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A Game-Theoretic Framework for the Security-Aware Sensor
Placement Problem in Networked Control Systems

Mohammad Pirani, Ehsan Nekouei, Henrik Sandberg and Karl Henrik Johansson

Abstract—This paper studies the sensor placement problem
in a leader-follower networked control system for improving its
security against cyber-physical attacks. In a zero-sum game, the
attacker selects f nodes of the network to attack and the detector
places f sensors to detect the presence of the attack signals. In
our formulation, the attacker’s objective is to have a large impact
on a target node in the network while being as little visible as
possible to the detector. The detector, however, seeks to maximize
the visibility of the attack signals. The effects of the attack signals
on both the target node and the detector nodes are captured via
the system L2 gain from the attack signals to the target node and
deployed sensors’ outputs, respectively. The equilibrium strategy
of the game determines the optimal locations of the sensors. The
existence of Nash equilibrium for the case of single-attack-single-
sensor is studied when the underlying connectivity graph is a
directed or an undirected tree. We show that, under the optimal
sensor placement strategy, an undirected topology provides a
higher security level for a networked control system compared
to its corresponding directed topology. For the case of multiple-
attacks-multiple-sensors case, we show that the game does not
necessarily admit a Nash equilibrium and introduce a Stackelberg
game approach where the detector acts as the leader. Finally,
these results are used to study the sensor placement problem in
a vehicle platooning application in the presence of bias injection
attacks.

I. INTRODUCTION

The vulnerability of distributed control systems to attacks
has triggered the research on their resilience and security in
recent years [1]. Several detection methods and defense mech-
anisms have been proposed based on the system specifications
and the attack strategy [2]–[5]. One of these approaches is
to define a game between the attacker and the defender to
mitigate the effect of the attack as much as possible. The game-
theoretic approach can be also used to increase the visibility
of the attacker’s actions.

Game-theoretic approaches to the security and resilience
of control systems have been studied in the literature [6].
These approaches vary depending on the structure of the
cyber-physical system or the specific type of malicious action
acting on the cyber layer. In the earlier approaches, at each
layer (physical and cyber) a particular game is defined. This
introduces the concept of games-in-games that reflects two
interconnected games, one in the physical layer and the other
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in the cyber layer. The payoff of each game affects the result
of the other one [7]. In the latter approach (games based
on the type of malicious action), depending on the type of
the adversarial behaviour (active or passive) appropriate game
strategy, e.g., Nash or Stackelberg, was discussed [8]–[10]. In
addition to these approaches, the evolution of some network
control systems are modeled as cooperative games [11] and
the resilience of these cooperative games to the actions of
adversarial agents or communication failures are studied [12],
[13]. Recent works have discussed attack detection using
game-theoretic approaches [14], [15].

In this paper, which is an extended version of the confer-
ence paper [16], we propose a game-theoretic approach to
security-aware sensor placement in leader-follower dynamical
systems which have diverse applications ranging from multi-
agent formation control and vehicle platooning [17] to opinion
dynamics in social networks [18]. In our model, the strategic
interaction between the attacker and the detector is captured
using a non-cooperative game. More specifically, the contri-
butions of the paper are:
• We derive graph-theoretic interpretations of the system
L2 gain which allow us to study the existence of Nash
equilibrium (NE) and the game values for both directed
and undirected topologies.

• For the single-attack-single-sensor case, we study the
existence of NE strategy for the attacker-detector game
and characterize its equilibrium strategies.

• We show that the attacker-detector game with the
multiple-attacks-multiple-sensors case does not admit an
NE in general. The Stackelberg equilibrium of the game
is studied, in this case, with the detector as the game
leader. For path graphs, it is shown that, at the Stackelberg
equilibrium of the game, the detector places the sensors at
the last f nodes in the graph. Moreover, the equilibrium
strategy of the attacker can be computed efficiently for
path graphs.

• We study the optimal sensor placement problem in a
platoon of vehicles operating based on a cooperative
cruise control algorithm.

In this paper, we consider undirected and directed tree topolo-
gies. This is inspired by a class of large-scale systems that
follow acyclic graph structures, such as vehicle platoons (as
discussed in this paper) or power distribution networks [19],
[20].

A. Notation and Definitions

We use Gu = {V, E} to denote an unweighted undirected
graph where V is the set of vertices (or nodes) and E is
the set of undirected edges where (vi, vj) ∈ E if an only if
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there exists an undirected edge between vi and vj . Moreover
Gd = {V, E} denotes an unweighted directed graph where E
is the set of directed edges,i.e., (vi, vj) ∈ E if an only if there
exists a directed edge from vi to vj . In this paper, directed
graphs only have unidirectional edges, i.e., if there exists a
directed edge from vi to vj in Gd, then there is no directed
edge from vj to vi.1 Let |V| = n and define the adjacency
matrix for Gd, denoted by An×n, to be a binary matrix where
Aij = 1 if and only if there is an edge from vj to vi in Gd (the
adjacency matrix will be a symmetric matrix when the graph
is undirected). The neighbors of vertex vi ∈ V in the graph
Gd are denoted by the set Ni = {vj ∈ V | (vj , vi) ∈ E}. We
define the in-degree (or just degree for undirected networks)
for node vi as di =

∑
j:vj∈Ni

Aij . A cut vertex in a
connected graph is a node such that if it is removed (along
with its incident edges) the graph becomes disconnected. The
Laplacian matrix of a graph is denoted by L = D−A, where
D = diag(d1, d2, ..., dn). A tree is a connected acyclic graph.
A directed tree is a digraph whose undirected counterpart is a
tree. A leaf is a node in a tree with degree (or in-degree) one.
We use ei to indicate the i-th vector of the canonical basis.

II. PROBLEM STATEMENT

Consider a connected directed or undirected network G =
{V, E} comprised of a leader (or reference) agent, denoted by
v`, and rest of the agents are called followers. The state of
follower agent j at time t is xj(t) ∈ R evolves based on the
interactions with its neighbors according to

ẋj(t) =
∑

vi∈Nj

(xi(t)− xj(t)). (1)

The state of the leader is a constant exogenous reference
signal, i.e., x`(t) = u(t), which should be tracked by the
followers. If the graph is connected, the states of the follower
agents will track the reference signal [21]. We assume without
loss of generality that the leader is placed last in the ordering
of the agents. The update rule of each follower agent is prone
to an intrusion (or attack). More specifically, there exists
an attacker which chooses a set of attack nodes, called F
consisting of f nodes in the network, to inject the attack
signals. In practice, the number of attacked nodes is unknown;
thus f represents an upper bound on the number of attack
nodes. The leader is not affected by the attack signals as its
state evolves according to the exogenous input u(t). If the
follower agent vj is influenced by the attacker, its the dynamics
is written in the following form

ẋj(t) =
∑

vi∈Nj

(xi(t)− xj(t)) + wj(t) if vj ∈ F , (2)

where wj(t) represents the attack signal. To detect the pres-
ence of the attack signals, a detector deploys f dedicated
sensors at f specific follower nodes, denoted by D. Thus, we
have

yi(t) = xi(t) if vi ∈ D, (3)

1The main motivation behind this assumption is its application in
predecessor-following platoons which will be discussed in Section VI.

where yi(t) is the output of the sensor (detector) deployed
at follower vi. We refer to these sensors as detector sensors
as they are dedicated for attack detection and they are not
used for feedback control purposes. Aggregating the states of
all followers into a vector x(t) ∈ Rn−1, and aggregating the
attack signals to w(t), equations (2) and (3) yield the following
dynamics

ẋ(t) = −Lgx(t) + L̄u+Bw(t),

y(t) = Cx(t). (4)

where Lg is called the grounded Laplacian matrix (formed
by removing the row and the column corresponding to the
leader from the Laplacian matrix) and the vector L̄ captures
the influence of the leader on its neighbors. Considering
F = {vi1 , vi2 , ..., vif } and D = {vj1 , vj2 , ..., vjf } as the set
of attacker and detector nodes, respectively, matrices Bn×f =
[ei1 , ei2 , ..., eif ], and Cf×n = [eTj1 ; eTj2 ; ...; eTjf ] specify the
decisions of the attacker and the detector, respectively. In
particular, there is a single 1 in the i-th row (column) of
matrix B (C) if the i-th node is under attack (has a sensor).
We assume that there exists at least one attacker node in the
system, i.e., f ≥ 1. When the graph G is connected, Lg is
nonsingular and L−1

g is nonnegative elementwise [22].
By defining the error state x̃(t) , x(t) − L−1

g L̄u(t) and
writing the dynamics of x̃(t), the term L̄u(t) will be removed
from (4). The following theorem characterizes the system L2

gain from the attack signals to the output measurement of the
error dynamics of (4).

Theorem 1 ( [23]): Let G(s) = C(sI − A)−1B be the
transfer function of the error dynamics of (4). The L2 gain
from the attack signals to the output measurement of (4) is
given by

sup
‖w‖2 6=0

‖y‖2
‖w‖2

= σmax(G(0)) = σmax(CL−1
g B) (5)

where σmax is the largest singular value of matrix G(0) and
the L2 norm of signal u is ‖u‖22 ,

∫∞
0

uTu dt.

III. ATTACKER-DETECTOR GAME

In this subsection, we formally define a game between the
attacker and detector.

1) Decisions of Players: The attacker’s objective is to select
a set of nodes to inject the attack signals such that the attack
has a large impact on a target node vj ∈ V ,2 while the L2 gain
from attack signals to the output measurements y(t), defined in
(5), is relatively small. On the other hand, the detector deploys
a set of sensors on specific nodes in the network to maximize
the L2 gain from the attack signals to the measurements, i.e.,
the effect of attacks becomes more apparent in output y(t).

2) Game Payoff: The game payoff for the attacker and the
detector is (for some λ ≥ 0):

J(F ,D) = σmax(CTL−1
g B)− λσmax(eT

j L
−1
g B). (6)

Matrices B and C are determined by the set of the attacked
nodes F and the set of the detector nodes D, respectively.

2This target node can be the most expensive part of the network or be a
node which performs specific tasks.
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Fig. 1: An example of an attacker-detector game with f = 1.

The attacker aims at minimizing the objective function in
(6) whereas the detector tries to maximize it. Parameter λ
determines the level of the priority of the impact versus
visibility for the attacker. Note that the action of the attacker
is only determined by matrix B and the value of the attack
signal w(t), i.e., its magnitude and frequency content, is not
a decision variable. In practice, it is difficult for an attacker
to precisely predict the impact of the injected attack signal on
the detector output, due to different omnipresent sources of
disturbance in networked control systems. Hence, the attacker
considers the worst impact of the attack signal on the detector
output, i.e., the system L2 gain, as its visibility metric. From
the attacker point of view, it is desirable to minimize this
visibility measure whereas the detector prefers to maximize
it.

Fig. 1 shows an example of this game in a network of five
agents where the attacker chooses node 1, the detector chooses
node 4, and node 5 is the attacker’s target node. The attacker
seeks to maximize its impact on node 5 while, at the same
time, tends to be covered as much as possible to the detector.

Remark 1: (Trade-off Between Impact and Visibility)
There are several works in the literature on quantifying the
trade-off between the attack impact and its visibility [24]. Our
approach to introducing the game objective follows this line
of research. In the way we presented the payoff, the game
equilibria are sensitive to the parameter λ, i.e., the attacker’s
strategy varies by changing λ. This can be interpreted as the
level of risk aversion of the attacker to perform an attack.
When λ is small, the attacker’s concern is more on being
stealthy. A special case is when λ = 0 which was analyzed
in [16]. There, the attacker’s objective is visibility and it does
not target a specific node. This extreme case can be viewed
as the pre-attack phase, i.e., when the attacker only tries to
learn the system (without being detected) before performing
the attack. The high regime of λ corresponds to the case where
the detectability is not of importance for the attacker and it
focuses on having large impact on the target node.

In this paper, we investigate the effect of parameter λ on
the game equilibrium when the underlying network is an
undirected or a directed tree. For directed trees, we impose
the following assumption throughout the paper.
Assumption 1: In directed tree Gd, each follower vi can be
reached through a directed path from the leader. 3

3Digraphs which satisfy Assumption 1 and do not have a directed cycle
are called rooted-out-branching in the literature [25].
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Fig. 2: Examples of an undirected tree, (a), and a directed tree,
(b). NE strategies for f = 2 for specific values of λ for the
target node specified in green color.

For the analyses in this paper, we need to have a graph-
theoretic sense of the elements of matrix L−1

g , which is
discussed in the following lemma.

Lemma 1: Suppose that Gu is an undirected tree and let
Pi` be the set of edges involved in the (unique) path from the
leader node v` to vi. Then, we have

[L−1
g ]ij = |Pi` ∩ Pj`|. (7)

Proof: See Appendix A.
According to this lemma, the (i, j)th element of L−1

g is
equal to the number of common edges between the path from
the leader to the node vi and the path from the leader to the
node vj . As an example, in Fig. 2 (a), we have [L−1

g ]35 =
|P3` ∩ P5`| = 1 and [L−1

g ]32 = |P3` ∩ P2`| = 2.
The following lemma characterizes the elements of L−1

g for
directed trees.

Lemma 2: Suppose that Gd is a directed tree with the leader
node v` satisfying Assumption 1. Then, we have

[L−1
g ]ij =

{
1 if there is a directed path from j to i,
0 if there is no directed path from j to i.

(8)

Proof: See Appendix B.
For the directed tree shown in Fig. 2 (b), we have [L−1

g ]12 = 0
and [L−1

g ]21 = 1, since there is a directed path from node 2
to node 1.

IV. EQUILIBRIUM ANALYSIS OF THE GAME:
SINGLE-ATTACK-SINGLE-SENSOR CASE

We characterize the equilibrium of the attacker-detector
game with a single attacked node and a single detector node,
i.e., f = 1 on directed and undirected trees for different values
of λ. In this case, the game payoff reduces to

J(F ,D) = eT
k L
−1
g ei − λeT

j L
−1
g ei, (9)

where vi, vk, and vj are the attacked node, the detector node,
and the target node, respectively. In the rest of the paper, target
node or node vj are used interchangeably.

In the following theorems, we use the term leader-rooted
path in a tree, which is a path starting from the leader v`
and ends at a node with degree 1 (the leaf). If v` is not a
cut vertex in a tree, it has a single neighbor which is the
starting node of all leader rooted paths. We label the nodes in
a leader rooted path of length m containing the target node
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Fig. 3: NE strategies of the attacker-detector game for directed
and undirected networks. The green node is the target node.

vj as v`, v1, ..., vj , ...vm as shown in Fig. 3 (a). The following
theorem discusses the existence of NE for the attacker-detector
game when 0 ≤ λ ≤ 1. This case models scenarios in which
visibility dominates the impact from the attacker’s perspective.

Theorem 2: (Undirected Tree with 0 ≤ λ ≤ 1): Let Gu be
an undirected tree and f = 1.

(i) If v` is not a cut vertex and λ < 1, there exists at least one
NE in which the attacker chooses the leader’s neighbor
and the detector chooses any node between the target
node and the leaf in the leader rooted path containing vj .
In this case, the game value will be J∗ = 1− λ.

(ii) If v` is a cut vertex and λ < 1, the game does not admit
an NE.

(iii) For λ = 1, the game has an NE with value zero whether
v` is a cut vertex or not. The NE strategy is similar to
(i).

(iv) For λ = 0, if v` is not a cut vertex, NE belongs to
the case where the attacker chooses the leader’s neighbor
(regardless of the detector’s decision). If v` is a cut vertex,
there is no NE.

Proof: See Appendix C.
The NE strategies of the attacker and detector are schemati-

cally shown in Fig. 3 (a). Here, as the visibility dominates the
impact from the attacker’s perspective, it acts in a conservative
manner and does not attack directly the target node.

For the case where λ > 1, the NE strategies are different, as
discussed in the following theorem. The structure of the proof
of the following theorem is similar to that of Theorem 2.

Theorem 3: (Undirected Trees with λ > 1): Let Gu be an
undirected tree and v` be the leader node and λ > 1. Then,
there exists at least one NE when the detector chooses any
node between vj and the leaf in a leader rooted path containing
vj , and the attacker chooses the target node, i.e., vi = vj . In
this case, the game value will be J∗ = `j(1− λ), where `j is
the path length between vj and the leader.

Unlike Theorem 2, Theorem 3 holds regardless of the fact
that v` is a cut vertex or not. Fig. 3 (b) shows possible NE
strategies discussed in Theorem 3. Physically speaking, for

λ > 1 where the impact dominates the visibility, the attacker
chooses the target node without considering the visibility
effects. For undirected trees, when λ > 1, the position of
the target node vj plays a critical role on the game value. In
this case, the closer vj is to the leader, i.e., smaller `j , results
in a larger game value.

Theorem 4: (Directed Trees with 0 ≤ λ ≤ 1): Let Gd be
a directed tree with the leader node v` satisfying Assumption
1, and f = 1.

(i) For λ = 1: An NE exists in which the attacker chooses
any node between the leader and vj and detector chooses
any node between vj and the leaf in the leader rooted
path containing vj . The game value in this case will be
J∗ = 0.

(ii) For λ < 1: There is no NE except when Gd is a directed
path in which the detector chooses the leaf node and the
attacker chooses any node between the leader and vj . The
game value will be J∗ = 1− λ.

Proof: See Appendix D.
The NE strategy discussed in Theorem 4 for λ < 1 is shown

in Fig. 3 (c). Note that in this case the unique topology which
admits an NE is a directed path. The proof of the following
theorem follows the same procedure as Theorem 4.

Theorem 5: (Directed Trees with λ > 1): Let Gd be a
directed tree and λ > 1. Then, there exists an NE is when
the attacker chooses any node between the leader and vj and
the detector chooses any node between vj and the leaf in the
leader rooted path which includes vj . The game value in this
case is J∗ = 1− λ.

The NE strategies for the attacker and detector discussed
in Theorem 5 are shown in Fig. 3 (d). Note that there exists
sudden emergence of an equilibrium for the game on directed
trees when λ ≥ 1. For λ < 1, according to Theorem 4, there is
no NE for digraphs other than directed paths. However, when
λ passes 1, an NE appears. Table I summarizes the results of
Theorems 2 to 5.

Graph λ ≤ 1 λ > 1
Undirected Tree NE exists NE exists

Game Value J∗ = 1− λ J∗ = `j(1− λ)

Directed Tree λ < 1, no NE except for path NE exists
λ = 1, NE exists

Game Value J∗ = 1− λ J∗ = 1− λ

TABLE I: Summarizing the results of Theorems 2 to 5.

The following corollary compares the value of the attacker-
detector game when the underlying networks are directed and
undirected trees. The proof is straightforward based on the
game values mentioned in Theorems 2 to 5.

Corollary 1: Let Gd be a directed tree with leader node v`
and Gu be its corresponding undirected graph (by removing
directions from the edges). Let Jd and Ju denote the values
of the attacker-detector games corresponding to the graphs Gd
and Gu, respectively. Then we have Jd ≤ Ju.

Based on the above corollary, for f = 1, the undirected
network is more secure compared to the directed network for
any regime of λ.
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V. EQUILIBRIUM ANALYSIS OF THE GAME:
MULTIPLE-ATTACKS-MULTIPLE-SENSORS CASE

In this section, we investigate the case where the number
of attacked nodes and detection sensors is more than one.

A. General Topology with f > 1

As shown in the following examples, the attacker-detector
game does not necessarily admit an NE in general undirected
or directed topologies.

Example 1 (Undirected Topology): Consider the attacker-
detector game in Fig. 2 (a) with f = 2. By direct computation,
it can be verified that the game does not admit an NE for
λ = 1. However, for λ = 2 an NE strategy emerges as shown
in that figure.

Example 2 (Directed Topology): Consider the attacker-
detector game in Fig. 2 (b). In this case, there is no NE for
λ = 0 but it admits an NE for λ = 1.
For the case where there is no NE, we study the Stackelberg
game between the attacker and the detector. For the Stack-
elberg game, we assume that the detector acts as the game
leader as it reflects its willingness to consider the worst case
attack. In this formulation, the leader solves

J∗(C) = max
C

σmax(CL−1
g B∗(C))− λσmax(eT

j L
−1
g B∗(C)),

(10)
where B∗(C) is the best response of the attacker when the
strategy of the detector is C, i.e., B∗(C) is the solution of

B∗(C) = arg min
B

σmax(CL−1
g B)− λσmax(eT

j L
−1
g B). (11)

In particular, for a given strategy of the detector, i.e., matrix
C, the attacker finds its best response strategy to the detector’s
decision, which is given by (11). Then, the detector optimizes
its decision based on all possible best response strategies of
the attacker. Unlike the NE, a Stackelberg game always admits
an equilibrium strategy.

In general, the computational complexity of solving (10) is
O
((

n
f

)2)
. That is, we have to solve (11) from the attacker’s

perspective for all possible choices of f attacked nodes.
Then, the detector selects the sensor placement strategy which
maximizes (11). Unlike the case of λ = 0 discussed in [16],
for λ > 0 due to the trade-off between visibility and impact
from the attacker’s perspective, both attacker and detector have
to perform more computations.

B. Path Graphs with f > 1

Specific network topologies can also help decreasing the
computational cost of (10). Here, we discuss Stackelberg game
equilibrium strategies when the underlying graph is a directed
or undirected path. Solving the Stackelberg game for path
graphs can shed light on solving more complicated graph
structures using the notion of a graph’s path covering [26].
The canonical structures of Lg for undirected and directed path
graph, according to Lemmas 1 and 2, are shown in Fig. 4.

Proposition 1: let Gu and Gd be an undirected and directed
path graphs, respectively, with the leader v` being a leaf. We
label the nodes starting from the leader, by v`, v1, v2, ..., vn.

𝐿𝑔
−1 =

1 1 1 1 ⋯ 1
1 2 2 2 ⋯ 2
1 2 3 3 ⋯ 3
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 2 3 4 ⋯ 𝑛 − 1

Non-decreasing

N
o
n
-d
ec
re
as
in
g

𝐿𝑔
−1 =

1 0 0 0 ⋯ 0
1 1 0 0 ⋯ 0
1 1 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 1 ⋯ 1

(a) (b)

Fig. 4: Matrix canonical structure for the undirected (a) and
directed (b) path graphs.

At the equilibrium of the Stackelberg game with the de-
tector as the game leader, the detector places sensors on
vn−f , vn−f+1, ..., vn, regardless of the value of λ, for both
directed and undirected path graphs. Furthermore, the equilib-
rium strategy of the attacker can be computed with a cost that
is independent of the network size.

Proof: See Appendix E.
Remark 2: (Computational Complexity) As shown in

Theorems 2 to 5, in the cases where a NE exists, the optimal
locations of the sensor nodes can be computed instantaneously
and independent of the network size. Procedures to determine
the NE strategies for both attacker and detector are described
in those theorems. When the game does not admit an NE, find-
ing the equilibria of the Stackelberg game is a combinatorial
problem. However, for specific graph structures, one can find
efficient algorithms to find the equilibria, e.g., the example of
a path graph discussed in Proposition 1. There, as shown in the
proof, the detector finds its optimal decision instantaneously
and the attacker calculates the best response independent of
the network size.

VI. CASE STUDY: BIAS INJECTION ATTACKS IN VEHICLE
PLATOONS

In this section, we study the attacker-detector game on
a vehicle platoon. In this setting, the objective for each
follower vehicle is to track a reference velocity while re-
mains in a safe distance from its neighboring vehicles. Two
widely used inter-vehicular communications for platooning
are bidirectional communication and predecessor-following
communication [17], as shown in Fig. 5.

Consider a connected network of n vehicles. The position
and longitudinal velocity of each vehicle vi at time t is denoted
by scalars pi(t) and ui(t), respectively. Each vehicle vi is
able to communicate its kinematic parameters, e.g., velocity,
to its neighbor vehicles, specified by the communication graph.
The desired vehicle formation will be determined by specific
constant inter-vehicular distances. Let ∆ij denote the desired
distance between vehicles vi and vj . The desired vehicle
formation and velocity tracking are schematically shown in
Fig. 5 (a) and (b). Considering the fact that each vehicle vi
has access to its own position, the positions of its neighboring
vehicles, and the desired inter-vehicular distances ∆ij , the
dynamics of vehicle vi can be expressed as [17]

p̈i(t) =
∑
j∈Ni

kp
(
pj(t)− pi(t) + ∆ij

)
+ ku

(
uj(t)− ui(t)

)
+ wi(t), (12)
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(1,3)(1,3)
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𝜆 = 1.5

AttackerDetector

P
ay

o
ff

P
ay

o
ff

(1,2) (1,3)
(2,3)(1,3)

Equilibrium

𝜆 = 0.1

(2,3)

Attacker
Detector

𝑣ℓ

𝑢ℓ

𝑣1

𝑢1 → 𝑢ℓ𝑢2 → 𝑢ℓ𝑢3 → 𝑢ℓ

𝑣2𝑣3 Δ1ℓΔ21Δ32 𝑣ℓ

𝑢ℓ

𝑣1

𝑢1 → 𝑢ℓ𝑢2 → 𝑢ℓ𝑢3 → 𝑢ℓ

𝑣2𝑣3 Δ1ℓΔ21Δ32

(a) (b)

(c) (d) (e) (f)

Fig. 5: Desired inter-vehicular distances ∆ij and velocity u` in (a) a vehicle platoon with bidirectional communication, and (b)
a predecessor-following communication. Game payoff and equilibrium strategies of the attacker-detector game for (c) λ = 0.8,
f = 1 and (d) λ = 2.5, f = 1 (e) λ = 1.5, f = 2 and (f) λ = 0.1, f = 2. Vehicles are labeled as in (a).

where kp, ku > 0 are control gains and wi(t) models an attack
signal. Dynamics (12) in matrix form can be written as

ẋ(t) =

[
0n In

−kpLg −kuLg

]
︸ ︷︷ ︸

A

x(t) +

[
0n×1

kp∆

]
︸ ︷︷ ︸

B̄

+

[
0n

B

]
︸ ︷︷ ︸

F

w(t),

y(t) = [C 0n]x(t) (13)

where x = [p1, p2, ..., pn, ṗ1, ṗ2, ..., ṗn]T, ∆ =
[∆1,∆2, ...,∆n]T in which ∆i =

∑
j∈Ni

∆ij . Here
w(t) is the vector of attacks and y(t) is the vector of
sensor measurements. Since Lg is non-singular, matrix A
becomes non-singular as well [17]. By defining new variable
x̃ = x +A−1B̄, where B̄ is defined in (13), the dynamics of
x̃ will not include term B̄. We take Laplace transform from
its dynamics, assuming zero initial condition, to get

s2X̃(s) = −kpLgX̃(s)− skuLgX̃(s) +BW (s), (14)

where X̃(s) and W (s) are Laplace transforms of x̃(t) and
w(t), respectively. This results in

Y (s) = CX̃(s) = C
(
s2I + (sku + kp)Lg︸ ︷︷ ︸

Ā(s)

)−1
BW (s). (15)

Note that the system (13) is no longer positive and its L2

gain generally happens at some nonzero frequency. In order to
make it compatible with the original game formulation (6) and
facilitate the application of the theoretical results, we assume
that the attack happens at zero frequency, i.e., s = 0. This type
of attack is called the bias injection attack in the literature
[27]. Under this assumption, we study the attacker-detector
game for (13) when the attacker’s objective is to minimize
the DC gain of the transfer function, whereas the detector’s
objective is to maximize this quantity. The DC gain of (15),
from W to Y , can be written as

G(0) = σmax(CĀ(0)−1B) =
1

kp
σmax(CL−1

g B). (16)

Based on (16) and (6), the game payoff is a scaled version of
the game payoff discussed so far. Hence, we can readily use
the results in Proposition 1 for calculating the equilibria of the
Stackelberg game.

A. A Numerical Example

The equilibrium strategies for the single-attack-single-
sensor game, and its game payoff, on a platoon of seven
vehicles with undirected topology are shown in Fig. 5 (c)
and (d) for two values of λ. Here, vehicle 4 is the target
node. According to Fig. 5 (c), the attacker selects the node
1 when λ is equal to 0.8 since the visibility dominates the
attack impact. However, when λ is equal to 2.5 the attacker
selects the node 4 (the target node) as the impact of attack
dominates its visibility in this case. Moreover, the equilibrium
strategies of the attacker and detector follow the results in
Theorems 2 and 3.

Fig. 5 (e) and (f) present the Stackelberg equilibrium and
the game payoff of the attacker-detector game on a platoon of
three vehicles with undirected topology and f = 2. Here, the
second vehicle is the target node. As shown in the figure, the
solution of the Stackelberg game belongs to the case where
the detector chooses the last two vehicles, i.e., nodes 2 and 3.

VII. CONCLUSIONS

In this paper, we studied a sensor placement problem in a
leader-follower dynamical system. The sensor placement was
formulated as a non-cooperative game between an attacker and
a detector. Equilibrium strategies of the attacker-detector game
were studied for this game under both directed and undirected
topologies. An avenue for further study is to find alternative
ways to quantify the impact-visibility trade-off, other than
the one proposed in (6). For instance, one can formulate
the attacker problem as optimizing the attack impact subject
to a visibility constraint. Moreover, extending the results to
general graph structures (with time varying topologies) as well
as general linear systems, including non-positive systems, is
another future research direction.
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APPENDIX

A. Proof of Lemma 1

Before proving Lemma 1 we need some preliminary defi-
nitions.

Definition 1 ( [28]): A spanning subgraph of a graph G is
called a 2-tree of G, if and only if, it has two components each
of which is a tree. In other words, a 2-tree of G consists of
two trees with disjoint vertices which together span G. One
(or both) of the components may consist of an isolated node.
We refer to tab,cd as a 2-tree where vertices a and b are in one
component of the 2-tree, and vertices c and d in the other.

Based on the above definition, we prove Lemma 1.
Proof: From [28], Lemma 2, we know that any first order

cofactor (principal minor) of the Laplacian matrix L is equal
to the number of different spanning trees of the connected
graph G. Moreover, from [28], Lemma 3, we know that the
second order cofactor cof(L)ij,`,` of the Laplacian matrix L
is the number of different 2-trees tij,`` in the connected graph
G. We know that [L−1

g ]ij =
cof(L)ij,`,`

det(Lg) . and since G is a tree
(with one spanning tree) we have det(Lg) = 1 which yields
[L−1

g ]ij = cof(L)ij,`,`. Moreover, in G as a tree, the number
of 2-trees tij,`` is equal to the number of trees which contain
vi and vj and do not contain v` and that is equal to |Pi`∩Pj`|
which proves the claim.

B. Proof of Lemma 2

Proof: Let Lgd and Lgu be grounded Laplacian matrices
of a directed tree and its undirected counterpart, respectively.
The proof is based on the fact that for a directed tree with
one leader node v` we have LT

gd
Lgd = Lgu (proved in [29])

which results in L−1
gd
L−Tgd

= L−1
gu . Based on Lemma 1, we

have [L−1
gu ]ij = |Pi` ∩ Pj`| which gives

[L−1
gu ]ij = |Pi` ∩ Pj`| = [L−1

gd
]i[L
−1
gd

]Tj (17)

where [L−1
gd

]i is the i-th row of L−1
gd

. Now consider another
node vk in G. If there is a directed path from vk to vi for
some vk ∈ V , we set the k-th element of [L−1

gd
]i equal to 1

and zero otherwise and doing the same work for row [L−1
gd

]j . If
vk ∈ Pi`∩Pj` in the undirected graph, then the k-th elements
of both [L−1

gd
]i and [L−1

gd
]j are 1 and likewise if we consider all

elements of Pi` ∩Pj`, then equality (17) will be satisfied and
this should hold for all i, j = 1, 2, ..., n − 1. The uniqueness
of this solution comes from the fact that the rows of Lgd are
all diagonally dominant with at least one strictly diagonally
dominant row (corresponds to the leader’s neighbor). Thus,
Lgd is positive definite and invertible with a unique inverse
L−1
gd

. Since the inverse is unique, the above solution for (17)
is unique.

C. Proof of Theorem 2

Proof: (i) To show that the mentioned strategy is NE, we
have to show that any unilateral deviation from it does not
provide an incentive for each player. According to Lemma
1, since all elements of the first column of L−1

g are 1, then,
regardless of the actions of the detector, the game payoff will
be J = 1−λ. Thus, changing the detector’s decision does not

have an incentive for him. Now consider that the attacker tends
to change its strategy provided that the detector’s decision is
a node between vj and the leaf node in the leader rooted path
containing vj . If the attacker chooses a node other than the
leader’s neighbor, say the i-th column (i 6= 1), then the payoff
will be x(1−λ) ≥ 1−λ, where x ≥ 1 is the ji-th element of
L−1
g . Hence, not the attacker, nor the detector get an incentive

in changing their strategies.
(ii) For the case when v` is a cut vertex, after removing v`

the graph becomes disconnected and the resulting grounded
Laplacian matrix, and consequently L−1

g , becomes block diag-
onalized. Assume that a NE exists in this case and let (i∗, k∗)
denote the equilibrium strategies of the attacker and detector.
Thus, we should have

[L−1
g ]ki∗ − λ[L−1

g ]ji∗ ≤ [L−1
g ]k∗i∗ − λ[L−1

g ]ji∗

≤ [L−1
g ]k∗i − λ[L−1

g ]ji,
(18)

for all i 6= i∗ and j 6= j∗. Since v` is the cut vertex, L−1
g

is a block diagonal matrix. If (i∗, k∗) is in a zero block, the
game payoff becomes 0 − [L−1

g ]ji∗ or 0. In either case, the
detector can increase the payoff by choosing a node in another
subgraph and that violates the left inequality in (18). If (i∗, k∗)
is in a nonzero block, by appropriate choice of the detected
node, k∗, the game payoff can be positive. Hence, the attacker
can make it at most zero by choosing a node from the other
subgraph and this violates the right inequality in (18).

(iii) The proof is similar to that of (i). Here, since λ = 1,
the game payoff is J∗ = 1 − λ = 0 and choosing zero or
nonzero block does not affect the game value. Hence, it is
independent of the v` being a cut vertex or not. The proof of
(iv) is presented in [16].

D. Proof of Theorem 4

Proof: We know that L−1
g is a lower triangular matrix

with diagonal elements equal to 1, due to the fact that the
diagonal elements of L−1

g in this case are the inverses of the
in-degrees of the nodes and the in-degree of each node is
1. Thus, there exists at least one element 1 in each row and
column of L−1

g . Moreover, based on Lemma 2, L−1
g is a binary

matrix. We prove using contradiction. If a NE exists, it should
satisfy (18) for all i 6= i∗ and j 6= j∗. Four different cases
can occur. (i) [L−1

g ]k∗i∗ = 0, [L−1
g ]ji∗ = 0. In this case, the

detector can choose a node vk to make [L−1
g ]ki∗ = 1 (based

on Assumption 1, such a node exists) which violates the left
inequality in (18). (ii) [L−1

g ]k∗i∗ = 1, [L−1
g ]ji∗ = 0. In this

case, the attacker can choose a node vi to get [L−1
g ]k∗i = 0

since L−1
g is triangular, hence, the right inequality is violated.

(iii) [L−1
g ]k∗i∗ = 0, [L−1

g ]ji∗ = 1. Then, similar to case (i),
the detector can choose a node vk to make [L−1

g ]ki∗ = 1. (iv)
[L−1

g ]k∗i∗ = 1, [L−1
g ]ji∗ = 1. In this case, the payoff is J =

1− λ. Clearly, the attacker can change its decision to another
leader-rooted path and reduce the payoff to J = 0 < 1 − λ,
i.e., violates the right inequality in (18). The only case where
we have an NE is when there is a single leader-rooted path,
i.e., a directed path graph.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 21,2021 at 13:52:45 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3106866, IEEE
Transactions on Automatic Control

E. Proof of Proposition 1

The following lemma states a property of the non-negative
matrices which is helpful in the equilibrium analysis of the
attacker-detector game.

Lemma 3 ( [30]): If M is a nonegative matrix and C is a
matrix in which each element obeys |cij | ≤ Mij , then every
eigenvalue λ(C) of C satisfies λ(C) ≤ λmax(M).

Based on the above result, the largest eigenvalue of a non-
negative matrix M is non-decreasing with any entry of M .
This result can be easily extended to the largest singular value
as σmax(M) = λ

1
2
max(MTM). If one element of M increases,

then at least one element of MTM will increase (and no
element decreases). Now, we prove Proposition 1.

Proof: We prove for undirected path graph and the proof
for the directed paths follows the same procedure. Without
loss of generality, we start labeling the nodes from the leader
neighbor, node 1, to the last node, which is node n and the
target node is vj . According to the structure of matrix Lg in
Fig. 4 (a) together with Lemma 3, we know that the detector
always chooses the last f nodes in the path. For the attacker,
we consider two cases, when j ≤ n − f or j > n − f . If
the attacker chooses its nodes from the first n− f nodes, the
payoff will be in the following form

Ji = σmax




a1 a2 · · · af

a1 a2 · · · af
...

...
. . .

...
a1 a2 · · · af



− σmax[a1, a2, ..., af ]

=
(
a2

1 + a2
2 + ...+ a2

f

) 1
2 (
√
f − λ). (19)

Based on this, the best response of the attacker and game pay-
off will be determined by (19) as follows: (i) if λ ≤

√
f and

j ≤ n−f , then the game strategy of the attacker will be B∗1 =

arg mina1,2,...,af

(
a2

1 + a2
2 + ...+ a2

f

) 1
2

, i.e., the first f nodes
due to monotonicity of the elements through columns. Other-
wise, if j > n−f then attacker has to check the last f columns
and compare them with B∗1 to find the optimal strategy. (ii) if
λ >
√
f and j ≤ n−f , then the game strategy of the attacker

will be B∗2 = arg maxa1,2,...,af

f≤j

(
a2

1 + a2
2 + ...+ a2

f

) 1
2

, which

are nodes vj−f+1, vj−f+2, ..., vj . Otherwise, if j > n−f then
attacker should compare B∗2 with the last f columns as well.

We should note that the computational complexity for
finding attcker’s best response does not scale with n and
exponentially grows with f , as it should compare the singular
value of all combinations of last f columns with matrices B∗1
(or B∗2 ).
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