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On the Exact Solution to a
Smart Grid Cyber-Security Analysis Problem

Kin Cheong Sou, Henrik Sandberg and Karl Henrik Johansson

Abstract—This paper considers a smart grid cyber-security
problem analyzing the vulnerabilities of electric power networks
to false data attacks. The analysis problem is related to a
constrained cardinality minimization problem. The main result
shows that anl1 relaxation technique provides an exact optimal
solution to this cardinality minimization problem. The pro posed
result is based on a polyhedral combinatorics argument. It is
different from well-known results based on mutual coherence
and restricted isometry property. The results are illustrated on
benchmarks including the IEEE 118-bus, IEEE 300-bus and the
Polish 2383-bus and 2736-bus systems.

Index Terms—Power network state estimation, security, oper-
ation research, optimization methods.

I. I NTRODUCTION

Our society relies critically on the proper operation of the
electric power distribution and transmission system, which is
supervised and controlled through Supervisory Control And
Data Acquisition (SCADA) systems. Using remote terminal
units (RTUs), SCADA systems measure data such as trans-
mission line power flows, bus power injections and part of the
bus voltages, and send them to the state estimator to estimate
the power network states. The estimated states are used for
vital power network operations such as optimal power flow
(OPF) dispatch and contingency analysis (CA) [1], [2]. See
Fig. 1 for a block diagram of the above functionalities. Any
malfunctioning of these operations can delay proper reactions
in the control center, and lead to significant social and eco-
nomical consequences such as the northeast US blackout of
2003 [3].

As the SCADA systems are increasingly dependent on the
Internet, more access points are exposed to potential malicious
attackers and hence more SCADA functionalities are subject
to threat. For instance, the RTUs can be subjected to denial-
of-service attacks (A1 in Fig. 1). The communicated data
can be subjected to false data attacks (A2). The SCADA
master itself can be attacked (A3). This paper focuses on
the cyber security issue related to false data attacks (A2),
where the communicated metered measurements are subjected
to additive data attacks. A false data attack can potentially
lead to erroneous state estimates by the state estimator, which
can result in gross errors in OPF dispatch and CA. In turn,
these can lead to disasters of significant social and economical
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Fig. 1: Block diagram of power network control center and
SCADA. RTUs connected to the substations transmit and
receive data from the control center using the SCADA system.
At the control center, a state estimate is computed and then
used by Energy Management Systems (EMS) to send out
commands to the power network. The human figures indicate
where a human is needed in the control loop. This paper
considers the false data attack scenario in A2.

consequences. False data attacks on communicated metered
measurements have been considered in the literature (e.g.,
[4]–[11]). [4] was the first to point out that a coordinated
intentional data attack can be staged without being detected by
state estimation bad data detection (BDD) algorithm, which
is a standard part of today’s SCADA/EMS system. [4]–[6],
[8]–[11] investigate the construction problem for such “un-
observable” data attack, especially the sparse ones involving
relatively few meters to compromise, under various assump-
tions of the network (e.g., DC power flow model [1], [2]).
In particular, [4] poses the attack construction problem asa
cardinality minimization problem to find the sparsest attack
including a given set of target measurements. [5], [6], [9] set
up similar optimization problems for the sparsest attack includ-
ing a given measurement. [8], [11] seek the sparsest nonzero
attack and [10] finds the sparsest attack including exactly two
injection measurements. The solution information of the above
optimization problems can help network operators identify
the vulnerabilities in the network and strategically assign
protection resources (e.g., encryption of meter measurements)
to their best effect (e.g., [6], [7], [11]). On the other hand,
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the unobservable data attack problem has its connection to
another vital EMS functionality, namely observability analysis
[1], [2]. In particular, solving the attack construction problem
can also solve an observability analysis problem (this is tobe
explained in Section II-C). This connection was first reported
in [8], and was utilized in [12] to compute the sparsest critical
p-tuples for some integerp. This is a generalization of critical
measurements and critical sets [1].

To perform the cyber-security analysis in a timely manner,
it is important to solve the data attack construction problem
efficiently. This effort has been discussed, for instance, in [4]–
[6], [8]–[11]. The efficient solution to the attack construction
problem in [5] is the focus of this paper. The matching pursuit
method [13] employed in [4] and the basis pursuit method
[14] (l1 relaxation and its weighted variant) employed in [11]
are common efficient (i.e., polynomial-time) approaches to
suboptimally solve the attack construction problem. However,
these methods do not guarantee exact optimal solutions, and
in some cases they might not be sufficient (see for instance [9]
for a naive application of basis pursuit and its consequences).
While [8], [11] provide polynomial-time solution procedures
for their respective attack construction problems, the problems
therein are different from the one in this paper. Furthermore,
the considered problem in this paper cannot be solved as a
special case of [8], [11]. In particular, in [8] the attack vector
contains at least one nonzero entry. However, this nonzero
entry cannot be given a priori. [11] needs to restrict the number
of nonzero injection measurements attacked, while there is
no such requirement in the problem considered in this paper.
In [5], [6] a simple heuristics is provided to find suboptimal
solutions to the attack construction problem. This heuristics,
however, might not be sufficiently accurate. [9], [12], [15]is
most closely related to the current work. The distinctions will
be elaborated in Section IV-B.

The main conclusion of this paper is that basis pursuit
(i.e., l1 relaxation) can indeed solve the data attack con-
struction problemexactly, under the assumption on the net-
work metering system that no injection measurements are
metered. The limitations of this assumption will be discussed
in Section IV-A. In fact, the main result identifies a class
of cardinality minimization problems where basis pursuit can
provide exact optimal solutions. This class of problems include
as a special case the considered data attack construction
problem, under the assumption above.

Outline: Section II describes the state estimation model and
introduces the cyber-security analysis optimization problem
considered in this paper. Section III describes the main result
of this paper – the solution to the considered optimization
problem. Section IV compares the proposed result to related
works. Section V provides the proof of the main result.
Section VI numerically demonstrates the advantages of the
proposed result. The conclusion is made in Section VII.

II. STATE ESTIMATION AND CYBER-SECURITY ANALYSIS

OPTIMIZATION PROBLEMS

A. Power network model and state estimation

A power network withn + 1 buses andma transmission
lines can be described as a graph withn + 1 nodes andma

edges. The graph topology can be specified by the (directed)
incidence matrixB0 ∈ R

(n+1)×ma , in which the direction of
the edges can be assigned arbitrarily. The physical property
of the network is described by a nonsingular diagonal matrix
D ∈ R

ma×ma , whose nonzero entries are the reciprocals of
the reactance of the transmission lines.

The states of the network include bus voltage phase angles
and bus voltage magnitudes, the latter of which are typically
assumed to be constant (equal to one in the per unit system).
In addition, since one arbitrary bus is assigned as the reference
with zero voltage phase angle, the network states considered
can be captured in a vectorθ ∈ [−π, π)n. The state estimator
estimates the statesθ based on the measurements obtained
from the network. Under the DC power flow model [1], [2]
the measurement vector, denoted asz, is related toθ by

z = Hθ +∆z, where H ,

[

PDBT

QBDBT

]

. (1)

In (1),∆z can be either a vector of random error or intentional
additive data attack (e.g., [4]).B ∈ R

n×ma is the truncated
incidence matrix (i.e.,B0 with the row corresponding to the
reference node removed), andP consists of a subset of rows of
an identity matrix of appropriate dimension, indicating which
line power flow measurements are actually taken. Together,
PDBT θ is a vector of the power flows on the transmission
lines to be measured. Analogously, the matrixQ selects the
bus power injection measurements that are taken.QBDBT θ
is a vector of power injections at the buses to be measured.
Therefore,H is the measurement matrix, relating the measured
power quantities to the network states. The number of rows
of H is denotedm.

The measurementsz and the network informationH are
jointly used to find an estimate of the network states denoted
as θ̂. Assuming that the network is observable, it is well-
established that the state estimate can be obtained using the
weighted least squares approach [1, Chapter 5] [2, Chapter 8]:

θ̂ = (HTWH)
−1

WHT z, (2)

where W is a positive definite diagonal weighting matrix,
typically weighting more on the more accurate measurements.
The state estimatêθ is subsequently fed to other vital SCADA
functionalities such as OPF dispatch and CA. Therefore, the
accuracy and reliability of̂θ is of paramount concern.

To detect possible faults in the measurementsz, the BDD
test is commonly performed (see [1], [2]). In one typical
strategy, if the norm of the residual

residual , z −Hθ̂ = (I −H(HTWH)
−1

WHT )∆z (3)

is too big, then the BDD alarm will be triggered.

B. Unobservable data attack and security index

The BDD test is in general sufficient to detect the presence
of ∆z if it contains a single random error [1], [2]. However, in
face of acoordinatedmalicious data attack on multiple mea-
surements the BDD test can fail. In particular, [4] considers
unobservable attack of the form

∆z = H∆θ (4)
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for an arbitrary∆θ ∈ R
n. Since∆z as defined in (4) would

result in a zero residual in (3), it is unobservable from the BDD
perspective. This was also experimentally verified in [16] in a
realistic SCADA system testbed. To quantify the vulnerability
of a network to unobservable attacks, [5] introduced the notion
of security index for an arbitrarily specified measurement.

Definition 1: The security index is the optimal objective
value of the following cardinality minimization problem:

minimize
∆θ∈Rn

‖H∆θ‖0
subject to H(k, :)∆θ = 1,

(5)

wherek is given, indicating that the security index is computed
for measurementk. The symbol‖ · ‖0 denotes the cardinality
of a vector andH(k, :) denotes thekth row of H .
The security index is the minimum number of measurements
an attacker needs to compromise in order to attack measure-
ment k undetected. In particular, a small security index for
a particular measurementk means that in order to attackk
undetected it is necessary to alter only a small number of
additional measurements. This can imply that measurementk
is vulnerable target in an unobservable attack. As a result,the
knowledge of the security indices allows the network operator
to pinpoint the security vulnerabilities of the network, and to
better protect the network with limited resource. To model the
case where certain measurements are protected (hence cannot
be attacked) [4], [6], [7], problem (5) becomes:

minimize
∆θ∈Rn

‖H∆θ‖0
subject to H(k, :)∆θ = 1

H(I, :)∆θ = 0,

(6)

where the protection index setI ⊂ {1, 2, . . . ,m} is given,
H(I, :) denotes a submatrix ofH with rows indexed byI.
By convention, the constraintH(I, :)∆θ = 0 is ignored when
I = ∅. Hence, (5) is a special case of (6).

C. Measurement set robustness analysis

Problem (5) is also motivated from another important state
estimation analysis problem, namely observability analysis [1],
[2]. The measurement set, described byH in (1), is observable
if θ̂ can be uniquely determined by (2). An important question
of observability analysis is as follows:

minimize
J

‖J ‖0
subject to rank(H(J̄ , :)) < n

rank(H(J̄ ∪ {k}, :)) = n

k ∈ J .

(7)

In above,k is a given index andJ̄ denotes the complement
of J (for index setI in the rest of the paper,̄I denotes its
complement). The meaning of (7) is as follows:J denotes
a subset of measurements from the measurement system
described byH . The condition thatrank(H(J̄ , :)) < n
means that the measurement system becomes unobservable
if the measurements associated withJ are lost. That is, it
becomes impossible to uniquely determineθ̂ from H(J̄ , :).
The problem in (7) seeks the minimum cardinalityJ which

must include a particular given measurementk. Therefore, if
there exist a measurementk which leads to an instance of
(7) with a very small objective value, then the measurement
system is not robust against meter failure. Special cases of(7)
have been extensively studied in the power system community.
For instance, the solution label sets of cardinalities one and
two are, respectively, referred to as critical measurements and
critical sets containing measurementk [1]. Their calculations
have been documented in, for example, [1], [17]–[20]. For the
more general cases where the minimum cardinality isp > 2,
the solution label set in (7) is a criticalp-tuple which contains
the specified measurementk [12], [21]. Solving (5) solves (7)
as well. The justification is given by the following statement
inspired by [8], and proved in Appendix:

Proposition 2.1:Let H ∈ R
m×n andk ∈ {1, 2, . . . ,m} be

given for problems (5) and (7). Denote the two conditions:

I: H(k, :) 6= 0.
II: H has full column rank (= n).

The following three statements are true:

(a) Problem (5) is feasible if and only if condition I is
satisfied.

(b) Problem (7) is feasible if and only if conditions I and
II are satisfied.

(c) If conditions I and II are satisfied, then (5) and (7)
are equivalent (see Definition 2 in Section V-A).

Note that if condition I is not satisfied, then the corresponding
measurementk should be removed from consideration. Also,
since measurement redundancy is a common practice in power
networks [1], [2],H can be assumed to have full column rank
(= n). Therefore, conditions I and II in Proposition 2.1 can be
justified in practice. Finally, note that Proposition 2.1 remains
true for arbitrary matrixH (not necessarily defined by (1)).

III. PROBLEM STATEMENT AND MAIN RESULT

A. Problem statement

This paper proposes an efficient solution to the security
index (i.e., attack construction) problem in (6). The proposed
result focuses on a special case of (6), whereH in (1) does
not contain injection measurements:

H = PDBT . (8)

The limitation of assumption (8) will be discussed in Sec-
tion IV-A, after the main result is presented.

In Appendix, it is shown that (6) with assumption (8) is
equivalent to

minimize
∆θ∈Rn

∥

∥P (Ī, :)BT∆θ
∥

∥

0

subject to P (k, :)BT∆θ = 1

P (I, :)BT∆θ = 0.

(9)

Instead of considering (9) directly, the proposed result pertains
to a more general optimization problem associated with a
totally unimodular matrix(i.e., the determinant of every square
submatrix is either−1, 0, or 1 [22]). In particular, the
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following problem is the main focus of this paper:

minimize
x∈Rn

∥

∥A(Ī, :)x
∥

∥

0

subject to A(k, :)x = 1

A(I, :)x = 0,

(10)

whereA ∈ R
m×n is a given totally unimodular matrix, and

k ∈ {1, 2, . . . ,m} andI ⊂ {1, 2, . . . ,m} are given. SinceB
in (9) is an incidence matrix,PBT is a totally unimodular
matrix. Therefore, (10) is a generalization of (9). However,
neither (10) nor (6) includes each other as special cases
since (6) restricts its consideration to a particular classof
totally unimodular constraint matrices (i.e., graph incidence
matrices).

B. l1 relaxation

Problem (10) is a cardinality minimization problem. In
general, no efficient algorithms have been found for solving
cardinality minimization problems [23], so heuristic or relax-
ation based algorithms are often considered. Thel1 relaxation
(i.e., basis pursuit [14]) is a relaxation technique which has
received much attention. Inl1 relaxation, instead of (10), the
following optimization problem is set up and solved:

minimize
x∈Rn

∥

∥A(Ī, :)x
∥

∥

1

subject to A(k, :)x = 1

A(I, :)x = 0,

(11)

where in the objective function in (11) the vector 1-norm
replaces the cardinality in (10). Problem (11) can be rewritten
as a linear programming (LP) problem in standard form [24,
pp. 4-6, p.17]:

minimize
x+,x

−
,y+,y

−

|Ī|
∑

j=1

(

y+(j) + y−(j)
)

subject to A(Ī, :)(x+ − x−) = y+ − y−
A(k, :)(x+ − x−) = 1
A(I, :)(x+ − x−) = 0

x+ ∈ R
n
+, x− ∈ R

n
+, y+ ∈ R

|Ī|
+ , y− ∈ R

|Ī|
+ ,
(12)

where|Ī| denotes the cardinality of the index setĪ.
If (x+, x−, y+, y−) is a feasible solution to (12), then

x , x+ − x− is feasible to (10). Hence, an optimal solution
to (12), if it exists, corresponds to a suboptimal solution to
the original problem in (10). An important question is under
what conditions this suboptimal solution is actually optimal to
(10). An answer is provided by our main result, based on the
special structure in (10) and the fact that matrixA is totally
unimodular.

C. Statement of main result

Theorem 3.1:Let (x⋆
+, x

⋆
−, y

⋆
+, y

⋆
−) be an optimal basic

feasible solutionto (12), whereA, k and I are defined in
(10). Thenx⋆ , (x⋆

+ − x⋆
−) is an optimal solution to (10).

Remark 3.1:Theorem 3.1 provides a complete procedure
for solving (10) via (12). If the standard form LP problem
in (12) is feasible, then it contains at least one basic feasible
solution (see the definition in Section V-A). Together with

the fact that the objective value is bounded from below (e.g.,
by zero), [24, Theorem 2.8, p. 66] implies that problem (12)
contains at least one optimal basic feasible solution, which can
be used to construct an optimal solution to (10) according to
Theorem 3.1. Conversely, if the feasible set of (12) is empty,
then the feasible set of (10) must also be empty because a
feasible solution to (10) can be used to construct a feasible
solution to (12).

Remark 3.2:To ensure that an optimal basic feasible solu-
tion to (12) is found if one exists, the simplex method (e.g.,
[24, Chapter 3]) can be used to solve (12).

The proof of Theorem 3.1 will be given in Section V. Before
that, the related work are reviewed, and the assumption in (8)
is discussed.

IV. RELATED WORK

A. Rationale of the no injection assumption in (8)

Consider the case of (6) whereI corresponds only to line
power flow measurements, then with the definition ofH in
(1) it can be verified that (6) is equivalent to the following:

minimize
∆θ∈Rn

∥

∥P (Ī, :)BT∆θ
∥

∥

0
+
∥

∥QBTDB∆θ
∥

∥

0

subject to P (k, :)BT∆θ = 1

P (I, :)BT∆θ = 0.

(13)

This indicates that the considered problem in (9) is a re-
laxation [24] of the general case in (13). [9] utilizes this
observation and obtains satisfactory suboptimal solutionto
(6). Alternatively, [12] considers indirectly accountingfor
the term

∥

∥QBTDB∆θ
∥

∥

0
in the objective function of (13).

[12] demonstrates that solving the following problem provides
satisfactory suboptimal solution to (13)

minimize
∆θ∈Rn

∥

∥

∥
P̃ (¯̃I, :)BT∆θ

∥

∥

∥

0

subject to P̃ (k̃, :)BT∆θ = 1

P̃ (Ĩ, :)BT∆θ = 0,

(14)

with appropriately defined̃P , Ĩ andk̃. Notice that (14) has the
same form as our considered problem in (9). In conclusion, the
“no injection assumption” in (8) which leads to (9) introduces
limitation, but it need not be as restrictive as it might first
appear. The proposed result in Theorem 3.1 still leads to an
LP based approach to obtain suboptimal solutions to (13) (and
hence (6)).

B. Relationship with minimum cut based results

The main strength of the current result lies in the fact that it
solves problem (10) where theA matrix is totally unimodular.
(10) includes (9) as a special case where the corresponding
constraint matrix is a transposed graph incidence matrix. This
distinguishes the current work with [9], [12], [15] which
specialize in solving (9) using graph-based minimum cut
algorithms (e.g., [25]). One example ofA which is totally
unimodular but not associated with a graph is the matrix with
consecutive ones property (i.e., if either for each row or for
each column, the 1’s appear consecutively) [26]. For a possible
application, consider a networked control system [27], [28]
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with one controller andn sensor nodes. Each node contains
a scalar state value, constant over a period ofm time slots.
The nodes need to transmit their state values through a shared
channel to the controller. Each node can keep transmitting
over an arbitrary period of consecutive time slots. At each
time slot, the measurement transmitted to the controller is
the sum of the state values of all transmitting nodes. Denote
z ∈ R

m as the vector of measurements transmitted over all
time slots, andθ ∈ R

n as the vector of node state values.
Then the measurements and the states are related byz = Aθ,
whereA ∈ R

m×n is a (0, 1) matrix with consecutive ones
in the each column. Solving the observability problem in (7)
with H = A can identify the vulnerable measurement slots,
which should have higher priority in communication for such
a networked control system.

C. Relationship with compressed sensing results

Problem (10) can be written in a form more common in the
literature. Consider the case where the null space ofAT is not
empty (otherwiserank(A) = m and (10) is trivial). With a
change of decision variablez = Ax, (10) can be posed as:

minimize
z∈Rm

‖z(Ī)‖0
subject to Lz = 0

z(I) = 0
z(k) = 1,

(15)

where L has full rank andLA = 0, and z(Ī) denotes a
sub-vector ofz containing the entries corresponding to the
index set̄I. (15) can be written as the cardinality minimization
problem considered, for instance, in [23], [29]–[31]:

minimize
z̃

‖z̃‖0
subject to Φz̃ = b,

(16)

with appropriately defined matrixΦ and vectorb. In this
subsection, we restrict the discussion to the standard case.
That is, (16) is feasible andΦ is a full rank matrix with
more columns than rows. As (16) is well-studied, certain
conditions regarding when its optimal solution can be obtained
by l1 relaxation are known. For example, [29], [32] report
a sufficient condition based on mutual coherence, which is
denoted asµ(Φ) and defined as

µ(Φ) = max
i6=j

|Φ(:, i)TΦ(:, j)|
‖Φ(:, i)‖2‖Φ(:, j)‖2

. (17)

The sufficient condition [31] states that if there exists a feasible
solution z̃ in (16) which is sparse enough:

‖z̃‖0 <
1

2

(

1 +
1

µ(Φ)

)

, (18)

then z̃ is the unique optimal solution to (16) and itsl1 relax-
ation (i.e., problem (16) with‖z̃‖1 replacing‖z̃‖0). Another
well-known sufficient condition is based on the restricted
isometry property (RIP) [23], [33]. For any integers, the RIP
constantδs of matrix Φ is the smallest number satisfying

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22 (19)

for all vectorx such that‖x‖0 ≤ s. The RIP-based sufficient
condition [33] states that if for somes, Φ has a RIP constant
δ2s <

√
2 − 1, then anyz̃ satisfyingΦz̃ = b and ‖z̃‖0 ≤ s

is necessarily the unique optimal solution to both (16) and
its l1 relaxation. It has been shown that certain type of
randomly generated matrices satisfy the above conditions with
overwhelming probabilities (e.g., [23] provides a RIP-related
result). However, the above conditions might not apply to (10),
which is the focus of this paper. For instance, considerA in
(10) being a submatrix of the transpose of the incidence matrix
of the 6-bus power network from [34]:

A =





















1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1





















.

Let k = 6, andI = ∅. Then the correspondingΦ in (16) and
b are

Φ =





1 1 −1 −1 −1 0 1
1 0 −1 0 −1 1 0
0 0 0 0 0 1 0



 b =





0
0
1



 . (20)

For thisΦ, (17) implies thatµ(Φ) = 1. Therefore, the sparsity
bound in (18) becomes‖z̃‖0 < 1. This is too restrictive
to be practical. Similarly, for alls ≥ 1, the RIP constants
δ2s are at least one becauseΦ(:, 1) = −Φ(:, 3). Hence the
RIP-based sufficient condition would not be applicable either.
Nevertheless, the failure to apply these sufficient conditions
here does not mean that it is impossible to show thatl1
relaxation can exactly solve (16). The mutual coherence and
RIP-based conditions characterize when aunique optimal
solution exists for both (16) and itsl1 relaxation, while in
this paper uniqueness is not required. Indeed, for (16) withΦ

andb defined in (20), both
[

−1 0 0 −1 0 1 0
]T

and
[

−1 1 0 0 0 1 0
]T

are optimal (this can be verified
by inspection). Using the CPLEX LP solver [35] in MATLAB
to solve thel1 relaxation leads to the first optimal solution.
It is the main contribution of this paper to show that this is
the case in general when (16) is defined by (10), even though
the optimal solution might not be unique. The reason why the
proposed result is applicable is that it is based on a polyhedral
combinatorics argument, which is different from those of the
mutual coherence and RIP based results.

V. PROOF OF THEMAIN RESULT

A. Definitions

The proof requires the following definitions:
Definition 2: Two optimization problems areequivalent

if there is an one-to-one correspondence of their instances.
The corresponding instances either are both infeasible, both
unbounded or both have optimal solutions. In the last case,
it is possible to construct an optimal solution to one problem
from an optimal solution to the other problem and vice versa.
In addition, the two problems have the same optimal objective
value.
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Definition 3: A polyhedron in R
p is a subset ofRp

described by linear equality and inequality constraints. A
standard form polyhedron (as associated with a standard form
LP problem instance) is specified by{θ Cθ = d, θ ≥ 0} for
some given matrixC and vectord.

Definition 4: A basic solution [24, p. 50] of a polyhedron
in R

p is a vector satisfying all equality constraints. In addition,
out of all active constraintsp of them are linearly independent.
For a standard form polyhedron with a constraint matrix of full
row rank, basic solutions can alternatively be defined by the
following statement [24, p. 53]:

Lemma 5.1:Consider a polyhedron{θ Cθ = d, θ ≥ 0},
and assume thatC ∈ R

l×p and C has full row rank. A
vector θ is a basic solution if and only ifCθ = d and there
exists an index setJ ⊂ {1, 2, . . . , p}, with |J | = l, such that
det(C(:,J )) 6= 0 andθ(i) = 0 if i /∈ J .

Definition 5: A basic feasible solution[24, p. 50] of a
polyhedron is a basic solution which is also feasible. By
convention, the terminology “a basic feasible solution to aLP
problem instance” should be understood as a basic feasible
solution of the polyhedron which defines the feasible set of
the instance.

B. Proof of Theorem 3.1

Two lemmas, key to the proof, are presented first. The first
lemma states that problem (12), as set up byl1 relaxation, has
integer-valued optimal basic feasible solutions.

Lemma 5.2:Let (x⋆
+, x

⋆
−, y

⋆
+, y

⋆
−) be an optimal basic fea-

sible solution to (12). Then it holds thatx⋆(i) , (x⋆
+(i) −

x⋆
−(i)) ∈ {−1, 0, 1} for all 1 ≤ i ≤ n. In addition,

y⋆(j) , |A(Ī(j), :)x⋆| ∈ {0, 1} for all 1 ≤ j ≤ |Ī|, where
Ī(j) denotes thejth element ofĪ.

Proof: Assume that the feasible set of (12) is nonempty,
otherwise there is no basic feasible solution (cf. Definition 5).
The following two claims are made:

(a) A(k, :) cannot be a linear combination of the rows
of A(I, :).

(b) There existsI ′ ⊂ I such that eitherI ′ = ∅ or the
rows ofA(I ′, :) are linearly independent. In addition,
in both casesA(I ′, :)θ = 0 andA(I, :)θ = 0 define
the same constraints.

Claims (a) and (b) together imply that problem (12) can be
written as a standard form LP problem with a constraint matrix
with full row rank (i.e., matrixC below):

minimize
θ

fT θ

subject to Cθ = d

θ ≥ 0,

(21)

with

C ,





A(Ī, :) −A(Ī, :) −I|Ī| I|Ī|
A(I ′, :) −A(I ′, :) 0 0
A(k, :) −A(k, :) 0 0





d ,





0
0
1



 θ ,









x+

x−

y+
y−









f ,









0n×1

0n×1

1|Ī|×1

1|Ī|×1









,

(22)

whereI|Ī| is an identity matrix of dimension|Ī|, and1 is a
vector of all ones.

To see the claims, first note that (a) is implied by the
feasibility of (12). For (b), IfI = ∅ or A(I, :) = 0, then
setI ′ = ∅. Otherwise, there existsI ′ ⊂ I with the properties
that |I ′| = rank(A(I, :)), A(I ′, :) has linearly independent
rows andA(I, :) = SA(I ′, :) for some matrixS. On the
other hand,A(I ′, :) = S′A(I, :) for some matrixS′, because
I ′ ⊂ I. Hence,A(I, :)θ = 0 and A(I ′, :)θ = 0 define the
same constraints. This shows (b).

The next step of the proof is to show that every basic
solution of (21) has its entries being either−1, 0 or 1. Denote
the matrix B1 as the first2n columns of C, and let B̃1

be any square submatrix ofB1. If B̃1 has two columns (or
rows) which are the same or negative of each other, then
det(B̃1) = 0. Otherwise,B̃1 is a (possibly row and/or column
permuted) square submatrix ofA, and A is assumed to be
totally unimodular. Hence,det(B̃1) ∈ {−1, 0, 1} and B1 is
totally unimodular. Next consider the matrixB defined as

B ,
[

C d
]

=





A(Ī, :) −A(Ī, :) −I|Ī| I|Ī| 0

A(I ′, :) −A(I ′, :) 0 0 0
A(k, :) −A(k, :) 0 0 1





=



B1

−I|Ī| I|Ī| 0

0 0 0
0 0 1



 .

Denote the number of rows and the number of columns ofB as
mB andnB respectively. LetJ ⊂ {1, 2, . . . , nB} be any set
of column indices ofB such that|J | = mB (so thatB(:,J ) is
square). IfB(:,J ) contains only columns ofB1, thendet(B(:
,J )) ∈ {−1, 0, 1} sinceB1 is totally unimodular. Otherwise,
by repeatedly applying Laplace expansion on the columns of
B(:,J ) which are not columns ofB1, it can be shown that
det(B(:,J )) is equal to the determinant of a square submatrix
of B1, which can only be−1, 0 or 1. Hence, by Cramer’s rule
the following holds: Ifv is the solution to the following system
of linear equations

B(:,J ) v = B(:, nB), J ⊂ {1, . . . , nB − 1},
|J | = mB, and det(B(:,J )) 6= 0,

(23)

then
v(j) ∈ {−1, 0, 1}, ∀ j. (24)

Lemma 5.1 and (23) together imply that the nonzero entries
of all basic solutions to (21) are either−1, 0 or 1. Therefore,
the basic feasible solutions, which are also basic solutions, to
the polyhedron in (21) also satisfy this integrality property.

Finally, let (x⋆
+, x

⋆
−, y

⋆
+, y

⋆
−) be an optimal basic feasible

solution. Then feasibility (i.e., nonnegativity) impliesthat

x⋆
+(j) ∈ {0, 1}, x⋆

−(j) ∈ {0, 1},
y⋆+(j) ∈ {0, 1}, y⋆−(j) ∈ {0, 1}, ∀ j.

(25)

The minimization excludes the possibility that, at optimality,
y⋆+(j) = y⋆−(j) = 1. Hence, it is possible to definex⋆ andy⋆

such that

x⋆(i) , (x⋆
+(i)− x⋆

−(i)) ∈ {−1, 0, 1} ∀ i

y⋆(j) , (y⋆+(j) + y⋆−(j)) = |A(Ī(j), :) x⋆| ∈ {0, 1} ∀ j.
(26)
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The second lemma is concerned with a restricted version of
(10) with an infinity norm bound as follows:

minimize
x

∥

∥A(Ī, :) x
∥

∥

0

subject to A(k, :) x = 1
A(I, :) x = 0
‖Ax‖∞ ≤ 1.

(27)

Lemma 5.3:Optimization problems (10) and (27) are
equivalent.

Proof: Suppose (10) is feasible, then it has an optimal
solution denoted asx⋆. Let Īx⋆ ⊂ Ī be the row index set such
thatA(j, :)x⋆ 6= 0 if and only if j ∈ Īx⋆ . Then it is claimed
that there exists a common optimal solution to both (10) and
(27) with the same optimal objective value. The argument
is as follows. The property ofx⋆ implies the feasibility of
(12)

′, which is denoted as a variant of (12) with̄I replaced
by Īx⋆ . By [24, Corollary 2.2, p. 65], problem(12)′, as a
standard form LP problem, has at least one basic feasible
solution. Furthermore, since the optimal objective value of
(12)

′ is bounded from below (e.g., by zero), [24, Theorem 2.8,
p. 66] implies that(12)′ has an optimal basic feasible solu-
tion (x̃⋆

+, x̃
⋆
−, ỹ

⋆
+, ỹ

⋆
−) which is integer-valued as specified by

Lemma 5.2. Denotẽx⋆ , (x̃⋆
+ − x̃⋆

−). Then x̃⋆ is feasible to

both (10) and (27) sincēIx⋆ ⊂ Ī, |A(Īx⋆ , :)x̃⋆| ∈ {0, 1}|Īx
⋆ |

and k ∈ Īx⋆ . Also,
∥

∥A(Ī, :)x̃⋆
∥

∥

0
=

∥

∥A(Īx⋆ , :)x̃⋆
∥

∥

0
≤

∥

∥A(Īx⋆ , :)x⋆
∥

∥

0
=

∥

∥A(Ī, :)x⋆
∥

∥

0
, as the inequality is true

becausẽx⋆ is an optimal solution to(12)′. Hencex̃⋆ is optimal
to both (10) and (27), with the same objective value.

Conversely, suppose (10) is infeasible, then (27) is also
infeasible. This concludes that (10) and (27) are equivalent.

Proof of Theorem 3.1: Let (x⋆
+, x

⋆
−, y

⋆
+, y

⋆
−) be an

optimal basic feasible solution to (12). Then there existx⋆ and
y⋆ as defined in Lemma 5.2. In particular,x⋆ = (x⋆

+ − x⋆
−).

It can be verified that(x⋆, y⋆) is an optimal solution to the
following optimization problem:

minimize
x,y

|Ī|
∑

j=1

y(i)

subject to A(Ī, :)x ≤ y
−A(Ī, :)x ≤ y
A(k, :)x = 1
A(I, :)x = 0
0 ≤ y(j) ≤ 1 ∀ j = 1, 2, . . . , |Ī|,

where the inequalities above hold entry-wise. Because of the
property thaty⋆(j) ∈ {0, 1} for all j, (x⋆, y⋆) is also an
optimal solution to

minimize
x,y

|Ī|
∑

j=1

y(i)

subject to A(Ī, :)x ≤ y
−A(Ī, :)x ≤ y
A(k, :)x = 1
A(I, :)x = 0
y(j) ∈ {0, 1} ∀ j = 1, 2, . . . , |Ī|.

(28)

It can be verified that (28) is equivalent to (27). Then
Lemma 5.3 states that (28) is also equivalent to (10). Conse-
quently,(x⋆, y⋆) being an optimal solution to (28) implies that

(10) is feasible with optimal objective value being
|Ī|
∑

j=1

y⋆(j). A

feasible solution to (10) isx⋆. Sincey⋆(j) = |A(Ī(j), :)x⋆| ∈

{0, 1} ∀j, it holds that
∥

∥A(Ī, :)x⋆
∥

∥

0
=

|Ī|
∑

j=1

y⋆(j). Hence,x⋆

is an optimal solution to (10).

VI. N UMERICAL DEMONSTRATION

As a demonstration, instances of the restricted security index
problem in (9) are solved withP being an identity matrix
and I being empty. The incidence matrixB describes the
topology of one of the following benchmark systems: IEEE
14-bus, IEEE 57-bus, IEEE 118-bus, IEEE 300-bus and Polish
2383-bus and Polish 2736-bus [36]. For each benchmark, (9) is
solved for all possible values ofk (e.g., 186 choices in the 118-
bus case and 411 choices in the 300-bus case). Two solution
approaches are tested. The first approach is the one proposed.
It is denoted thel1 approach, and includes the following steps:

1) Set up the LP problem in (12) withA beingBT .
2) Solve (12) using an LP solver (e.g., CPLEX LP). Let

(x⋆
+, x

⋆
−, y

⋆
+, y

⋆
−) be its optimal solution.

3) Define∆θ⋆ = x⋆
+−x⋆

−. It is the optimal solution to (9),
according to Theorem 3.1.

The second solution approach to (9) is standard, and it was
applied also in [9], [12]. This second approach is referred to
as thel0 approach, as (9) is formulated into the following
problem:

minimize
∆θ, y

∑

j

y(j)

subject to BT∆θ ≤ My
−BT∆θ ≤ My

B(:, k)
T
∆θ = 1

y(j) ∈ {0, 1} ∀ j,

(29)

whereM is a constant required to be at least
∥

∥BT
∥

∥

∞
= ‖B‖1

(i.e., the maximum column sum of the absolute values of the
entries ofB) [9]. Because of the binary decision variables in
y, (29) is a mixed integer linear programming (MILP) problem
[24]. It can be solved by a standard solver such as CPLEX.
The correctness of thel0 approach is a direct consequence that
(29) is a reformulation of (9). As a result, both thel1 and l0
approaches are guaranteed to correctly solve (9). Fig. 2 shows
the sorted security indices (i.e., optimal objective values of (9))
for the four larger benchmark systems. The security indicesare
computed using thel1 approach. As a comparison, the security
indices are also computed using thel0 approach, and they are
shown in Fig. 3. The two figures reaffirm the theory that the
proposedl1 approach computes the security indices exactly.
Fig. 2 and Fig. 3 indicate that the measurement systems are
relatively insecure, as there exist many measurements with
very low security indices (i.e., equal to 1 or 2).

In terms of computation time performances, it is well-known
that thel0 approach is much more time-consuming than the
l1 approach since a MILP problem is much more difficult to
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Fig. 2: Security indices using thel1 approach
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Fig. 3: Security indices using thel0 approach

solve than a LP problem of the same size [24]. Fig. 4 shows
the computation time for computing all security indices for
each benchmark system, using thel1 and l0 approaches. It
verifies that the proposedl1 approach is more effective. The
computation time is about a magnitude shorter for the new
l1 approach as compared to thel0 approach. In the above
illustration, all computations are performed on a dual-core
Windows machine with 2.4GHz CPU and 2GB of RAM.

VII. C ONCLUSION

The cardinality minimization problem is important but in
general difficult to solve. A problem example is shown in
this paper as the smart grid security index problem in (6).
The l1 relaxation is promising but to establish the cases
where it provides exact solutions is non-trivial. Well-known
results based on mutual coherence and RIP provide sufficient
conditions under which a unique optimal solution solves both
the cardinality minimization problem and itsl1 relaxation.
However, this paper identifies a class of application motivated
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Fig. 4: Solve-time for computing all security indices for
different benchmark systems

problems (as in (10)) which can be shown to be solvable byl1
relaxation, even though results based on mutual coherence and
RIP cannot make the assertion. In fact, the optimal solutionto
(10) might not be unique. The key property that leads to the
conclusion of this paper is total unimodularity of the constraint
matrix. The total unimodularity of matrixA in (10) leads to
two important consequences. (10) is equivalent to its∞-norm
restricted version in (27). Furthermore, (27) can be solved
exactly by solving the LP problem in (12), thus establishing
the conclusion thatl1 relaxation exactly solves (10).
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APPENDIX

A. Proof of the equivalence between (6) and (9)

Note that the constraintH(I, :)∆θ = 0 implies that
‖H∆θ‖0 =

∥

∥H(Ī, :)∆θ
∥

∥

0
. SinceP consists of rows of an

identity matrix andD is diagonal and nonsingular, for all
J ⊂ {1, 2, . . . ,m}, there exists a diagonal and nonsingular
matrix DJ such thatP (J , :)D = DJP (J , :). In particular,
let Dkk be a positive scalar such thatP (k, :)D = DkkP (k, :
) = P (k, :)Dkk. The above implies that for all∆θ,

P (k, :)BT∆θ = 1 if and only if

P (k, :)DkkB
T (Ddd

−1∆θ) = P (k, :)DBT (Ddd
−1∆θ) = 1.

In addition, for all∆θ

P (I, :)BT∆θ = 0 if and only if

Dkk
−1DIP (I, :)BT∆θ = P (I, :)DBT (Ddd

−1∆θ) = 0.

Finally, for all ∆θ
∥

∥P (Ī, :)BT∆θ
∥

∥

0
=

∥

∥Dkk
−1DĪP (Ī, :)BT∆θ

∥

∥

0

=
∥

∥P (Ī, :)DBT (Ddd
−1∆θ)

∥

∥

0
.

Applying the definition ofH in (1) and a change of decision
variable toDkk

−1∆θ shows that (6) and (9) are equivalent.

B. Proof of Proposition 2.1

Part (a) is trivial.
For the necessary part of (b), condition I is necessary

because ifH(k, :) = 0 then rank(H(J̄ , :)) = rank(H(J̄ ∪
{k}, :)) for all J (meaning that (7) is infeasible). Condition
II is also necessary because ifrank(H) < n. then there does
not exist anyJ such thatrank(H(J̄ , :)) = n.

For the sufficiency part of (b), assume that conditions I
and II are satisfied. Then by part (a) problem (5) is feasible.
Hence it has an optimal solution denoted asθ⋆. DefineJθ⋆ ⊂
{1, 2, . . . ,m} such thatp ∈ Jθ⋆ if and only if H(p, :)θ⋆ 6= 0.
By definition of Jθ⋆ , rank(H(Jθ⋆ , :)) < n. Also, k ∈ Jθ⋆

becauseH(k, :)θ⋆ = 1. If rank(H(Jθ⋆ ∪ {k}, :)) = n, then
Jθ⋆ is feasible to (7), thus showing that (7) is feasible. To
show this, first consider the case when‖Hθ⋆‖0 = 1. Then
Jθ⋆ = {k} and rank(H(Jθ⋆ ∪ {k}, :)) = rank(H) = n
because of condition II (i.e.,H has full column rank). Next
consider the case when‖Hθ⋆‖0 > 1 (i.e., |Jθ⋆ \ {k}| > 0). If
rank(H(Jθ⋆ ∪ {k}, :)) < n, then there exists̃θ 6= 0 such
that H(Jθ⋆ ∪ {k}, :)θ̃ = 0. In particular, H(k, :)θ̃ = 0.
Also, condition II implies thatH(Jθ⋆ \ {k}, :)θ̃ 6= 0 (since
otherwiseHθ̃ = 0). Let q ∈ Jθ⋆ \{k} such thatH(q, :)θ̃ 6= 0.
Note also that by definition ofJθ⋆ , H(q, :)θ⋆ 6= 0. Construct
θ′ , (H(q, :)θ̃)θ⋆ − (H(q, :)θ⋆)θ̃. Then H(k, :)θ′ = 1,
H(p, :)θ′ = 0 wheneverH(p, :)θ⋆ = 0, but H(q, :)θ′ = 0
whileH(q, :)θ⋆ 6= 0. This implies thatθ′ is feasible to (5) with
a strictly less objective value than that ofθ⋆, contradicting the
optimality ofθ⋆. Therefore, the claim thatrank(H(Jθ⋆∪{k}, :
)) = n is true. This implies thatJθ⋆ is feasible to (7),
establishing the sufficiency of part (b).

For part (c), under conditions I and II both (5) and (7)
are feasible. In addition,Jθ⋆ constructed in the proof of
the sufficiency part of (b) satisfies|Jθ⋆ | = ‖Hθ⋆‖0, for θ⋆
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being an optimal solution to (5). This means that the optimal
objective function value of (7) is less than or equal to that of
(5). For the converse, suppose thatJ ⋆ is optimal to (7), then
the feasibility ofJ ⋆ implies that there existsθJ ⋆ 6= 0 such that
H(J̄ ⋆, :)θJ ⋆ = 0. This also implies that‖HθJ ⋆‖0 ≤ |J ⋆|.
If H(k, :)θJ ⋆ = 0, then H(J̄ ⋆ ∪ {k}, :)θJ ⋆ = 0. This
implies that rank(H(J̄ ⋆ ∪ {k}, :)) < n, contradicting the
feasibility of J ⋆. Therefore, there exists a scalarα such that
H(k, :)(αθJ ⋆) = 1. Consequently,αθJ ⋆ is feasible to (5) with
an objective function value less than or equal to the optimal
objective function value of (7).
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