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Abstract—Enabling efficient transportation is a ma-
jor challenge for large cities, as the transportation
need is increasing, while the environmental impact
has to be minimized. In this paper, we define an
efficiency measure that shows how much of the current
transportation mileage that is really necessary to meet
all the transportation assignments. We show that the
efficiency measure can be computed efficiently as a
minimum cost flow, and we apply it on two case studies.
The first case demonstrate the efficiency measure on
a freight transportation system, and the second case
computes the measure for a large real-world data set
from the New York City taxis.

I. Introduction
Transportation of both goods and people is essential

for the function of our society. The transportation system
is also facing great challenges, as the demand is steadily
increasing, while the cost and environmental impacts
needs to minimized. In 2012, 26% of all greenhouse gas
emissions from the European Union could be derived from
the transportation sector, and 18% for road transportation
alone [1].

The transportation flow and congestion problem in the
transportation system has been studied for over 80 years
[2]. The distribution problem between a set of origins and
a set of destinations was formulated in [3], and spawned a
wide research in optimal flow allocation [4, 5, 6].

One challenge for freight carriers is the need to move
empty vehicles to avoid an accumulation of empty vehicles
in a region, known as dead mileage. Studies have estimated
that up to 40% of both the mileage and cost in different
transportation systems are due to empty vehicles [7].
Optimizing fleet management systems is therefore actively
pursued [8], but many of the combinatorial optimization
problems are NP-complete, and therefore intractable to
solve, such as the traveling salesman problem [9].

Current research in intelligent transportation systems
aim to provide more information and better decisions in
the transportation network. A long-term goal is to provide
a completely autonomous transportation system, thereby
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increasing the safety and efficiency [10]. One research
direction is toward vehicle platooning [11], but it is not
only the vehicles that are changing, we are also seeing
developments in efficient and intelligent infrastructure,
such as ride-sharing lanes [12] and reversible lanes [13].
Over the last decades, technology development has en-

abled a widespread adoption of GPS receivers for deter-
mining the position of vehicles, and smart-phones has
made it easy to share and collect this position data.
This means that today we have access to huge datasets
of trajectories from past transportation assignments, and
this has opened up new opportunities for understanding
transportation patterns [14, 15]. Authorities in many cities
have collected and provided extensive dataset from the
taxi system, which has stimulated research in this field
[16]. For example, [17, 18, 19, 20] studied strategies for
cruising taxis and dispatch systems, while [21] estimated
the efficiency of a taxi system using a model of perfect
prior knowledge of the demand.
The main contribution of this paper is to introduce a

new efficiency measure for transportation flows. It analyzes
large datasets of trip trajectories, and determines how
much the dead mileage could be reduced in an ideal
setting where the actors collaborate. We show that it is
computationally efficient, and apply it on two case studies.
Future research directions includes on-line optimization
of the efficiency measure to improve fleet management
systems and taxi dispatch systems.
The remainder of this paper is organized as follows: In

section II, we introduce a new efficiency measurement for
transportation systems, and present some of it properties.
In section III we demonstrate the efficiency measure on
a freight transportation system, and in section IV we
compute the efficiency measure on a huge real dataset from
the New York City taxi system. some final conclusions are
given in section V.

II. Transportation Efficiency

In this section, we define the transportation efficiency
measure, and show some of its properties. The aim is to
measure the efficiency of a transportation system consist-
ing of homogeneous actors, compared to the idealized case
where all actors are collaborating to satisfy the demands.
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A. Network Model
Given a directed graph G = (N , E), whereN is the set of

nodes, and E ⊆ N×N is the set of directed edges. For each
edge (u, v) ∈ E , there are two associated transportation
flows f1 : E → R+, and f0 : E → R+. The first flow, f1,
represents the desired transportation assignments, while
the second flow, f0, represents the vacant trips taken in
order to move the vehicles to their next transportation
assignments, which we refer to as vacant flow. Each edge
(u, v) ∈ E also has an associated weight w : E → R+,
which is the cost of transporting one unit of flow across
the edge.

B. Transportation Efficiency Measure
In this paper, we consider a measure for the efficiency of

the transportation system. First, let us define the network
flow cost C as the total cost for all trips (both the
transportation assignments and the vacant flow),

C
.=
∑

(u,v)∈E

w(u, v) (f0(u, v) + f1(u, v)) .

Now, let us consider an optimal network flow by reduc-
ing the vacant flow f0 while preserving the availability of
vacant vehicles as follows

f?
0
.= arg min

f

∑
(u,v)∈E

w(u, v) (f(u, v) + f1(u, v))

subject to
0 ≤ f(u, v) ≤ f0(u, v), ∀(u, v) ∈ E ,

and ∑
v∈N

(u,v)∈E

f(u, v)−
∑
v∈N

(v,u)∈E

f(v, u)

=
∑
v∈N

(u,v)∈E

f0(u, v)−
∑
v∈N

(v,u)∈E

f0(v, u), ∀u ∈ N .

(1)
The first constraint implies that the optimal flow f?

0 is a
subset to the vacant flow f0, i.e., it does not increase the
flow over any edge. The second constraint implies that
the excess flow at every node is preserved, i.e., that the
optimal flow leaves the same number of vacant vehicles at
every node for their next assignments.

We can now define the optimal network flow cost as

Copt
.=
∑

(u,v)∈E

w(u, v) (f?
0 (u, v) + f1(u, v)) ,

and we are now ready for the main definition in this
paper.

Definition 1. The transportation efficiency measure
is defined as

η
.= Copt

C
.

Remark 1. We have η ∈ [0, 1], and η = 1 if the
transportation system is optimal. A value η < 1 shows

how inefficient the system is, as it measures the percentage
of the trips that are actually necessary to fulfill all the
transportation assignments with a given vehicle fleet.

Remark 2. Since the optimal flow f?
0 only reduces the

initial vacant flow f0, we neglect any changes in congestion
that would appear from an increased traffic flow. Thus,
computing this efficiency measure η can be done directly
from historical GPS trajectories, as seen in section IV.

Remark 3. We do not assume that the actual transporta-
tion assignments are known, but only the historical traces
of the vehicle trajectories. Hence, it is natural to assume
that all transportation assignments f1 has to be fulfilled,
and that they also represent the complete transportation
demand.

Remark 4. Time constraints on the transportation as-
signments are not directly captured by this flow model.
However, a possible solution is to only consider the trips
that occur during a limited time period, and then recompute
the efficiency measure for each time period.

Remark 5. Even though the entire transportation system
is not homogeneous, we can consider a subsystem with
homogeneous actors, e.g., a set of long haul trucking
companies or a set of taxi drivers, which could benefit from
collaboration.

C. Example
As a simple example, consider a scenario with three

companies (Blue, Red and Green) moving cargo between
the three cities (A, B and C). Company Blue moves cargo
from city B to city A, and returns empty to pickup the
next cargo. Company Red similarly moves cargo from city
C to city B, and returns empty, while company Green
moves cargo from city A to city C, and returns empty,
as illustrated in fig. 1.
With a unit cost w(u, v) = 1 for all edges (u, v) ∈ E , the

total cost is C = 6. Notice that in this example, there is a
cycle of empty trucks going around from A to B to C, and
back to A, and that the transportation assignments could
be served by a single truck going around from A to C to
B and back to A, as shown in fig. 2.
The cost for this optimized network is Copt = 3, thus the

efficiency of the transportation system is only η = Copt
C =

3
6 = 50%.

D. Computational Complexity
In this section, we show that the efficiency measure can

be computed efficiently. In many practical scenarios, the
road network consist of thousands of nodes, and there can
be billions of collected transportation trips, as is illustrated
in section IV. Therefore it is essential that η can be
efficiently computed.
The major computational step is to solve the optimal

network flow problem in eq. (1), which we will show is
equivalent to the minimum cost flow problem. Recall the
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Figure 1. Example of a three company transportation network.

minimum cost flow problem formulation [22], which can
be stated as

min
f

∑
(u,v)∈E

w(u, v)f(u, v)

subject to
0 ≤ f(u, v) ≤ c(u, v), ∀(u, v) ∈ E ,

and ∑
v∈N

(u,v)∈E

f(u, v)−
∑
v∈N

(v,u)∈E

f(v, u) = bu, ∀u ∈ N ,

(2)
where c(u, v) is the edge capacity, and bu is the node

supply/demand.
It is furthermore assumed by the feasibility assumption

that
∑

u∈N bu = 0, and that there exist a feasible solution
to eq. (2).

Clearly, with the capacity constraint given
by c(u, v) = f0(u, v) for all edges (u, v) ∈ E ,
and the supply/demand constraint given by
bu =

∑
v∈N

(u,v)∈E
f0(u, v) −

∑
v∈N

(v,u)∈E
f0(v, u) for all nodes

u ∈ N , our problem in eq. (1) is of the same form as eq. (2).
Further, by rearranging the sums, we see that

∑
u∈N bu =∑

u∈N
∑

v∈N
(u,v)∈E

f0(u, v) −
∑

u∈N
∑

v∈N
(v,u)∈E

f0(v, u) =∑
u∈N

∑
v∈N

(u,v)∈E
f0(u, v) −

∑
u∈N

∑
v∈N

(u,v)∈E
f0(u, v) = 0.

Finally, it is easy to see that f = f0 is a feasible solution,
thus we can conclude that we have a feasible minimum
cost flow problem.

A complexity survey of minimum cost flow algo-
rithms is presented in [23], where they show that the
generalized cost-scaling algorithm with dynamic trees is
one of the fastest algorithms, with time complexity
O
(
nm log(n2/m) min{log(nW ),m logn}

)
. Here, n = |N |

is the number of nodes, m = |E| is the number of edges,
and W = max(u,v)∈E w(u, v) is the largest edge weight.
We can summarize this in the following proposition.

Proposition 1. The transportation efficiency measure η
can be computed as a minimum cost flow in polynomial

A B

C

Figure 2. Optimized transportation network served by a single truck.

time, e.g., O
(
nm log(n2/m) min{log(nW ),m logn}

)
.

Remark 6. There are many other algorithms for solving
the minimum-cost flow problem. We used the successive
shortest path algorithm [6] successfully for the following
case studies, with a theoretical worst case performance
O (D(m+ n logn)), where D is the maximum flow value
with integer capacities.

Remark 7. As shown in [24], solving the minimum cost
flow problem is equivalent to removing all negative weight
cycles from a feasible solution. This can be interpreted in
our application as removing all cycles traveled by the empty
vehicles. Compare with figs. 1 and 2.

III. Freight Transportation Case Study

In this section, we demonstrate the transportation ef-
ficiency measure η on a simulated road transportation
system. The transportation system consists of competi-
tive transportation companies that receives transportation
assignments in a discrete time model. Each company
optimizes the routes of its own vehicles, without any
collaboration with the other companies.
The road network is based on the OpenStreetMap data

[25] for the German highways, shown in fig. 3. Germany’s
14 largest cities are selected as the nodes, and the weight
w on each edge is set as the travel distance between the
two cities.
We consider 10 transportation companies, each of which

has T = 20 trucks in their vehicle fleet. In a discrete
time model, at each time step, each company receives a
set of T randomized transportation assignments, where
the probability distribution for the pickup and drop-off
locations is proportional to the population size of the
cities. Each time step is divided into two phases, first
the vehicles are moved from their current location to
the pickup location of the transportation assignment, and
in the second phase, the transportation assignments are
carried out. Each company optimizes its allocation of ve-
hicles to transportation assignments in order to minimize
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Figure 3. Road network between Germany’s 14 largest cities. Map
courtesy of OpenStreetMap.

the total dead mileage for its own vehicle fleet, using a
weighed bipartite matching. These trips constitutes the
vacant flow f0, and transportation assignment trips in the
second phase constitutes f1. At the end of each time step,
the vehicles are left at the drop-off locations, waiting for
the next time step.

At each time step, we thus defined the two network
flows f0 and f1, and can compute the optimal flow f?

0
and transportation efficiency measure η. This procedure is
repeated (for 1000 time steps) until the efficiency measure
converges, and the results are shown in table I. The trans-
portation efficiency measure is η = 87%, which implies
that in this case study, where each company optimized its
own fleet, 13% of the total mileage could be eliminated if
the companies would start to collaborate with each other.

Table I
Freight transportation results with 20 trucks per company.

Avg. assignment length 454.7 km
Avg. original dead mileage 125.1 km
Avg. optimized dead mileage 51.9 km
Transportation efficiency η 87%

In fig. 4, we change the number of trucks per company
T , while keeping the other parameters as before. As can

be seen, the efficiency of the system increases with larger
companies in this scenario, since a larger company has
more options for optimizing its own routes. However, no-
tice that the total mileage is also increasing, so even when
the system efficiency is increasing, the absolute savings for
collaborating does also increase.
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Figure 4. Freight transportation efficiency depending on the number
of trucks per company.

IV. New York Taxi Case Study
We now turn to a second illustration of the efficiency

measure η, computed on a real dataset from the New York
City taxis. We will show how the efficiency of the taxi
system varies depending on the time of the day.

A. Data format
In New York City, the taxi system consists of 13000

yellow medallion taxis, which completed more than 174
million trips during 2013. Records from all these trips
has been made publicly available by the NYC Taxi &
Limousine Commission. Each trip is specified with the
following fields:
• Car ID
• Driver ID
• Pickup time
• Drop-off time
• Passenger count
• Trip distance
• Pickup location (GPS position)
• Drop-off location (GPS position)
A majority of the trips are centered on Manhattan

Island, as shown by fig. 5.

B. Data Processing
To compute the efficiency measure η we first need

to construct the flow network from the taxi data. This
procedure is described in the next four subsections.
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Figure 5. Heat map of the New York City taxis’ pickup locations.
Map courtesy of OpenStreetMap.

1) Determining the vacant flow : The dataset contains
the transportation assignments, where the taxi is driving
with passengers, but does not include the cruising trips
where the driver is looking for passengers. However, since
the transportation assignments are specified with both a
car identity, a driver identity, as well as the time of the trip,
we can determine the next trip for each car and driver. If
a car-driver pair drove another trip within one hour, then
we add the empty trip from the previous trip’s drop-off
location to the next trip’s pickup location.

For 91.3% of all transportation assignments, we could
find a following vacant flow trip. The average transporta-
tion assignments and the vacant flow variation over a day
is shown in fig. 6.

Remark 8. There is a dip in the number of available taxis
in the middle of the afternoon rush, because the drivers
traditionally change shifts at this time [26].

2) OpenStreetMap network : The trip data only con-
tains the pickup and drop-off locations, therefore we con-
struct a network based on the road data from Open-
StreetMap [25]. The map region around New York contains
1460536 nodes and 2967562 edges, and the pickup and
drop-off locations for each trip are mapped to the closest
nodes in the OpenStreetMap data.

The next step is to find the path through the road
network for every trip. To this end, we compute the
shortest path for each trip, taking into account the road

Time of day
0:00 04:00 08:00 12:00 16:00 20:00 24:00

T
ri
p

s
 p

e
r 

h
o

u
r

×10
4

0

0.5

1

1.5

2

2.5

3 Transport assignments
Dead flow

Figure 6. The average number of trips taken as a function of the
time of day.

type, speed limits and one-way directions. The result is
a prediction of how the taxis are moving, similar to the
suggestions given by GPS navigators.
3) Grid regions : The OpenStreetMap data contains a

very detailed road network, including many local phenom-
ena, e.g., complex intersections, parallel lanes, antiparallel
one-way streets, etc. But we are only interested in the
general trajectories of the taxis, which would be hidden
by excessive details of the map.
To address this problem, we divide the map into a square

grid, where we vary the cell sizes from 100m × 100m up
to 5000m × 5000m. Each grid cell then becomes a node
in our final flow network, and a taxi trip is represented
as a sequence of adjacent grid cells. Because the grid cells
have the same size, we use a unit weight w(u, v) = 1 for
all (u, v) ∈ E , and the flow is equal to the number of taxis
passing between two grid cells.

Remark 9. This has the additional benefit of reducing
the number of nodes in the flow network, which makes the
computations faster.

4) Computing the efficiency measure : We have now
constructed the flow network from the pickup and drop-
off locations of the taxis, and from this description we are
able to compute the efficiency measure η.
Given a year’s worth of data, we introduce time slots,

where the length is varied from 1 minute up to 60 minutes.
For each time slot, we compute the efficiency measure η,
and in fig. 7 the taxi transportation efficiency is shown as
a function of the time of the day. In table II, the efficiency
is shown for different grid sizes and time slots.

C. Results
The average efficiency measure over January month

2013 is shown in table II. The efficiency of the NYC taxi
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Table II
New York City Taxi efficiency results

Time slot
1 min 5 min 60 min 1 month

G
ri
d
si
ze

100m × 100m
Avg. flow / time slot 25409 127047 1524573 1132757899
Dead flow 28.1% 28.1% 28.1% 27.3%
Efficiency measure η 90.7% 86.6% 84.7% 80.3%

500m × 500m
Avg. flow / time slot 4724 23620 283442 210597439
Dead flow 27.6% 27.5% 27.5% 26.8%
Efficiency measure η 88.2% 85.5% 84.4% 80.6%

1000m × 1000m
Avg. flow / time slot 2222 11111 133340 99072081
Dead flow 27.6% 27.6% 27.6% 26.9%
Efficiency measure η 87.4% 85.1% 84.2% 80.6%

5000m × 5000m
Avg. flow / time slot 346 1730 20763 15427468
Dead flow 28.4% 28.4% 28.4% 27.8%
Efficiency measure η 86.1% 84.5% 83.8% 81.2%

system varies from 90.7% using 1 minute time slots and a
grid of 100m × 100m, down to 83.8% for 60 minutes time
slots and 5000m × 5000m grid size.
Notice that the efficiency drops when the time slots and

grid size increases. This supports our intuition, because
by increasing the time slots, we consider more vehicles at
each step, and are therefore more likely to find vehicles
that can be eliminated. Similarly for the grid size, a larger
grid means that more roads will be part of the same flow
edge, e.g., when two cars are traveling on parallel one-way
streets, in opposite directions.

Remark 10. The time slot and grid size can be interpreted
as how close two taxis need to be in time and space in order
to be considered as redundant.

In fig. 7, the efficiency is shown as a function of the
time of day. Again, we see that a larger time slot yields
a consistently lower efficiency. Notice that the efficiency
has a peak during the afternoon rush at 5PM. Comparing
with fig. 8, we see that this peak corresponds to a very low
vacant flow, i.e., the high demand for taxis makes it easy
to pick up new passengers. In contrast, the morning peak
at 4AM in efficiency corresponds to a high percentage of
vacant flow. Comparing also with fig. 6, this is explained
by that much fewer taxis are available in the morning due
to the low demand for taxis.

V. Conclusions
In this paper, we developed a new efficiency measure η

for transportation systems, where the trips are divided into
actual transportation assignments and vacant trips. The
efficiency measure is especially useful when evaluating a
transportation system based on collected GPS trajectories
from the vehicles, and we show that the efficiency measure
can easily be computed, even for huge datasets.

We used the efficiency measure to evaluate a realistic
road transportation simulation, with multiple competitive
transportation companies. We showed that even if the
companies are optimizing their own transportation routes,
there is still a potential of reducing the total mileage by
13% if they would start to cooperate.
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Figure 7. The average efficiency measure by the time of day, using
a grid size of 1000m × 1000m.
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Figure 8. The fraction f0/(f0 + f1) of vacant flow compared to the
total flow.

Finally, we also demonstrate the efficiency measure on

5154



a real data set from New York’s taxis, where we showed
that the total mileage could be reduced by between 9%
and 20%, depending on the model.

This work shows that there is a huge potential for im-
proving the efficiency of our current transportation system
by improved planning and coordination among different
actors. The efficiency measure can also be used in on-line
settings, to evaluate and optimize different transportation
strategies. In the freight transportation case, the optimiza-
tion can be performed either in a fleet owner’s logistic
system, or provided by a third-party for collaboration
between multiple fleet owners.

Future work includes studying different policy changes
for improving the transportation efficiency.
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