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Abstract—This paper considers a smart grid cyber-security P P Vi 6 =
problem analyzing the vulnerabilities of electric power néworks b g Vi % Al % B
RTUs

to false data attacks. The analysis problem is related to a
constrained cardinality minimization problem. The main result
shows that anl; relaxation technique provides an exact optimal
solution to this cardinality minimization problem. The pro posed
result is based on a polyhedral combinatorics argument. It §
different from well-known results based on mutual coherene | _ -
and restricted isometry property. The results are illustrated on
benchmarks including the IEEE 118-bus, IEEE 300-bus and the
Polish 2383-bus and 2736-bus systems.

Index Terms—Power network state estimation, security, oper-
ation research, optimization methods.
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I. INTRODUCTION operator 8, %

Our society relies critically on the proper operation of the Control center
electric power distribution and transmission system, Whe _ )
supervised and controlled through Supervisory Control Arfd9- 1+ Block diagram of power network control center and
Data Acquisition (SCADA) systems. Using remote termin CA.DA. RTUs connected to the supstatlons transmit and
units (RTUs), SCADA systems measure data such as trafRS€ive data from the control center using the SCADA system.
mission line power flows, bus power injections and part of tHat the control center, a state estimate is computed and then
bus voltages, and send them to the state estimator to estintst€d by Energy Management Systems (EMS) to send out
the power network states. The estimated states are used“mands to the power network. The human figures indicate
vital power network operations such as optimal power floffheré & human is needed in the control loop. This paper
(OPF) dispatch and contingency analysis (CA) [1], [2]. sepnsiders the false data attack scenario in A2.
Fig. 1 for a block diagram of the above functionalities. Any
malfunctioning of these operations can delay proper reasti
in the control center, and lead to significant social and eco- .
. Qpsequences. False data attacks on communicated metered
nomical consequences such as the northeast US blackoufy : . .
2003 [3] measurements have been considered in the literature (e.g.,
As thé SCADA systems are increasingly dependent on tm%_[ll])' [4] was the first to point out that a coordinated
Y : gy dependent on tag. ional data attack can be staged without being detdnte
Internet, more access points are exposed to potentialimasic

. . . state estimation bad data detection (BDD) algorithm, which
attackers and hence more SCADA functionalities are subjec?a standard part of today’s SCADA/EMS system. [4]-[6],

. . IS
to ‘hre?t- For instance, Fhe RTUS can be subjectgd to den H'—[ll] investigate the construction problem for such “un
of-service attacks (Al in Fig. 1). The communicated da

can be subjected to false data attacks (A2). The SCAD0 sgrvable data attack, espeC|aII_y the sparse ones ingolv
relatively few meters to compromise, under various assump-

master itself can be attacked (A3). This paper focuses Enns of the network (e.g., DC power flow model [1], [2]).

the cyber security issue related to false data attacks (AZ), . _
: . rticular, [4] poses the attack construction problenaas
where the communicated metered measurements are subjected. L .
inality minimization problem to find the sparsest dtac

o . car
to additive data attacks. A false data attack can pof[eymalﬁncludmg a given set of target measurements. [5], [6], ] S
lead to erroneous state estimates by the state estimatimhwh =" P !
. . . up similar optimization problems for the sparsest attackuid-

can result in gross errors in OPF dispatch and CA. In turn .
these can lead to disasters of significant social and ecmad)mlmg a given measurement. [8], [11] seek the sparsest nonzero
9 attack and [10] finds the sparsest attack including exawaity t
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the unobservable data attack problem has its connectionefiges. The graph topology can be specified by the (directed)
another vital EMS functionality, namely observability &sis  incidence matrixB, € R("*1*x™a in which the direction of
[1], [2]. In particular, solving the attack constructiomoptem the edges can be assigned arbitrarily. The physical prppert
can also solve an observability analysis problem (this isgo of the network is described by a nonsingular diagonal matrix
explained in Section II-C). This connection was first repdrt D € R™«*™« whose nonzero entries are the reciprocals of
in [8], and was utilized in [12] to compute the sparsestcaiti the reactance of the transmission lines.
p-tuples for some integer. This is a generalization of critical The states of the network include bus voltage phase angles
measurements and critical sets [1]. and bus voltage magnitudes, the latter of which are typicall
To perform the cyber-security analysis in a timely mannesissumed to be constant (equal to one in the per unit system).
it is important to solve the data attack construction probleln addition, since one arbitrary bus is assigned as theaefer
efficiently. This effort has been discussed, for instaneg4]— with zero voltage phase angle, the network states considere
[6], [8]-[11]. The efficient solution to the attack constio@ can be captured in a vectére [—=, 7)". The state estimator
problem in [5] is the focus of this paper. The matching pursuéstimates the state based on the measurements obtained
method [13] employed in [4] and the basis pursuit methddom the network. Under the DC power flow model [1], [2]
[14] (I, relaxation and its weighted variant) employed in [11ihe measurement vector, denotedzass related tod by
are common efficient (i.e., polynomial-time) approaches to PDBT
suboptimally solve the attack construction problem. Hasvev z=HO+ Az, where H % [QBDBT} (1)
these methods do not guarantee exact optimal solutions, and
in some cases they might not be sufficient (see for instarice 9 (1), Az can be either a vector of random error or intentional
for a naive application of basis pursuit and its consequsinceadditive data attack (e.g., [4]B € R™"*™« is the truncated
While [8], [11] provide p0|yn0mia|_time solution proced}ﬂ' incidence matrix (leBQ with the row Corresponding to the
for their respective attack construction problems, thejenms ~reference node removed), afttconsists of a subset of rows of
therein are different from the one in this paper. Furtheemoran identity matrix of appropriate dimension, indicatingieth
the considered problem in this paper cannot be solved adng¢ power flow measurements are actually taken. Together,
Specia| case of [8], []_1] In particu|ar, in [8] the attackcter PDBT9 is a vector of the power flows on the transmission
contains at least one nonzero entry. However, this nonzdiftes to be measured. Analogously, the matiixselects the
entry cannot be given a priori. [11] needs to restrict the bem bus power injection measurements that are takgBDB” ¢
of nonzero injection measurements attacked, while thereigs@ vector of power injections at the buses to be measured.
no such requirement in the pr0b|em considered in this papféherefore,H is the measurement matrix, relating the measured
In [5], [6] a simple heuristics is provided to find suboptimaPower quantities to the network states. The number of rows
solutions to the attack construction problem. This heiggst Of H is denotedm.
however, might not be sufficiently accurate. [9], [12], [1§] The measurements and the network informatiorl are

most closely related to the current work. The distinctiorils wiointly used to find an estimate of the network states denoted
be elaborated in Section IV-B. as 6. Assuming that the network is observable, it is well-

The main conclusion of this paper is that basis pursiftablished that the state estimate can be obtained using th
(i.e., I; relaxation) can indeed solve the data attack coMeighted least squares approach [1, Chapter 5] [2, Chapter 8
struction prqblenexactly under the. as;umption on the net- b — (HTWH)71WHTZ, @)
work metering system that no injection measurements are
metered. The limitations of this assumption will be diseass where W is a positive definite diagonal weighting matrix,
in Section IV-A. In fact, the main result identifies a clas$ypically weighting more on the more accurate measurements
of cardinality minimization problems where basis pursaihc The state estimatis subsequently fed to other vital SCADA
provide exact optimal solutions. This class of problem&lide functionalities such as OPF dispatch and CA. Therefore, the
as a special case the considered data attack constructionuracy and reliability of is of paramount concern.
problem, under the assumption above. To detect possible faults in the measurementthe BDD

Outline: Section Il describes the state estimation model atest is commonly performed (see [1], [2]). In one typical
introduces the cyber-security analysis optimization peob strategy, if the norm of the residual
considered in this paper. Section Ill describes the mainltres . A N T -1 T
of this paper — the solution to the considered optimizationtesidual =z — Ho = (I —HH WH) WH)Az (3)
problem. Section IV compares the proposed result to relatgdioo big, then the BDD alarm will be triggered.
works. Section V provides the proof of the main result.

Section VI numerically demonstrates the advantages of t8e nobservable data attack and security index

roposed result. The conclusion is made in Section VII. . L.
prop The BDD test is in general sufficient to detect the presence

Il. STATE ESTIMATION AND CYBER-SECURITY ANALYSIS  of Az if it contains a single random error [1], [2]. However, in
OPTIMIZATION PROBLEMS face of acoordinatedmalicious data attack on multiple mea-
A. Power network model and state estimation surements the BDD test can fail. In particular, [4] consider

) . unobservable attack of the form
A power network withn + 1 buses andn, transmission

lines can be described as a graph with- 1 nodes andn, Az = HAO 4)



for an arbitraryA8 € R™. Since Az as defined in (4) would must include a particular given measuremgniherefore, if
resultin a zero residual in (3), it is unobservable from tl¥B there exist a measuremehtwhich leads to an instance of
perspective. This was also experimentally verified in [16&i (7) with a very small objective value, then the measurement
realistic SCADA system testbed. To quantify the vulneiigbil system is not robust against meter failure. Special cas¢€g) of
of a network to unobservable attacks, [5] introduced th@not have been extensively studied in the power system community
of security index for an arbitrarily specified measurement. For instance, the solution label sets of cardinalities one a
Definition 1: The security index is the optimal objective two are, respectively, referred to as critical measuremantl
value of the following cardinality minimization problem: critical sets containing measuremeénfl]. Their calculations
have been documented in, for example, [1], [17]-[20]. Fer th
(5) more general cases where the minimum cardinality is 2,
subject to H(k,:)Af =1, the solution label set in (7) is a criticattuple which contains
Epe specified measuremén{12], [21]. Solving (5) solves (7)
as well. The justification is given by the following staterhen

minimize [|HAf|,
ABER

wherek is given, indicating that the security index is compute
e semae o 17 "1 spred by ], an rove  Appenci
The security index is the minimum number of measurementspmpos'tIon 2.1:Let H € R™*" andk € {1,2,.. .,m_}_be .
an attacker needs to compromise in order to attack meas H¥EN for problems (5) and (7). Denote the two conditions:
ment k& undetected. In particular, a small security index for I H(k,:) #0.

a particular measurement means that in order to attadk Il H has full column rank+£ n).

undetected it is necessary to alter only a small number phe following three statements are true:

additional measurements. This can imply that measurement
is vulnerable target in an unobservable attack. As a rethat,
knowledge of the security indices allows the network operat (b)
to pinpoint the security vulnerabilities of the network daio

better protect the network with limited resource. To model t

case where certain measurements are protected (hencet cann(g)
be attacked) [4], [6], [7], problem (5) becomes:

(@) Problem (5) is feasible if and only if condition | is
satisfied.

Problem (7) is feasible if and only if conditions | and
Il are satisfied.

If conditions | and Il are satisfied, then (5) and (7)
are equivalent (see Definition 2 in Section V-A).

Note that if condition | is not satisfied, then the correspogd

minimize 1120, measurement should be removed from consideration. Also,
subject to H(k,:)Af = 1 (6) since measurement redundancy is a common practice in power
)

networks [1], [2],H can be assumed to have full column rank
(= n). Therefore, conditions | and Il in Proposition 2.1 can be
where the protection index s& C {1,2,...,m} is given, justified in practice. Finally, note that Proposition 2.igéns
H(Z,:) denotes a submatrix off with rows indexed byZ. true for arbitrary matrixd (not necessarily defined by (1)).
By convention, the constraiff (Z, :)A# = 0 is ignored when
Z = . Hence, (5) is a special case of (6).

H(Z,)A6 =0,

I1l. PROBLEM STATEMENT AND MAIN RESULT

C. Measurement set robustness analysis A. Problem statement

Problem (5) is also motivated from another important state This paper proposes an efficient solution to the security
estimation analysis problem, namely observability anali, index (i.e., attack construction) problem in (6). The preg
[2]. The measurement set, describedfbyn (1), is observable result focuses on a special case of (6), whBren (1) does

if 6 can be uniquely determined by (2). An important questiafpt contain injection measurements:
of observability analysis is as follows:

_ T
subject to rank(H(J,:)) <n The limitation of assumption (8) will be discussed in Sec-

tion IV-A, after the main result is presented.
In Appendix, it is shown that (6) with assumption (8) is
ked. equivalent to

rank(H(J U{k},:)) =n

In above,k is a given index and7 denotes the complement
of J (for index setZ in the rest of the papef, denotes its
complement). The meaning of (7) is as followg: denotes subject to P(k,:)BTA0 =1 (9)

a subset of measurements from the measurement system P(Z,)BT A6 = 0.

described byH. The condition thatrank(H(7,:)) < n

means that the measurement system becomes unobserviaisiead of considering (9) directly, the proposed resuttgies

if the measurements associated wifh are lost. That is, it to a more general optimization problem associated with a
becomes impossible to uniquely determihdrom H(J,:). totally unimodular matrixi.e., the determinant of every square
The problem in (7) seeks the minimum cardinalifywhich submatrix is either—1, 0, or 1 [22]). In particular, the

mi%igg?e HP(Y:',:)BTAHHO



following problem is the main focus of this paper: the fact that the objective value is bounded from below (e.g.
by zero), [24, Theorem 2.8, p. 66] implies that problem (12)

A(T . . . . : .

mlflel%}}ze H xHO contains at least one optimal basic feasible solution, lwban

subject to A(k ,-)93 =1 (10) pe used to construct an optimal solution to (10) according to
A(Z,)x =0, Theorem 3.1. Conversely, if the feasible set of (12) is empty

then the feasible set of (10) must also be empty because a

mXn I 1 1
whered € R Is a given totally unimodular matrix, andfeasible solution to (10) can be used to construct a feasible

ke{l,2,....,m}andZ C {1,2,...,m} are given. SinceB .
; j ) . e . solution to (12).

n (9.) is an incidence ".“"‘”'XPB IS a t_otally unimodular Remark 3.2:To ensure that an optimal basic feasible solu-
matrix. Therefore, (10) is a generalization of (9). Howeve{lon to (12) is found if one exists, the simplex method (e.g.
neither (10) nor (6) includes each other as special ca '

) 6 ricts it ideration t el ot ﬁ%ﬁ Chapter 3]) can be used to solve (12).
since ( )_res ricts 1ts consideration o a particuar Class = p,q proof of Theorem 3.1 will be given in Section V. Before
totally unimodular constraint matrices (i.e., graph ircide

i that, the related work are reviewed, and the assumption)in (8
matrices). is discussed.

B. /1 relaxation IV. RELATED WORK

Problem (10) is a cardinality minimization problem. Ina. Rationale of the no injection assumption in (8)
general, no efficient algorithms have been found for solving
cardinality minimization problems [23], so heuristic otae
ation based algorithms are often considered. lLhelaxation
(i.e., basis pursuit [14]) is a relaxation technique whics h -
received much attention. Ih relaxation, instead of (10), the =~ minimize |P(Z,:)BTAb||, + || @B DBAG|,
following optimization problem is set up and solved: subject to P(k,:)BTA6 = 1 (13)

minimize || A(Z, :)z]|, P(Z,:)BTAO = 0.
subjectto A(k,:)xr =1 (1) This indicates that the considered problem in (9) is a re-
AZ, )z =0, laxation [24] of the general case in (13). [9] utilizes this
where in the objective function in (11) the vector 1_n0mqbservat|on and obtains satisfactory suboptimal solutmn

replaces the cardinality in (10). Problem (11) can be reenit (8)- Alternatively, [12] considers indirectly accountirfor

as a linear programming (LP) problem in standard form [ZH"e term||Q BT DBAJ|| in the objective function of (13).
pp. 4-6, p.17]: [12] demonstrates that solvmg the following problem pdms

satisfactory suboptimal solution to (13)

Consider the case of (6) whefecorresponds only to line
power flow measurements, then with the definitionFbfin
(1) it can be verified that (6) is equivalent to the following:

|Z] _
minimize ) ( +(J) +y-0) minimize HP( BTAHH
THT—Y+:Y— =1 AQER™
subject to jg ))((cu —x )) -y subject to P(k,:)BTAf = 1 (14)
Ty — - ABTAQ —
AT Yoy ) = P(,.)B~A9f0,
vy €RY, z_ eRY y, eRI y eRZ with appropriately defined, I andk. Notice that (14) has the
(12) same form as our considered problem in (9). In conclusian, th
where|Z| denotes the cardinality of the index <&t “no injection assumption” in (8) which leads to (9) introdsc
If (z4+,z_,y4,y_) is a feasible solution to (12), thenlimitation, but it need not be as restrictive as it might first
r £z, —x_ is feasible to (10). Hence, an optimal solutiorappear. The proposed result in Theorem 3.1 still leads to an
to (12), if it exists, corresponds to a suboptimal solution tLP based approach to obtain suboptimal solutions to (13) (an
the original problem in (10). An important question is undetence (6)).
what conditions this suboptimal solution is actually otlirto
(10). An answer is provided by our main result, based on te Relationship with minimum cut based results
special structure in (10) and the fact that matdxs totally
unimodular.

~—

Y+
1
0

The main strength of the current result lies in the fact that i
solves problem (10) where th& matrix is totally unimodular.
) (10) includes (9) as a special case where the corresponding
C. Statement of main result constraint matrix is a transposed graph incidence mattiis T

Theorem 3.1:Let (2% ,2*,y%,y*) be anoptimal basic distinguishes the current work with [9], [12], [15] which
feasible solutionto (12), whereA, k& and Z are defined in specialize in solving (9) using graph-based minimum cut
(10). Thenz* £ (x4 — 2* ) is an optimal solution to (10).  algorithms (e.g., [25]). One example of which is totally

Remark 3.1:Theorem 3.1 provides a complete procedunenimodular but not associated with a graph is the matrix with
for solving (10) via (12). If the standard form LP problenctonsecutive ones property (i.e., if either for each row or fo
in (12) is feasible, then it contains at least one basic &asi each column, the 1's appear consecutively) [26]. For a pessi
solution (see the definition in Section V-A). Together witlapplication, consider a networked control system [27],] [28



with one controller and: sensor nodes. Each node contain®r all vectorz such that||z||, < s. The RIP-based sufficient
a scalar state value, constant over a periodnofime slots. condition [33] states that if for some ® has a RIP constant
The nodes need to transmit their state values through adshaig, < /2 — 1, then any? satisfying®z = b and ||Z||, < s
channel to the controller. Each node can keep transmittireg necessarily the unique optimal solution to both (16) and
over an arbitrary period of consecutive time slots. At eadts [; relaxation. It has been shown that certain type of
time slot, the measurement transmitted to the controller iandomly generated matrices satisfy the above conditidtiis w
the sum of the state values of all transmitting nodes. Denateerwhelming probabilities (e.g., [23] provides a RlPatetl

z € R™ as the vector of measurements transmitted over adisult). However, the above conditions might not apply @)(1
time slots, andd € R™ as the vector of node state valueswhich is the focus of this paper. For instance, considen
Then the measurements and the states are related=byld, (10) being a submatrix of the transpose of the incidenceimatr
where A € R™*" is a (0,1) matrix with consecutive ones of the 6-bus power network from [34]:
in the each column. Solving the observability problem in (7) 1 -1 0 0 0

with H = A can identify the vulnerable measurement slots, 0 1 -1 0 0 8
which should have higher priority in communication for such 0 0 0 1 -1 o0
a networked control system. A=1o0 0o o o0 1 1
1 0 0 -1 O 0
C. Relationship with compressed sensing results o 1 0 0 -1 0
0 O 1 0 0 —1]

Problem (10) can be written in a form more common in the L
literature. Consider the case where the null spacé’fs not Letk =6, andZ = (). Then the corresponding in (16) and
empty (otherwiserank(A) = m and (10) is trivial). With a b are

change of decision variable= Az, (10) can be posed as: 1 1 -1 -1 -1 0 1 0
= =11 0 -1 0 -1 1 0 b= |0 20
mlzzén%lnlze 1= @)llo 00 0 0 0 10 1 )
subjectto Lz=0
: z(I:; —0 (15)  For this®, (17) implies thaf(®) = 1. Therefore, the sparsity
2(k) =1 bound in (18) becomeg§z||, < 1. This is too restrictive
’ to be practical. Similarly, for alls > 1, the RIP constants
where L has full rank andLA = 0, and z(Z) denotes a d,, are at least one becaudd:, 1) = —®(:,3). Hence the

sub-vector ofz containing the entries corresponding to th&IP-based sufficient condition would not be applicableezith
index setZ. (15) can be written as the cardinality minimizatiorNevertheless, the failure to apply these sufficient cooni
problem considered, for instance, in [23], [29]-[31]: here does not mean that it is impossible to show that
relaxation can exactly solve (16). The mutual coherence and
_ (16) RIP-based conditions characterize whenumique optimal
subject to ¢z =1, solution exists for both (16) and it§ relaxation, while in

with appropriately defined matrix> and vectord. In this this paper uniqueness is not required. Indeed, for (16) with

subsection, we restrict the discussion to the standard. cg¥adb defined in (20), both-1 0 0 -1 0 1 0]" and
That is, (16) is feasible ané is a full rank matrix with [-1 1 0 0 0 1 0] are optimal (this can be verified
more columns than rows. As (16) is well-studied, certaiy inspection). Using the CPLEX LP solver [35] in MATLAB
conditions regarding when its optimal solution can be atetdi to solve thel; relaxation leads to the first optimal solution.
by I, relaxation are known. For example, [29], [32] reportt is the main contribution of this paper to show that this is
a sufficient condition based on mutual coherence, which tie case in general when (16) is defined by (10), even though

minimize ||Z||,
z

denoted ag:(®) and defined as the optimal solution might not be unique. The reason why the
r proposed result is applicable is that it is based on a polgted
(@) = max |D(:,8)” @(:, J)| (17) combinatorics argument, which is different from those af th
5 (| @G, |1 @C, d)lly mutual coherence and RIP based results.
The ;ufﬁ?i_ent conditi_on [31] states that if there existsasfble \/. PROOF OF THEMAIN RESULT
solution Z in (16) which is sparse enough: A. Definitions
1], < 1(1 41 ) (18)  The proof requires the following definitions:
02 w(®)/’ Definition 2: Two optimization problems arequivalent

if there is an one-to-one correspondence of their instances
The corresponding instances either are both infeasibléy bo
Hnbounded or both have optimal solutions. In the last case,
it is possible to construct an optimal solution to one proble
from an optimal solution to the other problem and vice versa.
In addition, the two problems have the same optimal objectiv
(1—d9)lz]2 < 1®x)2 < (1+ 622 (19) value.

then Z is the unique optimal solution to (16) and ftsrelax-
ation (i.e., problem (16) with)|z||; replacing||z||,). Another
well-known sufficient condition is based on the restricte
isometry property (RIP) [23], [33]. For any integerthe RIP
constanty; of matrix ® is the smallest number satisfying



Definition 3: A polyhedron in RP is a subset ofR” wherel is an identity matrix of dimensiolZ|, and1 is a
described by linear equality and inequality constraints. wector of all ones.
standard form polyhedron (as associated with a standand for To see the claims, first note that (a) is implied by the
LP problem instance) is specified By | C8 = d, 8 > 0} for feasibility of (12). For (b), IfZ = @ or A(Z,:) = 0, then
some given matrixC' and vectord. setZ’ = (). Otherwise, there existE' C Z with the properties
Definition 4: A basic solution[24, p. 50] of a polyhedron that |Z’| = rank(A(Z,:)), A(Z’,:) has linearly independent
in R? is a vector satisfying all equality constraints. In additio rows and A(Z,:) = SA(Z',:) for some matrixS. On the
out of all active constraints of them are linearly independent.other hand A(Z',:) = S’ A(Z, :) for some matrixS’, because
For a standard form polyhedron with a constraint matrix df fuZ’ C Z. Hence,A(Z,:)§ = 0 and A(Z',:)0 = 0 define the
row rank, basic solutions can alternatively be defined by tlsame constraints. This shows (b).
following statement [24, p. 53]: The next step of the proof is to show that every basic
Lemma 5.1:Consider a polyhedrod#|C6 =d, 6 > 0}, solution of (21) has its entries being eithet, 0 or 1. Denote
and assume that! € R>*? and C has full row rank. A the matrix B; as the first2n columns of C, and let B,
vectorf is a basic solution if and only i€0 = d and there be any square submatrix d@,. If B, has two columns (or
exists an index se¥ C {1,2,...,p}, with | 7| = [, such that rows) which are the same or negative of each other, then
det(C(:,J)) #0 andf(i) =0 if i ¢ J. det(B;) = 0. Otherwise,B, is a (possibly row and/or column
Definition 5: A basic feasible solution[24, p. 50] of a permuted) square submatrix of, and A is assumed to be
polyhedron is a basic solution which is also feasible. Btally unimodular. Hencedet(B;) € {—1,0,1} and B; is
convention, the terminology “a basic feasible solution tioPa totally unimodular. Next consider the matrix defined as
problem instance” should be understood as a basic feasible AT —AT:) —Iy Iy 0
solution of the polyhedron which defines the feasible set of pa [C d] _ |:A(Ilv ) AT 0\ | \Ol 0

the instance. A(k,:)  —A(k,:) 0 0 1

B. Proof of Theorem 3.1 iz Iz O
' ' =(Bi 0 0 0.
Two lemmas, key to the proof, are presented first. The first 0 0 1

lemma states that problem (12), as set ug;bselaxation, has
integer-valued optimal basic feasible solutions.
Lemma 5.2:Let (¢} ,2* ,y%,y* ) be an optimal basic fea-

sible solution to (12). Then it holds that (i) = (z* (i) — . . .
#* (i) € {—1,0,1} forall 1 < i < n. In addition, square). IfB(:, J) contains only columns aB;, thendet(B(:

* = " ,J)) € {—1,0,1} since By is totally unimodular. Otherwise,
(g))denlt;lés(thgth elleem({eontlgfzfor all 1 < j < [Z|, where by repeatedly applying Laplace expansion on the columns of

Proof: Assume that the feasible set of (12) is nonempté +(B ‘7) which are not columns 0B, it can be shown that

otherwise there is no basic feasible solution (cf. Definitk). (:,.7)) is equal to the determinant of a square su,bmatrlx
of Bl, wh|ch can only be-1, 0 or 1. Hence, by Cramer’s rule
The following two claims are made:

the following holds: Ifv is the solution to the following system
(@  A(k,:) cannot be a linear combination of the rowsy inear equations

Denote the number of rows and the number of columnB ab
mp andnp respectively. Let7 C {1,2,...,np} be any set
of column indices o3 such that7| = mp (so thatB(:, J) is

of A(Z
(b)  There e>)<|stSZ’ C T such that eithe’ = § or the B(:,J)v=DB(;,np), J C{l,....,np — 1}, (23)
rows of A(Z’, :) are linearly independent. In addition, |T| =mg, and det(B(:,J)) # 0,
in both casesA(Z’,:)0 = 0 and A(Z, :)0 = 0 define then
the same constraints. v(j) € {-1,0,1}, V3. (24)

Claims (a) and (b) together imply that problem (12) can be

written as a standard form LP problem with a constraint matrF€Mmma 5.1 and (23) together imply that the nonzero entries
with full row rank (i.e., matrixC' below): of all basic solutions to (21) are eitherl, 0 or 1. Therefore,

the basic feasible solutions, which are also basic solsfitn

minimize f To the polyhedron in (21) also satisfy this integrality prager
subjectto CO =d (21) Finally, let («*% ,2* ,y%,y*) be an optimal basic feasible
0>0 solution. Then feasibility (i.e., nonnegativity) impliéisat
_ _ 601, *(j) €40,1}, V.
ALY ALY —Ip Iy | y+() {0,1}, v=(j) {. } j "
CElAT,) —AT,) 0 0 The minimization excludes the possibility that, at optiityal
Ak,:)  —Ak,?) 0 0 y3(j) =y~ (j) = 1. Hence, it is possible to defing” andy*
) T Opx1 (22) such that
a2 lol g2 [*- Fa Onx1 z*(i) £ (z5.(i) — 2 (i) € {-1,0,1} Vi
] Y+ Lz | y* () = (WLG) +y2 () = |AZ(G),5) 2t € {0,1} V.
Y- 17150 (26)



B It can be verified that (28) is equivalent to (27). Then
The second lemma is concerned with a restricted versionlgfmma 5.3 states that (28) is also equivalent to (10). Conse-

(10) with an infinity norm bound as follows: quently,(z*, y*) being an optimal solution to (28) implies that
|Z|
minimize HA@ ) xHO (10) is feasible with optimal objective value being y*(j). A
x J=1
subject to ig 5))33 = é (27) feasible solution to (10) is*. Sincey* (j) |A(Z(5),:)*| €
) : T = —
Az <1. {0,1} vj, it holds that||A(Z, :)*||, = Z y*(j). Hence,z*
Lemma 5.3:Optimization problems (10) and (27) are 'S an optimal solution to (10). u
equivalent.
Proof: Suppose (10) is feasible, then it has an optimal V1. NUMERICAL DEMONSTRATION

solution denoted as*. LetZ,. C Z be the row index set such As a demonstration, instances of the restricted secuniyxn
that A(j,:)z* # 0 if and only if j € Z,-. Then it is claimed problem in (9) are solved witiP? being an identity matrix
that there exists a common optimal solution to both (10) amehd Z being empty. The incidence matri® describes the
(27) with the same optimal objective value. The argumetdpology of one of the following benchmark systems: IEEE
is as follows. The property of* implies the feasibility of 14-bus, IEEE 57-bus, IEEE 118-bus, IEEE 300-bus and Polish
(12)', which is denoted as a variant of (12) wifhreplaced 2383-bus and Polish 2736-bus [36]. For each benchmarks (9) i
by Z,.. By [24, Corollary 2.2, p. 65], problenf12)’, as a solved for all possible values &f(e.g., 186 choices in the 118-
standard form LP problem, has at least one basic feasibles case and 411 choices in the 300-bus case). Two solution
solution. Furthermore, since the optimal objective valie @approaches are tested. The first approach is the one proposed
(12)" is bounded from below (e.g., by zero), [24, Theorem 2.&is denoted thé, approach, and includes the following steps:
p. 66] implies that(12)’ has an optimal basic feasible solu- 1) Set up the LP problem in (12) witd being B~.

tion (7%, 2%, 9%, %) which is Integer Valued as specified by 2) Solve (12) using an LP solver (e.g., CPLEX LP). Let

Lemma 5.2. Denotg* = (¥} —2*). Thenz* is feasible to (z%, 2%, y%, y*) be its optimal solution.

both (10) and (27) sincg, c f |A(’ )7 € {o 1}‘1 =l 3) DefineAd* = 2% —z*. Itis the optimal solution to (9),
and k e Z.~. Also, HA )&, ||A ey )T H according to Theorem 3.1.

||A oy )T ||0 HA ) HO, as the inequality is true The second solution approach to (9) is standard, and it was
becausec* is an optimal solutlon t912)’. Hencez* is optimal applied also in [9], [12]. This second approach is referced t
to both (10) and (27), with the same objective value. as thel, approach, as (9) is formulated into the following

Conversely, suppose (10) is infeasible, then (27) is algpooblem:

infeasible. This concludes that (10) and (27) are equitalen minimize S y()

| | Ab,y j
Proof of Theorem 3.1: Let («%,z*,y},y*) be an subjectto  BTA4 < My
optimal basic feasible solution to (12). Then there exisand —-BTA) < My (29)
y* as defined in Lemma 5.2. In particular; = (2% — 2 ). B(;,k)TAg = 1
It can be verified thafz*, y*) is an optimal solution to the y(4) e {0,1} Vi,

following optimization problem: . .
where]M is a constant required to be at leg&” || __ = || B]|,

o Izl (i.e., the maximum column sum of the absolute values of the
e ;y(l) entries of B) [9]. Because of the binary decision variables in
subject to fjl(f, Nz <y y, (29) is a mixed integer linear programming (MILP) problem

AT, )z <y [24]. It can be solved by a stanc_iard s_,olver such as CPLEX.
Alk, )z =1 The correctness of thig approach is a direct consequence that
A(Z, )z =0 (29) is a reformulation of (9). As a result, both thea_md lo
0<y(j)<1l Vji=12 |71, approaches are guaranteed to correctly solve (9). Fig. @sho

the sorted security indices (i.e., optimal objective valag(9))
where the inequalities above hold entry-wise. Because @f tfor the four larger benchmark systems. The security indices
property thaty*(j) € {0,1} for all j, (z*,y*) is also an computed using thh approach. As a comparison, the security

optimal solution to indices are also computed using theapproach, and they are

2 shown in Fig. 3. The two figures reaffirm the theory that the

o . proposed/; approach computes the security indices exactly.
mn%clgnze j;y(l) Fig. 2 and Fig. 3 indicate that the measurement systems are
subjectto  A(Z,)z <y relatively insecure, as there exist many measurements with

—A(Z,)z <y (28) very low security indices (i.e., equal to 1 or 2).

Ak, )z =1 In terms of computation time performances, it is well-known

AZ,))x=0 that thely approach is much more time-consuming than the

y(j) € {0,1} Vji=1,2,...,[Z| l; approach since a MILP problem is much more difficult to
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Fig. 3: Security indices using thig approach

solve than a LP problem of the same size [24]. Fig. 4 showi!
the computation time for computing all security indices for(g)

each benchmark system, using theand i, approaches. It
verifies that the proposeld approach is more effective. The

computation time is about a magnitude shorter for the new

Iy approach as compared to tlg approach. In the above

illustration, all computations are performed on a duakcor 4

Windows machine with 2.4GHz CPU and 2GB of RAM.

VIl. CONCLUSION

—=— I0 approach

- % =1, approach

solve time (sec)

-

10 . . . .
3 4

case number

Fig. 4: Solve-time for computing all security indices for
different benchmark systems

problems (as in (10)) which can be shown to be solvablé by
relaxation, even though results based on mutual coherernte a
RIP cannot make the assertion. In fact, the optimal solution
(10) might not be unique. The key property that leads to the
conclusion of this paper is total unimodularity of the coaistt
matrix. The total unimodularity of matrixl in (10) leads to
two important consequences. (10) is equivalent taditsmiorm
restricted version in (27). Furthermore, (27) can be solved
exactly by solving the LP problem in (12), thus establishing
the conclusion that; relaxation exactly solves (10).
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APPENDIX
A. Proof of the equivalence between (6) and (9)

Note that the constraimH( A6 0 implies that
|HAG|, = ||H(Z, AGH( Since P consists of rows of an
identity matrix andD is diagonal and nonsingular, for all
J c {1,2,...,m}, there exists a diagonal and nonsingular
matrix D s such thatP(J,:)D = D7P(J,:). In particular,
let Dy, be a positive scalar such th&(k,:)D = Dy, P(k,:

) = P(k,:)Dyi. The above implies that for alh\g,

P(k,:)BTAf = 1if and only if
P(k,:) Dy BT (Daa~ ' A0) = P(k,
In addition, for allAg

DB (Dgq tAf) =

P(Z,:)BT A9 = 0 if and only if
Dyp *DzP(Z,:)BTAO = P(Z,:)DB" (Dgq *A0) =
Finally, for all Ag
”P BTA9||0 HDkk 'DzP(, BTA9||0

|P(Z,:)DBT (Dga™ " A0)||,,-

Applying the definition ofH in (1) and a change of decision
variable toD;,; ' A shows that (6) and (9) are equivalent.

B. Proof of Proposition 2.1

Part (a) is trivial.

For the necessary part of (b), condition | is necessary
because ifH (k,:) = 0 thenrank(H(7,:)) = rank(H(J U
{k},:)) for all 7 (meaning that (7) is infeasible). Condition
Il is also necessary becauserifnk(H) < n. then there does
not exist any.7 such thatrank(H (7, :)) = n.

For the sufficiency part of (b), assume that conditions |
and Il are satisfied. Then by part (a) problem (5) is feasible.
Hence it has an optimal solution denoteddasDefine 75+ C
{1,2,...,m} such thatp € J,- if and only if H(p,:)6* # 0.

By definition of Jp-, rank(H (Jp+,:)) < n. Also, k € Jp-
becauseH (k,:)6* = 1. If rank(H (Jp U {k},:)) = n, then
Jo~ is feasible to (7), thus showing that (7) is feasible. To
show this, first consider the case whgi6*||, = 1. Then

= {k} and rank(H(Jp- U {k},:)) = rank(H) n
because of condition Il (i.e.d has full column rank). Next
consider the case wheiH o ||, > 1 (i.e.,|Jp~ \ {k}| > 0). If
rank(H(Jg- U {k},:)) < n, then there exist¥ # 0 such
that H(Jp- U {k},:)8 = 0. In particular, H(k,:)d = 0.
Also, condition Il implies thatH (Jp- \ {k},:)0 # 0 (since
otherwiseHd = 0). Let g € Jp+ \ {k} such thatH (g, :)8 # 0.
Note also that by definition offs-, H(q,:)0* # 0. Construct
¢ = (H(g,:)0)0* — (H(g,:)0*)0. Then H(k,:)¢' 1,
H(p,:)0’ = 0 wheneverH (p,:)6* = 0, but H(q,:)¢’ = 0
while H(q, :)0* # 0. This implies that’ is feasible to (5) with
a strictly less objective value than that®f, contradicting the
optimality of 9*. Therefore, the claim thatnk(H (Jp- U{k},:
) n is true. This implies that7,- is feasible to (7),
establishing the sufficiency of part (b).

For part (c), under conditions | and Il both (5) and (7)
are feasible. In addition,Jy- constructed in the proof of
the sufficiency part of (b) satisfiglsiy-| = [|HO*||,, for 6*




being an optimal solution to (5). This means that the optim
objective function value of (7) is less than or equal to that
(5). For the converse, suppose tlgat is optimal to (7), then
the feasibility of 7* implies that there exis#;+ # 0 such that
H(J*,:)87« = 0. This also implies thafH6 7|, < |T*|.

If H(k,:)07~ = 0, then H(J* U {k},:)07- = 0. This
implies thatrank(H(J* U {k},:)) < n, contradicting the
feasibility of 7*. Therefore, there exists a scalarsuch that
H(k,:)(af7+) = 1. Consequentlyyd 7+ is feasible to (5) with
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