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Abstract—In this paper, we study the worst-case conse-
quence of innovation-based integrity attacks with side in-
formation in a remote state estimation scenario where a
sensor transmits its measurement to a remote estimator
equipped with a false-data detector. If a malicious attacker
is not only able to compromise the transmitted data packet
but also able to measure the system state itself, the attack
strategy can be designed based on the intercepted data,
the sensing data, or alternatively the combined informa-
tion. Surprisingly, we show that launching attacks using
the combined information are not always optimal. First, we
characterize the stealthiness constraints for different types
of attack strategies to avoid being noticed by the false-data
detector. Then, we derive the evolution of the remote estima-
tion error covariance in the presence of attacks, based on
which the worst-case attack policies are obtained by solv-
ing convex optimization problems. Furthermore, the closed-
form expressions of the worst-case attacks are obtained for
scalar systems and the attack consequences are compared
with the existing work to determine which strategy is more
critical in deteriorating system performance. Simulation ex-
amples are provided to illustrate the analytical results.

Index Terms—Cyber-physical system (CPS) security, in-
tegrity attack, remote state estimation.

I. INTRODUCTION

INCREASING applications of cyber-physical systems (CPS)
in critical infrastructures ranging from national power

grids to manufacturing processes have reinforced the safety
and security requirements in the control system design. Due
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to the interconnection between different components and
technologies, CPSs are vulnerable to cyber threats that may
cause severe consequences on national economy, social security,
or even loss of human lives [1], [2]. Recently reported accidents
(e.g., StuxNet malware [3], Maroochy water bleach [4]) evi-
dently indicate the fundamental importance of security in CPS.
In this regard, worst-case consequence analysis and defense
mechanism design for CPS have attracted considerable interest
from both academic and industrial communities [5], [6].

The cyber-physical attack space can be divided according
to an adversary’s system knowledge, disclosure resources, and
disruption resources [7]. False-data injection attacks, a particu-
lar type of integrity attack, were initially proposed for electric
power grids in [8]. The consequence of such an attack was in-
vestigated in a remote estimation scenario and a quantitative
measure of system resilience too was proposed [9]. Further-
more, the tradeoff between attack stealthiness and estimation
quality was analyzed for control signal injection in [10]. Replay
attacks degrade system performance by recording and replay-
ing the sensor data without knowledge of system parameters.
The feasibility conditions and countermeasures of replay at-
tacks were investigated for LQG control systems in [11]. The
tradeoff between system performance and detection rate for re-
play attacks was studied under a stochastic game framework
in [12]. Denial-of-service (DoS) attacks attempt to block the
communication channel and prevent legitimate access between
system components. Since jamming is a power-intensive ac-
tivity and the available power of a jammer might be limited,
DoS models were studied for resource-constrained attackers
[13]–[15]. Besides the above works which only focused on ei-
ther the attacker or the defender, game-theoretic approaches
were proposed to investigate the optimal scheduling problems
by taking both sides into consideration [16], [17].

An innovation-based linear integrity attack, which was de-
signed based on the intercepted innovation sequence from be-
ing noticed by the χ2 false-data detector, was proposed in [18].
The evolution of the estimation error covariance and the worst-
case attack strategy were derived. Different from [18], this pa-
per focuses on the scenario where the malicious attacker has
side information about the system, which is formulated as an
extra measurement. This side information provides more free-
dom for the attack policy design. Specifically, we investigate
attack strategies characterized by the information sets available
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to the attacker and derive the stealthiness constraints needed to
avoid being detected by the false-data detector. The estimation
performance for different attack scenarios is analyzed, based on
which the worst-case attack policy is further investigated. More-
over, the attack consequences between different strategies are
compared to determine which strategy is more critical to ham-
per system performance. To our best knowledge, this is the first
work that considers malicious attacks with side information. A
preliminary version of these results is available in [19]. Different
from [19], we investigate more comprehensive attack scenarios
in this paper and analyze the estimation performance and the
worst-case attack policy for multivariable systems rather than
scalar systems, which involves more elaborated mathematical
treatment.

The contributions of this paper are summarized as follows.
1) We propose innovation-based linear attack strategies

based on the intercepted data (Scenario I), the sensing
data (Scenario II), as well as the combined information
(Scenario III). The stealthiness constraints for the pro-
posed attack policies are investigated to avoid being no-
ticed by the false-data detector.

2) We derive the evolution of the estimation error covari-
ance when the system is under attack (Lemmas 2 and 3),
based on which the worst-case linear attack strategy is
obtained for multivariable systems by solving a convex
optimization problem (Theorems 1 and 2).

3) For scalar systems, the worst-case linear attack strategy
is obtained in a closed form (Propositions 1 and 2). The
estimation error under different attacks is compared to
determine which strategy is more critical in deteriorating
the system performance (Corollaries 1 and 2).

The remainder of this paper is organized as follows.
Section II introduces the system architecture. Section III
presents three types of innovation-based linear attack strategies
and corresponding stealthiness constraints. Section IV derives
the evolution of the remote estimation error covariance in the
presence of attacks. Section V investigates the worst-case at-
tack policy for multivariable systems. Section VI obtains the
closed-form worst-case attack for scalar systems and compares
different attack consequences. Section VII discusses the miti-
gation strategies of linear attacks. Numerical examples are pro-
vided in Section VIII. Some concluding remarks are made in
Section IX.

Notations: N and R denote the sets of non-negative integers
and real numbers, respectively. Rn is the n-dimensional Eu-
clidean space. Sn

+ (Sn
++ ) is the set of n × n positive semidefi-

nite (definite) matrices. When X ∈ Sn
+ (Sn

++ ), we simply write
X ≥ 0 (X > 0). The superscript ′ and Tr(·) stand for the trans-
pose and the trace of a matrix, respectively. Diag{·} represents
a block-diagonal matrix.

II. SYSTEM ARCHITECTURE

The system block diagram is shown in Fig. 1. A sensor mea-
sures a physical plant and transmits the measurement data to a
remote estimator through a wireless network. The attacker at-
tempts to intercept and modify the transmitted data, which may
degrade the estimation performance without being noticed by

Fig. 1. System setup with an attacker having access to two sensors
when conducting an integrity attack over a wireless network.

the false-data detector. The detailed system model is presented
in this section, while the considered attack policy is introduced
in Section III.

A. Process Model

We consider a linear time-invariant process described by

xk+1 = Axk + wk (1)

yα
k = Cαxk + vα

k (2)

where k ∈ N is the time index, xk ∈ Rn is the system state,
yα

k ∈ Rm is the sensor measurement, and wk ∈ Rn and vα
k ∈

Rm are zero-mean independent identically distributed (i.i.d.)
Gaussian noises with covariances Q ≥ 0 and Rα > 0, respec-
tively. The initial state x0 is zero-mean Gaussian with covari-
ance matrix Π0 ≥ 0 and independent of wk and vα

k for all k ≥ 0.
The pair (A,Cα ) is detectable and (A,

√
Q) is stabilizable. The

superscript α is used to represent quantities related to the mea-
surement from sensor 1.

B. Remote Estimator

At each time instant, the sensor sends its measurement to a
remote estimator through a wireless communication network.
To estimate the system state, a Kalman filter is adopted by the
remote estimator to process the received data

x̂α−
k = Ax̂α

k−1

Pα−
k = APα

k−1A
′ + Q

x̂α
k = x̂α−

k + Kα
k (yα

k − Cαx̂α−
k )

Kα
k = Pα−

k C ′
α (CαPα−

k C ′
α + Rα )−1

Pα
k = (I − Kα

k Cα )Pα−
k

where x̂α−
k and x̂α

k are, respectively, the a priori and the a
posteriori minimum mean squared error (MMSE) estimates of
the state xk , and Pα−

k and Pα
k the corresponding estimation error

covariances. The recursion starts from x̂α−
k = 0 and Pα−

k = Π0 .
It is well known that the Kalman filter converges exponentially
fast from any initial condition [20]. We denote the steady-state
values as

Pα � lim
k→+∞

Pα−
k

Kα � PαC ′
α (CαPαC ′

α + Rα )−1

where Pα is the unique positive semidefinite solution of X =
AXA′ + Q − AXC ′

α (CαXC ′
α + Rα )−1CαXA′. Without loss

of generality, we assume that the remote estimator starts from
the steady state, that is, Pα−

k = Pα ∀k ∈ N.
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C. False-Data Detector

A false-data detector is equipped at the remote side to mon-
itor system behavior and detect the existence of potential mali-
cious attacks. The innovation sequence zα

k = yα
k − Cαx̂α−

k has
a steady-state Gaussian distribution N (0, CαPαC ′

α + Rα ) and
E[zα

i zα
j
′] = 0 for all i 	= j [20]. Hence, its statistical character-

istics (mean and covariance) can be used to diagnose the system
anomalies.

The χ2 false-data detector is a residue-based detector widely
used for fault detection in the process industry and studied in the
research community [11], [12], [21], [22]. It makes a decision
based on the sum of the normalized innovation sequence, that
is, at time k, the detection criterion follows the hypothesis test:

gk =
k∑

i=k−J +1

zα
i
′(CαPαC ′

α + Rα )−1zα
i

H0

≶
H1

δ (3)

where J is the detection window size, δ is the threshold, the null
hypotheses H0 means that the system is operating normally,
while the alternative hypotheses H1 means that the system is
under attack. The normalized sum in (3) satisfies the χ2 distri-
bution with mJ degrees of freedom. Thus, the false alarm rate
in the absence of the attack can be easily calculated.

III. ATTACK STRATEGY AND STEALTHINESS CONSTRAINT

In this section, we consider the scenario where there exists
a malicious agent who intentionally launches cyber attacks to
degrade the estimation performance of the system described
in Section II. The attacker is not only able to intercept the
transmitted data packet from the sensor to the remote estimator,
but also has an extra sensor to measure the system state itself,
see Fig. 1. We introduce three different attack strategies and
analyze the stealthiness constraints for these attacks from being
detected by the false-data detector. Without loss of generality,
we assume that the attack starts from time instant k = 0.

A. Linear Attack Strategy

Motivated by attack models in the literature [2], [23], [24], we
assume that the attacker has knowledge of the process model and
is capable of intercepting and modifying the transmitted mea-
surement. It is worth noticing that modifying the measurement
is equivalent to modifying the innovation under this assumption.
Specifically, based on the system parameters and the available
measurement information yk , the attacker is able to implement
a filter to first calculate the true innovation zk = yk − Cx̂−

k

with x̂−
k = E[xk |y1:k−1 ], then generate the compromised in-

novation z̃k , and finally go back to the manipulated measure-
ment ỹk = z̃k + Cx̃−

k with x̃−
k = E[xk |ỹ1:k−1 ]. The procedure

yk → zk → z̃k → ỹk means that generating the manipulated
measurement ỹk is equivalent to generating the compromised
innovation z̃k . Moreover, similar to [18], [19], and [25], we
consider the innovation-based attack in this paper, that is, the
information set for the attacker at time k is the innovation zk .
Thus, a general attack strategy can be defined as

z̃k = fk (zk ) (4)

where fk is an arbitrary function with appropriate domain. A
malicious attacker considered in this paper aims at maximizing
the remote estimation error covariance while simultaneously
remaining stealthy to the false-data detector. Hence, in order
to achieve this objective, the attacker needs to characterize the
stealthiness constraint and quantify the attack effect on the sys-
tem estimation quality. However, if fk is a nonlinear function
or does not have an explicit expression, it is difficult for the ma-
licious attacker to guarantee attack stealthiness, not to mention
launching an optimal attack. Instead, if a linear attack policy is
considered, it is possible for the malicious attacker to analyti-
cally quantify the stealthiness constraint and the attack conse-
quence such that the optimal stealthy attack can be launched.
Moreover, a linear attack might be much easier to implement
in practice. Motivated by the aforementioned observations, we
focus on the subset of all linear attack strategies in this initial
study where fk is an affine function of the innovation zk as

z̃k = Tkzk + bk (5)

where Tk is an arbitrary matrix with appropriate dimension and
bk is the Gaussian random variable. Due to the fact that the
attack policy varies with the information set available at the
malicious attacker, we further introduce three different attack
scenarios specified by the superscripts as follows.

1) Scenario I: For the case where the malicious attacker is
capable of intercepting the transmitted data, the attack strategy
is designed based on the system innovation zα

k as

z̃α
k = Tα

k zα
k + bα

k (6)

where zα
k = yα

k − Cαx̂α−
k ∈ Rm is the currently intercepted in-

novation, z̃α
k ∈ Rm is the innovation modified by the attacker,

Tα
k ∈ Rm×m is an arbitrary matrix, and bα

k ∈ Rm is a zero-
mean i.i.d. Gaussian random variable with covariance Lα

k and
independent of zα

k . This is corresponds to the attack strategy
studied in [18]. It can be observed that z̃α

k is zero-mean Gaus-
sian distributed with covariance Tα

k (CαPαC ′
α + Rα )Tα

k + Lα
k .

2) Scenario II: For the case where the malicious attacker
cannot successfully eavesdrop the transmitted data but is instead
able to measure the system state using an extra sensor, that is,
yβ

k = Cβ xk + vβ
k , where (A,Cβ ) is detectable and vβ

k ∈ Rm is
a white Gaussian noise with zero mean and covariance Rβ > 0,
the linear attack strategy is designed with respect to the attacker’s
own information as

z̃β
k = Tβ

k zβ
k + bβ

k (7)

where zβ
k = yβ

k − Cβ x̂β−
k ∈ Rm is the innovation calculated by

the attacker (i.e., using a Kalman filter and measurement yβ
k ),

z̃β
k ∈ Rm is the corrupted innovation, Tβ

k ∈ Rm×m is an arbi-
trary attack matrix, and bβ

k ∈ Rm is a zero-mean i.i.d. Gaussian
random variable with covariance Lβ

k and independent of zβ
k . It is

worth noticing that z̃β
k ∼ N (0, T β

k (Cβ Pβ C ′
β + Rβ )Tβ

k

′
+ Lβ

k )
since zβ

k ∼ N (0, Cβ Pβ C ′
β + Rβ ), where Pβ is the steady-state

value of the covariance matrix E[(xk − x̂β−
k )(xk − x̂β−

k )′], that
is, the unique positive semidefinite solution of X = AXA′ +
Q − AXC ′

β (Cβ XC ′
β + Rβ )−1Cβ XA′.
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3) Scenario III: For the case where the malicious agent is si-
multaneously able to intercept the transmitted data and measure
the system state with an extra sensor, the information owned by
the attacker is given by yk = Cxk + vk , where yk = [yα

k yβ
k ]′ ∈

R2m , C = [C ′
α , C ′

β ]′ ∈ R2m×n , vk = [vα
k , vβ

k ] ∈ Rm is white
Gaussian noise with covariance matrix R = Diag{Rα, Rβ},
and (A,C) is detectable. In this case, the attack strategy can be
designed based on the intercepted and the sensing data together,
which is defined as

z̃γ
k = Tγ

k zγ
k + bγ

k (8)

where zγ
k = yk − Cx̂γ−

k ∈ R2m is the innovation calculated by
the malicious attacker based on measurement yk , z̃γ

k ∈ R2m is
the corrupted innovation, Tγ

k = [Tγ1
k , T γ2

k ] ∈ Rm×2m is an ar-
bitrary attack matrix, and bγ

k ∈ R2m is a zero-mean i.i.d. Gaus-
sian random variable with covariance Lγ

k and independent of
zγ
k . Hence, z̃γ

k is Gaussian distributed with zero mean and co-
variance Tγ

k (CPγ C ′ + R)Tγ
k
′ + Lγ

k with Pγ being the steady-
state value of the covariance matrix E[(xk − x̂γ−

k )(xk − x̂γ−
k )′],

which corresponds to the unique positive semidefinite solution
of X = AXA′ + Q − AXC ′(CXC ′ + R)−1CXA′.

B. Stealthiness Constraints

For the aforementioned three types of attack strategies, the
objective of the malicious agent is to degrade the estimation
performance as much as possible and simultaneously remain
stealthy to the false-data detector. Recalling the binary hypothe-
sis test in (3), we define pF

k as the false alarm rate in the absence
of the attack (decide H1 when H0 is true) and pD

k as the detec-
tion rate in the presence of the attack (decide H1 when H1 is
true). In detection theory, the performance of the detector can be
characterized by the tradeoff between pF

k and pD
k [26]. Note that

for the considered detection criterion (3), the proposed linear at-
tack strategy z̃i

k = T i
kzi

k + bi
k , i = α, β, γ is strictly stealthy if

pD
k = pF

k ∀k > 0. Namely, the malicious attacker remains un-
detectable to the false-data detector if the covariance of the cor-
rupted innovation z̃i

k is equal to the covariance of the steady-state
innovation zα

k . Due to the fact that zα
k ∼ N (0, CαPαC ′

α + Rα ),
the stealthiness constraints for linear attack strategies (6), (7),
and (8) are obtained as follows:

Tα
k (CαPαC ′

α + Rα )Tα
k

′ + Lα
k = CαPαC ′

α + Rα (9)

Tβ
k (Cβ Pβ C ′

β + Rβ )Tβ
k

′
+ Lβ

k = CαPαC ′
α + Rα (10)

Tγ
k (CPγ C ′ + R)Tγ

k
′ + Lγ

k = CαPαC ′
α + Rα (11)

where Pα , Pβ , and Pγ are the steady-state values of the error
covariances E[(xk − x̂α−

k )(xk − x̂α−
k )′], E[(xk − x̂β−

k )(xk −
x̂β−

k )′], and E[(xk − x̂γ−
k )(xk − x̂γ−

k )′], respectively.

C. Problems of Interest

Based on the system model and the proposed attack strategy,
the problems we are interested in consist as follows.

1) How does the estimation error covariance evolve in the
presence of the attack?

2) What is the worst-case attack policy that yields the largest
error covariance?

3) What is the worst-case performance gap between the at-
tack strategies?

The detailed mathematical formulations and solutions to these
problems will be introduced in Sections IV and V.

IV. PERFORMANCE ANALYSIS

For the considered process (1), (2) under the linear attack
z̃i
k = T i

kzi
k + bi

k , i = α, β, γ, the remote state estimate follows:

x̃i−
k = Ax̃i

k−1 (12)

x̃i
k = x̃i−

k + Kαz̃i
k (13)

where Kα is the steady-state gain, x̃i−
k and x̃i

k are, respectively,
the a priori and the a posteriori MMSE state estimates in the
presence of the linear attack.

Since the false-data detector is unaware of the malicious at-
tack if the stealthiness constraint is satisfied, the state estimate
x̃i

k produced by the remote estimator will deviate from the true
system state. To quantify the system performance, we define P̃ i−

k

and P̃ i
k , respectively, as the a priori and the a posteriori MMSE

error covariance at the remote estimator when the system is un-
der linear attack z̃i

k = T i
kzi

k + bi
k , i = α, β, γ. In addition, we

denote PEA−
k,i � E[(xk − x̃i−

k )(xk − x̂i−
k )′] as the correlation of

the estimation error between the estimator and the attacker in the
presence of the attack and Pea−

k,i � E[(xk − x̃i−
k )(xk − x̂i−

k )′] as
the same amount in the absence of the attack. The evolution of
the estimation error covariance under different attack strategies
is investigated in the following section.

A. Error Covariance Under Attack Using
Intercepted Data

For Scenario I where the attack strategy is designed based
on the system innovation zα

k , the error covariance at the remote
side is summarized in the following lemma.

Lemma 1: When the process (1), (2) is under attack
z̃α
k = Tα

k zα
k + bα

k , the estimation error covariance at the remote
estimator follows the recursion:

P̃ α
k = AP̃α

k−1A
′ + Q + PαC ′

α (CαPαC ′
α + Rα )−1CαPα

− PαC ′
αTα

k
′K ′

α − KαTα
k CαPα (14)

where Pα is the unique positive semidefinite solution of X =
AXA + Q + AXC ′

α (CαXC ′
α + Rα )−1CαXA′.

Proof: See [18, Th. 1]. �

B. Error Covariance Under Attack Using Intercepted and
Sensing Data

In this section, we focus on the attack strategy based on both
the intercepted and the sensing data, that is, Scenario III. The
estimation error covariance iteration under such an attack is
obtained in the following lemma.

Lemma 2: When the process (1), (2) is under attack
z̃γ
k = Tγ

k zγ
k + bγ

k , the estimation error covariance at the remote
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estimator follows the recursion:

P̃ γ
k = AP̃ γ

k−1A
′ + Q + PαC ′

α (CαPαC ′
α + Rα )−1CαPα

− Pγ C ′Tγ
k
′
K ′

α − KαTγ
k CPγ (15)

where Pγ is the unique positive semidefinite solu-
tion of X = AXA′ + Q + AXC ′(CXC ′ + R)−1CXA′, C =
[Cα,Cβ ]′, R = Diag{Rα,Rβ}.

Proof: According to the process model (1), (2) and the state
estimate update (12), (13), the estimation error when the system
is under attack z̃γ

k = Tγ
k zγ

k + bγ
k follows:

xk − x̃γ
k = A(xk−1 − x̃γ

k−1) + wk−1 − Kαz̃γ
k

based on which the error covariance is represented as

P̃ γ
k = E[(xk − x̃γ

k )(xk − x̃γ
k )′]

= AP̃ γ
k−1A

′ + Q + Kα (CαPαC ′
α + Rα )K ′

α

− E[(xk − x̃γ−
k )(xk − x̂γ−

k )′C ′Tγ
k
′
K ′

α ]

− E[KαTγ
k C(xk − x̂γ−

k )(xk − x̃γ−
k )′] (16)

where the second equality is due to the fact that

z̃γ
k = Tγ

k C(xk − x̂γ−
k ) + Tγ

k vk + bγ
k . (17)

To obtain the explicit error iteration, we need to expand the last
two terms of (16). It is worth noticing that the corrupted innova-
tion z̃γ

k is used to update the state estimate in the presence of the
attack, while the true innovation zα

k is adopted in the absence
of the attack. These two situations are considered separately as
follows.

When the system is under attack z̃γ
k = Tγ

k zγ
k + bγ

k , according
to (17), one has

xk − x̃γ−
k = A(xk−1 − x̃γ−

k−1) + wk−1 − AKαTγ
k−1vk−1

− AKαTγ
k−1C(xk−1 − x̂γ−

k−1) − AKαbγ
k−1

xk − x̂γ−
k = A(I − KC)(xk−1 − x̂γ−

k−1) + wk−1 − AKvk−1

from which the correlation of the estimation error between esti-
mator and attacker is given by

PEA−
k,γ = E[(xk − x̃γ−

k )(xk − x̂γ−
k )′]

= APEA−
k−1,γ (I − KC)′A′ + Q

− AKαTγ
k−1CPγ (I − KC)′A′ + AKαTγ

k−1RK ′A′

= APEA−
k−1,γ (I − KC)′A′ + Q (18)

where the second equality follows from E[(xk−1 −
x̂γ−

k−1)(xk−1 − x̂γ−
k−1)

′] = Pγ and E[vk−1v
′
k−1 ] = R. The last

equality follows from the fact that K = Pγ C ′(CPγ C ′ + R)−1 .
In the absence of the attack, the innovation zα

k is used to
estimate the system state, i.e.,

xk − x̃γ−
k = A(I − KαCα )(xk−1 − x̃γ−

k−1)

+ wk−1 − AKαvα
k−1 .

In this case, the correlation of the estimation error between the
estimator and attacker follows:

Pea−
k,γ

= E[(xk − x̃γ−
k )(xk − x̂γ−

k )′]

= A(I − KαCα )Pea−
k−1,γ (I − KC)′A′ + Q + AKαRαK̄ ′

1A
′

= APea−
k−1,γ (I − KC)′A′ + Q − AKαCαP ea−

k−1,γ (I − KC)′A′

+ AKαCαPγ (I − KC)′A′ (19)

where the last equality follows from K � [K̄1 , K̄2 ] = (I − K
C)Pγ C ′R−1 = [(I − KC)Pγ C ′

αR−1
α , (I − KC)Pγ C ′

β R−1
β ].

Due to the fact that Pγ is the unique positive semidefinite solu-
tion of X = AX(I − KC)′A′ + Q with K = XC ′(CXC ′ +
R)−1 , it can be observed that if the initial value PEA−

0,γ of (18)
satisfies PEA−

0,γ = Pγ , the correlation term PEA−
k,γ will be time-

invariant, that is, PEA−
k,γ = Pγ ∀k ∈ N, which leads to error co-

variance recursion (15) and finishes the proof. Hence, to show
Lemma 2, it suffices to show PEA−

0,γ = Pγ . Note that the ini-
tial value of the correlation in the presence of attacks is the
steady-state value of that in the absence of attacks, that is,
PEA−

0,γ = limk→∞ Pea−
k,γ . Consequently, showing PEA−

0,γ = Pγ

is equivalent to showing limk→∞ Pea−
k,γ = Pγ for any initial

value Pea−
0 .

By denoting ζk � Pea−
k − Pγ ∈ Rn×n , the above problem is

equivalent to showing limk→∞ ζk = 0 for any initial value ζ0 .
From (19), the recursion of ζk can be obtained as

ζk = A(I − KαCα )ζk−1(I − KC)′A′

= [A(I − KαCα )]k ζ0 [(I − KC)′A′]k .

According to [27, Th. 5.6.12], for a matrix X ∈ Rn×n ,
limk→∞ Xk = 0 if and only if ρ(X) < 1, where ρ(X) de-
notes the spectral radius of X . Due to the fact that ρ(A(I −
KαCα )) < 1 and ρ(A(I − KC)) < 1 [20], it follows that
limk→∞ ζk = 0∀ζ0 ∈ Rn×n . Hence, Pea−

k = Pγ + ζk con-
verges to Pγ from any initial condition. �

C. Error Covariance Under Attack Using Sensing Data

Building on the obtained result, we consider Scenario II in
this section. In this case, the malicious agent launches attacks
on the system based on its private information, that is, the local
innovation zβ

k . The error covariance recursion in the presence
of attacks is summarized in the following lemma.

Lemma 3: When the process (1), (2) is under attack
z̃β
k = Tβ

k zβ
k + bβ

k , the estimation error covariance at the remote
estimator follows the recursion:

P̃ β
k = AP̃β

k−1A
′ + Q + PαC ′

α (CαPαC ′
α + Rα )−1CαPα

− PEA−
k,β C ′

β T β
k

′
K ′

α − KαTβ
k Cβ PEA−

k,β (20)

where PEA−
k,β follows the recursion:

PEA−
k,β = APEA−

k−1,β (I − Kβ Cβ )′A′ + Q (21)
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with the initial value PEA−
0,β being the unique solution of

X = A(I − KαCα )X(I − Kβ Cβ )′A′ + Q. (22)

Proof: Similar to the proof of Lemma 2, the remote es-
timation error covariance when the system is under attack
z̃β
k = Tβ

k zβ
k + bβ

k can be represented as

P̃ β
k = AP̃β

k−1A
′ + Q + Kα (CαPαC ′

α + Rα )K ′
α

− E[(xk − x̃β−
k )(xk − x̂β−

k )′C ′Tβ
k

′
K ′

α ]

− E[KαTβ
k C(xk − x̂β−

k )(xk − x̃β−
k )′].

In this case, the correlation term in the presence of attack follows
the iteration:

PEA−
k,β = APEA−

k−1,β (I − Kβ Cβ )′A′ + Q. (23)

Note that the initial value PEA−
0,β of (23) is the steady-state value

of the correlation in the absence of attack. According to

Pea−
k,β = A(I − KαCα )Pea−

k−1,β (I − Kβ Cβ )′A′ + Q (24)

it can be observed that PEA−
0,β = limk→∞ Pea−

k,β is the unique
solution of X = A(I − KαCα )X(I − Kβ Cβ )′A′ + Q. Due to
the fact that limk→∞ Pea−

k,β 	= Pβ and limk→∞ PEA−
k,β = Pβ ,

where Pβ is the unique solution of X = AX(I − Kβ Cβ )′A′ +
Q, the correlation term PEA−

k,β is time-varying, converging to
Pβ , as given in (21) and (22). �

So far, we have obtained the error covariance iterations for
three attack policies. They provide the basis for the worst-case
analysis and attack consequence comparison investigated in
Sections V and VI.

V. WORST-CASE ATTACK STRATEGY

In this section, we investigate the worst-case attack conse-
quence when the process (1), (2) is under attack z̃i

k = T i
kzi

k +
bi
k , i = α, β, γ utilizing the error covariance iterations obtained

in Section IV. The worst-case attack parameters T i
k , Li

k for
multivariable systems (n ≥ 1, m ≥ 1) are obtained by solving
convex optimization problems.

A. Worst-Case Linear Attack Using Intercepted Data

For Scenario I where the attack strategy is based on system
innovation zα

k , the worst-case linear attack is obtained in the
closed form and the result is summarized as follows.

Lemma 4: For the process (1), (2) with the attack z̃α
k =

Tα
k zα

k + bα
k , the choice Tα

k = −I and bα
k = 0 is the worst-case

strategy in the sense that the remote estimation error covariance
is maximized.

Proof: See [18, Th. 2]. �

B. Worst-Case Linear Attack Using Intercepted and
Sensing Data

When the linear attack strategy is based on the combined
information of the intercepted and the sensing data, namely,
Scenario III, the worst-case attack policy Tγ

k , Lγ
k can be

numerically calculated by maximizing the estimation error co-
variance (15). The obtained result is summarized in the follow-
ing theorem.

Theorem 1: For the process (1), (2) with the attack
z̃γ
k = Tγ

k zγ
k + bγ

k , the worst case Tγ
k , which yields the largest

remote estimation error covariance, is given by the solution to
the convex optimization problem

P1 : min
T γ

k ∈Rm ×2 m
Tr(CPγ KαTγ

k )

s.t.

[
CαPαC ′

α + Rα Tγ
k

T γ
k
′ (CPγ C ′ + R)−1

]
≥ 0.

The corresponding bγ
k is a zero-mean Gaussian process with

covariance Lγ
k = CαPαC ′

α + Rα − Tγ
k (CPγ C ′ + R)Tγ

k
′.

Proof: The iteration of the estimation error covariance when
the system is under attack z̃γ

k = Tγ
k zγ

k + bγ
k is obtained in (15). It

can be observed that maximizing Tr(P̃ γ
k ) is equivalent to max-

imizing Tr(−Pγ C ′Tγ
k
′
K ′

α − KαTγ
k CPγ ). According to the

stealthiness constraint (11) and the fact that Tr(X) = Tr(X ′)
and Tr(XY Z) = Tr(Y ZX) = Tr(ZXY ), the worst-case lin-
ear attack can be obtained by solving the optimization problem

max
T γ

k ∈Rm ×2 m
− 2Tr(CPγ KαTγ

k )

s.t. Tγ
k (CPγ C ′ + R)Tγ

k
′ − (CαPαC ′

α + Rα ) ≤ 0.

Using the Schur complement, the above constraint can be rewrit-
ten into a linear matrix inequality, which leads to problem P1 .

�

C. Worst-Case Linear Attack Using Sensing Data

Different from Scenario III, the error covariance recur-
sion (20) of Scenario II involves a time-varying correlation
term. Hence, the worst-case linear attack strategy is obtained
by dynamically solving a convex optimization problem at each
time instant, which is summarized in the following theorem.

Theorem 2: For the process (1), (2) with the attack z̃β
k =

Tβ
k zβ

k + bβ
k , the worst-case attack strategy Tβ

k , which maximizes
the remote estimation error covariance, is obtained by solving
the following problem for each k:

P2 : min
T β

k ∈Rm ×m

Tr(Cβ PEA−
k,β KαTβ

k )

s.t.

[
CαPαC ′

α + Rα Tβ
k

T β
k

′
(Cβ Pβ C ′

β + Rβ )−1

]
≥ 0

where PEA−
k,β follows the recursion:

PEA−
k,β = APEA−

k−1,β (I − Kβ Cβ )′A′ + Q

with the initial value PEA−
0,β being the unique solution of

X = A(I − KαCα )X(I − Kβ Cβ )′A′ + Q.

The corresponding bβ
k is a zero-mean Gaussian with covariance

Lβ
k = CαPαC ′

α + Rα − Tβ
k (Cβ Pβ C ′

β + Rβ )Tβ
k

′
.
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Algorithm 1: Calculating the Optimal Attack Signal.
1: Process begins;
2: for k = 1 : 1 : ∞ do
3: Calculate T i

k (i = β, γ) by solving problem P1 , P2

4: Calculate zi
k , z̃i

k based on the knowledge of T i
k , Ci ,

yi
k , x̂i−

k , x̃i−
k according to

zi
k = yi

k − Cix̂
i−
k , z̃i

k = T i
kzi

k + bi
k ;

4: Calculate the worst-case linear attack strategy ỹi
k by

ỹi
k = z̃i

k + Cix̃
i−
k ;

5: Update the prior state estimates according to
x̂i−

k+1 = A(x̂i−
k + Kiz

i
k ), x̃i−

k+1 = A(x̃i−
k + Kαz̃i

k );
6: end for

Proof: For each time instant k, the proof is similar to that
of Theorem 1 and is omitted here. �

Remark 1: Problems P1 and P2 are semidefinite program-
ming problems and can be efficiently solved using the CVX
toolbox in MATLAB [28]. Note that the obtained worst-case
attack parameters Tγ

k
∗ and bγ

k
∗ are time-invariant since Pγ is

a constant while Tβ
k

∗
and bβ

k

∗
are time-varying since PEA−

k,β

changes with time k.

D. Calculation of Worst-Case Attack Signal

The worst possible action of the attacker on the system mea-
surement yi

k is given by Algorithm 1. At each time instant k,
the malicious attacker first solves the optimization problem P1

or P2 based on its knowledge of the system parameters, from
which the true innovation zi

k and the corrupted innovation z̃i
k

can be obtained. According to the relationship between the mea-
surement and the innovation, the worst-case attack signal ỹi

k is
obtained. Finally, the attacker updates the priori state estimates
for the original and compromised processes, which it then uses
in the next iteration. This characterization helps us in Section VI
to explicitly compare attack consequences and reason about the
need for various protection mechanisms.

VI. WORST-CASE ATTACK FOR SCALAR SYSTEMS

In this section, we focus on scalar systems (n = m = 1) with
Cα 	= 0 and Cβ 	= 0. In this case, the closed-form expression of
the worst-case linear attack strategy can be derived.

A. Closed-Form Expression of Worst-Case Linear Attack

According to Lemma 4, for process (1), (2) with n = m = 1
under linear attack z̃α

k = Tα
k zα

k + bα
k (Scenario I), the remote

estimation error covariance is simply maximized when Tα
k =

−1, bα
k = 0. Let us focus on the worst-case analysis for the attack

strategy z̃i
k = T i

kzi
k + bi

k , i = β, γ and summarize the results in
the following propositions.

Proposition 1: For a scalar process (1)–(2) with the
attack z̃γ

k = Tγ
k zγ

k + bγ
k , the worst-case strategy that maxi-

mizes the estimation error covariance is Tγ
k = −

√
Δα

Δγ

K
Kα

,

bγ
k = 0, where Δα = PαC ′

α (CαPαC ′
α + Rα )−1CαPα , Δγ =

Pγ C ′(CPγ C ′ + R)−1CPγ .

Proof: When the scalar process (1), (2) is under attack
z̃γ
k = Tγ

k zγ
k + bγ

k , the stealthiness constraint (11) becomes

Tγ
k (CPγ C ′ + R)Tγ

k
′ + Lγ

k

(a)
=
[
Tγ1

k T γ2
k

]
[

C2
αPγ + Rα CαCβ Pγ

CαCβ Pγ C2
β Pγ + Rβ

] [
Tγ1

k

T γ2
k

]
+ Lγ

k

= (Tγ1
k )2(C2

αPγ + Rα ) +

(
Tγ2

k Cβ

Cα

)2 (
C2

αPγ +
Rβ C2

α

C2
β

)

+ 2Tγ1
k

T γ2
k Cβ

Cα
C2

αPα + Lγ
k

(b)
= C2

αPα (Uk,1 + Uk,2)2 + RαU 2
k,1 +

Rβ C2
α

C2
β

U 2
k,2 + Lγ

k

= C2
αPα + Rα (25)

where equalities (a) and (b) follow from Tγ
k = [Tγ1

k , T γ2
k ] and

change of variables Uk,1 = Tγ1
k , Uk,2 = T γ 2

k Cβ

Cα
, respectively.

The remote estimation error covariance (15) becomes

P̃ γ
k = A2 P̃ γ

k−1 + Q +
C2

αP 2
α

C2
αPα + Rα

− 2KαTγ
k CPγ

= A2 P̃ γ
k−1 + Q + Δα − 2KαTγ1

k CαPγ − 2KαTγ2
k Cβ Pγ

= A2 P̃ γ
k−1 + Q + Δα − 2KαCαPγ (Uk,1 + Uk,2) (26)

where the second equality follows from the fact that Δα =
PαC ′

α (CαPαC ′
α + Rα )−1CαPα , C = [Cα,Cβ ]′ and Tγ

k =
[Tγ1

k , T γ2
k ]. It can be observed from (25) and (26) that Uk,1 +

Uk,2 must be negative, otherwise one can always flip the sign
of Uk,1 and Uk,2 such that a larger estimation error covariance
is obtained under the same stealthiness constraint. Thus, the
smaller the term Uk,1 + Uk,2 , the larger the error covariance
P̃ γ

k . To make Uk,1 + Uk,2 negative, at least one of the elements
should be negative. Without loss of generality, we assume that
Uk,1 is negative. In this case, for any Lγ

k > 0, Uk,1 < 0 and Uk,2 ,
which satisfy the last equality of (25), one can always reduce Lγ

k

to zero and find an ε < 0 satisfying C2
αPα (Uk,1 + Uk,2 + ε)2+

Rα (Uk,1 + ε)2 + Rβ C 2
α

C 2
β

U 2
k,2 = C2

αPα + Rα , which leads to a
larger P̃ γ

k since Uk,1 + Uk,2 + ε < Uk,1 + Uk,2 < 0. Hence,
the worst attack strategy that maximizes the remote estimation
error covariance is achieved when Lγ

k = 0 and Tγ
k (CPγ C ′ +

R)Tγ
k
′ = C2

αPα + Rα .
According to the iteration of the remote state estimate (12)

and (13), one has

x̃γ
k = Ax̃γ

k−1 + Kαz̃γ
k

= Ax̃γ
k−1 + Kα [Tγ

k + bγ
k (zγ

k
′
zγ
k )−1zγ

k
′]zγ

k

= Ax̃γ
k−1 + K̃kzγ

k

where K̃k = Kα [Tγ
k + bγ

k (zγ
k
′
zγ
k )−1zγ

k
′]. Since the largest es-

timation error is achieved when Lγ
k = 0, i.e., bγ

k = 0, the
worst-case linear attack strategy satisfies K̃k = KαTγ

k . Without
loss of generality, we assume that K̃k = [KαTγ1

k ,KαT γ2
k ] =
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[λ1K̄1 , λ2K̄2 ], where K � [K̄1 , K̄2 ]. In this case, the stealthi-
ness constraint (25) becomes

KαTγ
k (CPγ C ′ + R)Tγ

k
′
K ′

α

=
[
λ1K̄1 λ2K̄2

] [ M1 M12
M12 M2

] [
λ1K̄1
λ2K̄2

]

= λ2
1K̄

2
1 M1 + λ2

2K̄
2
2 M2 + 2λ1λ2K̄1K̄2M12

= Δα (27)

where M1 = C2
αPγ + Rα , M2 = C2

β Pγ + Rβ , M12 =
CαCβ Pγ . The estimation error covariance (26) becomes

P̃ γ
k = A2 P̃ γ

k−1 + Q + Δα − 2λ1K̄1CαPγ − 2λ2K̄2Cβ Pγ .

Thus, optimization problem P1 can be represented as

min
λ1 ,λ2

λ1K̄1CαPγ + λ2K̄2Cβ Pγ

s.t. λ2
1K̄

2
1 M1 + λ2

2K̄
2
2 M2 + 2λ1λ2K̄1K̄2M12 = Δα

(28)

based on which we define the Lagrangian as

Lp = λ1K̄1CαPγ + λ2K̄2Cβ Pγ

+ μ(λ2
1K̄

2
1 M1 + λ2

2K̄
2
2 M2 + 2λ1λ2K̄1K̄2M12 − Δα )

where μ is the Lagrangian multiplier. Set the derivative of Lp

with respect to λ1 and λ2 equal to zero

∂Lp

∂λ1
= K̄1CαPγ + 2μ(λ1K̄

2
1 M1 + λ2K̄1K̄2M12) = 0

∂Lp

∂λ2
= K̄2Cβ Pγ + 2μ(λ2K̄

2
2 M2 + λ1K̄1K̄2M12) = 0.

It can be observed that μ 	= 0, otherwise one has K̄1CαPγ =
P 2

γ C2
α/Rα = 0, which contradicts with the fact that Pγ > 0,

Cα 	= 0, and Rα > 0. Multiplying K̄2Cβ and K̄1Cα to above
two equations, respectively, and subtracting gives

Cβ (λ1K̄1M1 + λ2K̄2M12) = Cα (λ2K̄2M2 + λ1K̄1M12)

⇔ λ1K̄1(Cβ M1 − CαM12) = λ2K̄2(CαM2 − Cβ M12)

⇔ λ1K̄1Cβ Rα = λ2K̄2CαRβ

⇔ λ1 = λ2 � λ (29)

where the last equivalence is due to that K̄1 = (I −
KC)Pγ Cα/Rα and K̄2 = (I − KC)Pγ Cβ /Rβ . Hence, the
largest estimation error covariance is achieved when K̃k =
KαTγ

k = λK. The stealthiness constraint (27) then becomes
λ2Δγ = Δα . Therefore, the worst-case linear attack strategy at

time k is Tγ
k = −

√
Δα

Δγ

K
Kα

and bγ
k = 0. �

Remark 2: According to Proposition 1, the worst-case lin-
ear attack strategy for Scenario III is achieved by simply flipping
the sign of the innovation zγ

k calculated by the malicious attacker

and multiplying by the constant
√

Δα

Δγ

K
Kα

.

We now investigate the worst-case linear attack policy when
using sensing information only.

Proposition 2: For the scalar process (1), (2) with the
attack z̃β

k = Tβ
k zβ

k + bβ
k , the worst-case strategy that maxi-

mizes the estimation error covariance is Tβ
k = −

√
Δα

Δβ
k

K β
k

Kα
,

bβ
k = 0, where Kβ

k = PEA−
k,β C ′

β (Cβ Pβ C ′
β + Rβ )−1 , Δα =

PαC ′
α (CαPαC ′

α + Rα )−1CαPα , Δβ
k = PEA−

k,β C ′
β (Cβ Pβ C ′

β +
Rβ )−1Cβ PEA−

k,β , and PEA−
k,β follows the recursion

PEA−
k,β = APEA−

k−1,β (I − Kβ Cβ )′A′ + Q (30)

with the initial value PEA−
0,β being the unique solution of

X = A(I − KαCα )X(I − Kβ Cβ )′A′ + Q. (31)

Proof: The proof is similar to Proposition 1 and is omitted
here. �

Remark 3: The worst-case linear attack strategy for
Scenario II is to flip the sign of the innovation zβ

k at each time

instant and multiply by a time-varying coefficient
√

Δα

Δβ
k

K β
k

Kα
.

This time variation is the main difference to Scenario III.

B. Strategy Comparison

In this section, we compare the system estimation perfor-
mance under the worst-case attack policies for Scenarios I–III.
We first introduce a preliminary lemma needed for the subse-
quent derivation.

Lemma 5: For scalar processes, the steady-state error co-
variances Pα , Pβ , Pγ , and PEA−

0,β have the following relation-
ship:

1) Pα ≥ Pβ ≥ Pγ , Pα ≥ Pβ ≥ PEA−
0,β , if C2

α/Rα ≤ C2
β /Rβ ;

2) Pβ ≥ Pα ≥ Pγ , Pβ ≥ Pα ≥ PEA−
0,β , if C2

α/Rα ≥ C2
β /Rβ .

Proof: To show Pα ≥ Pγ and Pβ ≥ Pγ , we first prove
that C2

α (C2
αX + Rα )−1 ≤ C ′(CXC ′ + R)−1C for any X ≥ 0,

where C = [Cα,Cβ ]′, R = Diag{Rα,Rβ}. Note that

C ′(CXC ′ + R)−1C = C ′
[

W11 W12

W12 W22

]−1

C

where W11 = C2
αPγ + Rα > 0, W12 = CαCβ Pγ , and W22 =

C2
β Pγ + Rβ > 0. The Schur complement of W11 is denoted

S � W22 − W 2
12W

−1
11 > 0, based on which we obtain

C ′(CXC ′ + R)−1C

= C ′
[

W−1
11 + W−2

11 W 2
12S

−1 −W−1
11 W12S

−1

−W−1
11 W12S

−1 S−1

]
C

= C2
αW−1

11 + (CαW−1
11 W12S

− 1
2 − Cβ S− 1

2 )2

≥ C2
αW−1

11 = C2
α (C2

αX + Rα )−1 .

Then, it is easy to obtain Pα−
k ≥ Pγ−

k for any initial condition
by induction, i.e., Pα ≥ Pγ . Similarly, one has Pβ ≥ Pγ .

For the case where C2
α/Rα ≤ C2

β /Rβ , we now prove that

Pα ≥ Pβ ≥ PEA−
0,β . It is worth noticing that Pα−

k , Pβ−
k , and

Pea−
k,β converges to its steady-state value Pα , Pβ , and PEA−

0,β

from any the initial condition [20]. Without loss of generality,
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we assume that the error covariance P i−
k , i = α, β and Pea−

k,β

evolves from the same initial point. According to

P i−
k = A2(1 − Ki

kCi)P i−
k−1 + Q

= A2 1
C 2

i

Ri
P i−

k−1 + 1
P i−

k−1 + Q

it can be observed that the larger C2
i /Ri , the smaller P i−

k . Hence,
one has Pα ≥ Pβ , if C2

α/Rα ≤ C2
β /Rβ . Then, due to the fact

that 0 < 1 − Ki
kCi = Ri

C 2
i P i−

k +Ri
≤ 1 ∀i = α, β, and the recur-

sion

P i−
k = A2(1 − Ki

kCi)P i−
k−1 + Q, i = α, β

P ea−
k,β = A2(I − Kα

k Cα )(I − Kβ
k Cβ )Pea−

k−1,β + Q

we obtain that Pα ≥ PEA−
0,β and Pβ ≥ PEA−

0,β . For the case
C2

α/Rα ≥ C2
β /Rβ , the proof is similar and omitted here. �

Remark 4: As we know, a smaller sensor noise level leads to
a more accurate state estimate and more information contributes
to a smaller estimation error. The results obtained in Lemma 5
are consistent with these intuitions.

Recall the worst-case attack strategies z̃γ
k = Tγ

k zγ
k + bγ

k ,
z̃β
k = Tβ

k zβ
k + bβ

k and z̃α
k = Tα

k zα
k + bα

k with Tγ
k , bγ

k given in
Proposition 1, Tβ

k , bβ
k given in Proposition 2, and Tα

k , bα
k given

in Lemma 4. We now compare their consequences between
above scenarios in the following two corollaries.

Corollary 1: For a scalar process (1), (2), the worst-
case error covariance at the remote estimator under attack
z̃γ
k = Tγ

k zγ
k + bγ

k is
1) larger than that under attack z̃α

k = Tα
k zα

k + bα
k if |A| < 1;

2) smaller than that under attack z̃α
k = Tα

k zα
k + bα

k if |A| > 1;
3) equal to that under attack z̃α

k = Tα
k zα

k + bα
k if |A| = 1.

Proof: The worst-case error covariance iteration at the
remote estimator follows

P̃ γ
k = A2 P̃ γ

k−1 + Q + Δα + 2|λ|Δγ (32)

when the system is under attack z̃γ
k = Tγ

k zγ
k + bγ

k , and

P̃ α
k = A2 P̃ α

k−1 + Q + 3Δα (33)

under attack z̃α
k = Tα

k zα
k + bα

k . Since the initial conditions of
(32) and (33) are the same, the relationship between P̃ γ

k and P̃ α
k

depends on the magnitudes of |λ|Δγ and Δα . Hence, we now
focus on comparing these two terms, where λ is defined in (29).
Note that Pα and Pγ are the unique solutions of the algebraic
Riccati equations

Pα = A2Pα + Q − A2Δα

Pγ = A2Pγ + Q − A2Δγ

based on which one has

(1 − A2)(Pα − Pγ ) = A2(Δγ − Δα ) (34)

with Pα ≥ Pγ . It can be observed from (34) that Δγ > Δα if
|A| < 1, Δγ < Δα if |A| > 1, and Δγ = Δα if |A| = 1. Ac-
cording to the stealthiness constraint λ2Δγ = Δα , it can further

be obtained that |λ| =
√

Δα

Δγ
< 1 if |A| < 1, |λ| =

√
Δα

Δγ
> 1

if |A| > 1, and |λ| =
√

Δα

Δγ
= 1 if |A| = 1. Then, dividing

both sides of λ2Δγ = Δα by λ leads to the results |λ|Δγ >
Δα if |A| < 1, |λ|Δγ < Δα if |A| > 1, and |λ|Δγ = Δα if
|A| = 1. �

Corollary 2: For a scalar process (1), (2) with |A| < 1, the
steady-state worst-case error covariance at the remote estimator
under attack strategy z̃β

k = Tβ
k zβ

k + bβ
k is

1) larger than that under attack z̃α
k = Tα

k zα
k + bα

k but smaller
than that under attack z̃γ

k = Tγ
k zγ

k + bγ
k if C2

α/Rα < C2
β /Rβ ;

2) smaller than that under attacks z̃α
k = Tα

k zα
k + bα

k and z̃γ
k =

Tγ
k zγ

k + bγ
k if C2

α/Rα > C2
β /Rβ ;

3) equal to that under attack z̃α
k = Tα

k zα
k + bα

k and smaller
than that under attack z̃γ

k = Tγ
k zγ

k + bγ
k if C2

α/Rα = C2
β /Rβ .

Proof: According to Lemma 3 and Lemma 5, one has
limk→∞ PEA−

k = Pβ > PEA−
k , based on which the steady-state

error covariance iteration of P̃ β
k for stable systems with |A| < 1

follows

P̃ β
k = AP̃β

k−1A
′ + Q + Δα − Pβ C ′

β T β
k

′
K ′

α − KαTβ
k Cβ Pβ

= A2 P̃ β
k−1 + Q + Δα + 2|η|Δβ . (35)

When C2
α/Rα < C2

β /Rβ , one has Pα > Pβ > Pγ and Δγ >
Δβ > Δα . Due to the worst-case stealthiness constraints
η2Δβ = Δα and λ2Δγ = Δα , it can be obtained that |λ|Δγ >

|η|Δβ > Δα , which results in P̃ γ
k > P̃ β

k > P̃ α
k in the steady-

state value. Similarly, for the case that C2
α/Rα > C2

β /Rβ , one
has Pβ > Pα > Pγ , which leads to Δγ > Δα > Δβ . Accord-
ing to the stealthiness constraint, finally we obtain the steady-
state error covariance P̃ γ

k > P̃ α
k > P̃ β

k . The proof of the last
case is similar. �

Remark 5: Practically, the attacker might consider all three
attack scenarios simultaneously and choose the policy which
yields the largest estimation error covariance. For example, ac-
cording to Corollary 1, the attacker will launch an attack based
on zα

k rather than zγ
k when the system is unstable.

VII. DISCUSSION ON MITIGATION STRATEGIES

The previous sections focus on the worst-case attack analysis.
In this section, we will discuss possible countermeasures. In
particular, we consider mitigation strategies for linear attacks
from three aspects, adopted from the literature.

One efficient methodology to authenticate the correct opera-
tion of a control system under replay attacks was first proposed
in [2] and [11]. In this case, to detect the existence of a malicious
attack, a Gaussian “watermark” signal was added to the control
input. The system sacrifices control performance to increase the
detection probability of the attack. A detection scheme based
on such an authentication signal can be adopted in our case.
Suppose that the sensor adds a random authentication signal
to the transmitted innovation. Meanwhile, the remote estimator
generates this signal using the same seed and subtracts it from
the received innovation. Under this scheme, the system will not
be affected by the additive authentication signal in the absence
of attacks. However, in the presence of attacks, the alarm rate
at the false-data detector will increase and the estimation error
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covariance will be larger compared with that in the absence
of attacks. Hence, the authentication signal can be carefully
designed to tradeoff the system performance with the security
level.

Second, if a multisensor system is considered, it is possible to
design countermeasures without degrading system performance
since more information is available for the mitigation design.
Detections against linear integrity attacks were investigated for
multisensor systems, with only a portion of sensors compro-
mised, in [29]. Although the corrupted data preserve the same
statistical features as the original ones, they cannot successfully
bypass the false-data detector designed based on the information
extracted from the trusted sensors and the correlations among
the sensors. Moreover, the concept of transfer entropy in infor-
mation theory was utilized for anomaly detection in multisensor
systems in [30]. The causal relationship between system vari-
ables is reflected by the transfer entropy and the change of the
entropy implies the existence of a malicious attack.

Third, instead of detecting the malicious attack, it is also
meaningful to design new detection algorithms or data fusion
schemes to make the system more robust to cyber attacks. To
achieve this goal, a stochastic χ2 false-data detector with a
random threshold was proposed in [31], under which the remote
estimator determines whether to fuse the received data or not
based on the data importance. Note that such a detection method
do not check the exact existence of the attacks, but efficiently
increases the robustness of the system.

VIII. SIMULATION EXAMPLE

To demonstrate the aforementioned results, we provide some
numerical simulations in this section. We first consider a stable
process with parameters

A =

⎡

⎢⎣
0.8 0.6 0
0 0.5 0.3
0 0 0.7

⎤

⎥⎦ , Cα =

[
0 1 0
0 0 1

]
, Cβ =

[
1 0 1
0 1 0

]
.

The process and measurement noise covariances are Q =
Diag{0.8, 1.2, 0.5}, Rα = Diag{2, 1.2}, and Rβ = Diag
{0.8, 0.5}. The normalized error covariance at the remote esti-
mator when the system is under worst case and randomly gen-
erated linear attack strategies is shown in Fig. 2. During time
period [0, 34], the system has entered steady state. The malicious
attack starts at k = 35. It can be observed that the estimation
error in the presence of the worst-case linear attack is larger
than when the system is under randomly generated attack for
all the attack scenarios (Scenarios I–III). Moreover, the worst
attack consequences can be compared numerically by solving
optimization problems P1 and P2 . For the considered system,
the malicious attack based on both the intercepted and sensing
data is more critical than that based on the sensing data only,
and the latter is more severe than that based on the intercepted
data only. This agrees with the theory developed in Section V.

Fig. 2. Normalized estimation error covariances when a stable sys-
tem is under worst case and randomly generated linear attacks for
Scenarios I–III.

Fig. 3. Normalized estimation error covariances when an unstable
system is under worst case and randomly generated linear attacks for
Scenarios I–III.

We also consider an unstable process with

A =

⎡

⎢⎣
1 + ε 0.6 0

0 0.9 0.3
0 0 0.7

⎤

⎥⎦

where ε is the floating point relative accuracy in MATLAB.
Other system parameters are the same as above. The simulation
result is shown in Fig. 3. In this case, although the attack based
on the intercepted data yields the worst estimation performance,
the error covariances under all worst-case attacks diverge expo-
nentially fast, which correspond to the green, magenta, and cyan
lines shown in the zoomed plot of Fig. 3.

To demonstrate the closed-form comparison results in
Section VI, we now consider scalar processes with parameters
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Fig. 4. Normalized remote estimation error covariances under worst
case linear attack strategies. (a) |A| < 1 and C 2

α /Rα < C 2
β /Rβ ;

(b) |A| < 1 and C 2
α /Rα > C 2

β /Rβ .

A = 0.6, Q = 0.5, Cα = 1, Cβ = 1, Rα = 2, Rβ = 0.5 and
A = 0.6, Q = 0.5, Cα = 1, Cβ = 1, Rα = 0.8, Rβ = 2. The
simulation results are shown in Fig. 4. The malicious attacks
are injected to the system from the steady state at time instant
k = 20. The magenta plus, cyan circle, green x-mark, and red
dashed lines represent the normalized estimation error covari-
ances under the worst-case attack using intercepted and sensing
data, the worst-case attack using sensing data only, the worst-
case attack using intercepted data only, and without attack, re-
spectively. Note that C2

α/Rα = 0.5 < C2
β /Rβ = 2 for the first

considered process. According to Corollary 2, the estimation
error covariance of Scenario II should be larger than that of Sce-
nario I while smaller than that of Scenario III, which is consis-
tent with the results observed in Fig 4(a). For the second process
with C2

α/Rα = 1.25 > C2
β /Rβ = 0.5, it can be observed from

Fig. 4(b) that the error covariance of Scenario III is larger than
that of Scenario I and the latter is larger than that of Scenario II,
which confirms the results obtained in both Corollary 1 and
Corollary 2.

IX. CONCLUSION

In this paper, the worst-case consequences for three
innovation-based integrity attacks were analyzed. We consid-
ered scenarios where the attack strategy is designed based on
the intercepted data, the sensing data, or both of them. We inves-
tigated the remote estimation error covariance evolutions in the
presence of the proposed attacks, based on which the worst-case
attack policies were obtained by solving convex optimization
problems. Furthermore, we derived closed-form expressions of
the worst-case linear attacks for scalar systems. The attack con-
sequences were compared to determine which attack leads to
worse estimation performance. Simulation examples were pro-
vided to demonstrate the analytical results. Future work includes
development of detection mechanisms and efficient mitigation
schemes for the proposed attacks.
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