 8(c) shows A2 with G(T2

B ) and H(T2
C ). The code shown

in Fig. 8(c) shows that C0(TB ,TC ) ≥ 1. Since C0(TB ) = 1
by [2], we can even conclude C0(TB ,TC ) = 1.

Note that N(TB ,TC )(1) = 1. Thus, the number of messages
that can be transmitted securely jumps from none at block-
length 1 to 4 at blocklength 2. This behavior is remarkable

Fig. 8. (a) Uncertain wiretap channel (TB , TC ). (b) A with G(TB )
and H (TC ). (c) A2 with G(T2

B ) and H (T2
C ). Vertices connected by a

solid black line are connected in G(TB ) or G(T2
B ), respectively. Vertices

within the boundary of a blue dotted line belong to the same hyperedge
of H (TC ) or H (T2

C ), respectively. A zero-error wiretap (2, 4)-code is
indicated on the right-hand figure.

when compared with the behavior of zero-error codes for un-
certain channels; an uncertain channel T has C0(T) > 0 if and
only if NT (1) ≥ 2. This is a simple criterion to decide at block-
length 1, whether or not the zero-error capacity of an uncertain
channel is positive. We do not yet have a general simple crite-
rion for deciding whether or not the zero-error secrecy capacity
of an uncertain wiretap channel is positive. Of course, if TB is
injective, then Theorem 2 provides such a criterion.

APPENDIX B
PROOFS FROM QUANTIZER ANALYSIS

For reference, we note the following simple lemma, which is
easily proved by induction.

Lemma 11: Let μ be a real number, and let y(0 :∞), v(0 :∞)
be two sequences of real numbers satisfying y(t + 1) = μy(t) +
v(t) for every t ≥ 0. Then, for every t ≥ 0, we have

y(t) = μty(0) +
t−1∑

i=0

μt−i−1v(i).

Proof of Lemma 3: Note that the quantizer set P(m(0 : t))
is an interval. Thus, (13) implies |I(m(0 : t + 1))| = λ|P(m(0 :
t))| + Ω. Hence, by (11), we obtain

|P(m(0 : t+1))|= |I(m(0 : t+1))|
M

=
λ

M
|P(m(0 : t))|+ Ω

M
.

(31)
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Therefore, by Lemma 11, we get

|P(m(0 : t))| =
(

λ

M

)t

|P(m(0 :0))| + Ω
M

t−1∑

i=0

(
λ

M

)t−i−1

=
(

λ

M

)t (
|I0 |
M

− Ω
M − λ

)
+

Ω
M − λ

which proves (15). The other statements of the lemma are im-
mediate from (15). �

Proof of Lemma 4: Let m(0 : t) �= m′(0 : t). It is sufficient to
show that the minimal distance between x̂(m(0 : t)) and x̂(m′(0 :
t)) is lower bounded by 
t . By Lemma 5, we obtain

x̂(m(0 : t)) − x̂(m′(0 : t)) = λt |I0 |
M

t∑

i=0

m(i) − m′(i)
Mi

︸ ︷︷ ︸
=:n(m,m ′,t)

. (32)

Since m(i) − m′(i) �= 0 for at least one i ∈ {0, . . . , t}, the ab-
solute value of n(m,m′, t) is at least 1/Mt . Thus, by (32), we
have

|x̂(m(0 : t)) − x̂(m′(0 : t))| ≥ |I0 |
M

(
λ

M

)t

. (33)

By Lemma 3, the right-hand side of (33) equals 
t . �
Proof of Lemma 5: Recall the notation I = [Imin , Imax] for

real intervals I. For t ≥ 0, we obtain

x̂(m(0 : t + 1))

(a)
= I(m(0 : t))min +

(
m(t + 1) +

1
2

)

t+1

(b)
= λP(m(0 : t))min − Ω

2
+

(
m(t + 1) +

1
2

)

t+1

(c)
= λx̂(m(0 : t)) − λ
t

2
− Ω

2
+

(
m(t + 1) +

1
2

)

t+1 (34)

(d)
= λx̂(m(0 : t))− λ
t

2
−Ω

2
+

(
m(t + 1) +

1
2

)(
λ

M

t +

Ω
M

)

= λx̂(m(0 : t)) +
λ
t + Ω

2

(
2m(t + 1) + 1

M
− 1

)
(35)

where (a) is due to (11) and (12), (b) is due to (13), (c) is again
due to (12), and (d) is due to (31). Therefore, we have

x̂(m(0 : t + 1))

(e)
= λx̂(m(0 : t)) +

(
λt+1 |I0 |
2Mt+1 − λt+1

2Mt

Ω
M− λ

+
λ

2
Ω

M− λ
+

Ω
2

)

×
(

2m(t + 1) + 1
M

− 1
)

= λx̂(m(0 : t)) +
1
2

(
λt+1

Mt+1 |I0 | +
ΩM

M − λ

(
1 − λt+1

Mt+1

))

×
(

2m(t + 1) + 1
M

− 1
)

(36)

where (e) is due to (35) and (16). Consequently, we get

x̂(m(0 : t))

(f )
= λt

{
x̂(m(0 :0))

+
1
2

t−1∑

i=0

1
λi+1

(
λi+1

Mi+1 |I0 | +
ΩM

M − λ

(
1 − λi+1

Mi+1

))

×
(

2m(i + 1) + 1
M

− 1
)}

(g)
= λt

{
x̂(m(0 :−1)) +

|I0 |
2

(
2m(0) + 1

M
− 1

)

+
1
2

t∑

i=1

(
|I0 |
Mi

+
ΩM

M − λ

(
1
λi

− 1
Mi

))(
2m(i) + 1

M
− 1

)}

= λt

{
x̂(m(0 :−1))

+
1
2

t∑

i=0

(
ΩM

M − λ

(
1
λi

− 1
Mi

)
+

|I0 |
Mi

)(
2m(i) + 1

M
− 1

)}

where (f) is due to Lemma 11, and the recursion formula for
x̂(m(0 : t)) derived in (36) and in (g), we applied (11) to find
the relation between x̂(m(0 :0)) and x̂(m(0 :−1)). �

Proof of Lemma 6: Without loss of generality, we may as-
sume that x̂(m(0 :T )) > x̂(m′(0 :T )). Then, it is sufficient to
show that if (18) is satisfied, then x̂(m(0 :T + t)) − x̂(m′(0 :
T + t)) ≥ 
T +t for all t ≥ 0. We have

x̂(m(0 :T + t)) − x̂(m′(0 :T + t))

(a)
= λt

{
x̂(m(0 :T )) − x̂(m′(0 :T ))

+ λT
T +t∑

i=T +1

(
Ω

M − λ

(
1
λi

− 1
Mi

)
+

|I0 |
Mi+1

)
(m(i) − m′(i))

}

(b)
≥ λt

{
x̂(m(0 :T )) − x̂(m′(0 :T ))

−λT (M − 1)
T +t∑

i=T +1

(
Ω

M − λ

(
1
λi

− 1
Mi

)
+

|I0 |
Mi+1

)}

= λt

{
x̂(m(0 :T )) − x̂(m′(0 :T ))− Ω(M − 1)

(M − λ)(λ −1)
(1− λ−t)

− λT

MT

(
|I0 |
M

− Ω
M − λ

)
(1 − M−t)

}
(37)

where (a) is due to Lemma 5 and (b) holds because m(i) −
m′(i) ≥ −(M − 1) for all i. Thus, one obtains

x̂(m(0 :T + t)) − x̂(m′(0 :T + t)) − 
T +t

λt
(38)
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(c)
≥ x̂(m(0 :T )) − x̂(m′(0 :T )) − Ω

M − λ

×
(
M − 1
λ − 1

(1 − λ−t) − λT

MT
(1 − M−t) +

1
λt

− λT

MT +t

)

− |I0 |
M

(
λT

MT
(1 − M−t) +

λT

MT +t

)

= x̂(m(0 :T )) − x̂(m′(0 :T ))

− Ω
M − λ

(
M − 1
λ − 1

(1 − λ−t) − λT

MT
+

1
λt

)
− |I0 |

M

λT

MT

(39)

where (37) and Lemma 3 were used in (c). Since we want (38)
to be positive for every t ≥ 0, it is sufficient by (39) to have

x̂(m(0 :T )) − x̂(m′(0 :T ))

≥ max
t≥0

{
Ω

M − λ

(
M − 1
λ − 1

(1− λ−t) − λT

MT
+

1
λt

)
+
|I0 |
M

λT

MT

}

=
Ω

M − λ

(
M − 1
λ − 1

− λT

MT
+ 1

)
+

|I0 |
M

λT

MT

(d)
=

Ω
M − λ

M − 1
λ − 1

+ 
T

where (d) is due to Lemma 3. Thus, the inequality holds if (18)
is satisfied. �

Proof of Lemma 7: If we can show that

x̂(mξ(1:j−1)ξ(j )(0 :jT − 1)) − x̂(mξ(1:j−1)ξ ′(j )(0 :jT − 1))

>
Ω

M − λ

M − 1
λ − 1

+ 
jT −1 (40)

for every j ≥ 1, every ξ(1 :j − 1) ∈ {1, . . . , γ}j−1 , and every
ξ(j), ξ′(j) ∈ {1, . . . , γ}with ξ(j) > ξ′(j), then the claim of the
lemma follows from Lemma 6. We have

x̂(mξ(1:j−1)ξ(j )(0 :jT − 1)) − x̂(mξ(1:j−1)ξ ′(j )(0 :jT − 1))

(a)
= λjT −1

jT −1∑

i=(j−1)T

(
ΩM

M − λ

(
1
λi

− 1
Mi

)
+

|I0 |
Mi

)

mξ(j )(i) − mξ ′(j )(i)
M

(b)
≥ Ω

M − λ

λT − 1
λ − 1

+
(
|I0 |
M

− Ω
M − λ

)
λjT −1

M (j−1)T −1

1 − M−T

M − 1

(c)
=

Ω
M − λ

M − 1
λ − 1

+ 
jT −1 +
Ω

M − λ

λT − M − λ + 1
λ − 1

+
(
|I0 |
M

− Ω
M − λ

) (
λ

M

)jT −1
MT − M

M − 1

=:
Ω

M − λ

M − 1
λ − 1

+ 
jT −1 + AjT (41)

where (a) is due to Lemma 5, (b) uses mξ(j )(i) − mξ ′(j )(i) ≥ 1,
which holds due to the choice of ξ(j), ξ′(j), and Lemma 3

was used in (c). It remains to show that AjT ≥ 0. Since λT ≥
M + λ − 1 for T satisfying (19), this is clear in the case where
|I0 |/M ≥ Ω/(M − λ). Otherwise, we lower bound AjT by
AT , for which we have

AT +
Ω(M + λ − 1)
(M − λ)(λ − 1)

≥ Ω
M − λ

λT

(
1

λ − 1
− M

λ(M − 1)

)

(d)
≥ Ω

M − λ

λ(M − 1)(M + λ − 1)
M − λ

M − λ

λ(λ − 1)(M − 1)

=
Ω(M + λ − 1)
(M − λ)(λ − 1)

where (d) is due to (19). This implies AT ≥ 0; hence, AjT ≥ 0
for all j ≥ 1. With (41), this implies (40) for all choices of j,
ξ(1 :j − 1), and ξ(j) > ξ′(j) and hence, completes the proof of
the lemma. �
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