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Abstract— This paper studies the distributed freeway ramp
metering problem, for which the cell transmission model (CTM)
is utilized. Considering the jam density and the upper bounds
on the queue lengths and the ramp metering, we first provide
feasibility conditions with respect to the external demand to
ensure the controllability of the freeway. Assuming that the
freeway is controllable, we formulate an optimization problem
which tradeoffs the maximum average flow speed and the mini-
mum waiting queue for each cell. Although the cells of the CTM
are dynamically coupled, we propose a distributed backward
algorithm for the optimization problem and prove that the
solution to the problem is a Nash equilibrium. Furthermore,
if the optimization problem is simplified to only maximization
of the average flow speed, we argue that the obtained explicit
distributed controller is globally optimal. A numerical example
is given to illustrate the effectiveness of the proposed control
algorithm.

I. INTRODUCTION

Increasing congestion on freeways is leading to intolerable
travelling delays and economic loss. To mitigate traffic
congestion, variable speed limits and on-ramp metering are
two popular and effective control strategies [1], [2]. On-ramp
metering is implemented by installing a traffic light to control
the inflow of the freeway at each on-ramp.

Many optimization-based ramp metering strategies have
been reported in the literatures, e.g., [6], [7]. One popular
optimization objective is to minimize the total time spent
by all the drivers on the freeway over a finite horizon. In
[5] and [8], different optimization problems which are based
on model predictive control (MPC) are proposed to control
the traffic flow and density in a centralized form. Obviously,
these methods encounter a large computational effort, a high
communication cost, and the assumption of global model
information. To overcome these adverse aspects, distributed
or decentralized feedback controllers have been investigated
for freeway ramp metering. In such framework, local con-
trollers only rely on the local measurements and the limited
exchange of information with the neighboring controllers. In
[9] and [10], distributed MPC-based control strategies are
formulated to coordinate the behaviours of different cells.
Although distributed MPC can reduce the communication
efforts and the computation time, the traffic demand cannot
be predicted perfectly, thereby restricting the effectiveness of
the controllers.
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The recent work [11] considers a distributed, non-
predictive controller for ramp metering of CTM. The de-
signed controller preserves monotonicity of the closed-loop
system and achieves globally optimal performance, i.e., the
minimum total time spent by all the drivers. Based on
local communication and real-time measurements, this paper
investigates distributed optimization-based ramp metering.
We adopt the cell transmission model (CTM) of Daganzo
[3], which is attractive due to its simple model equations,
computational efficiency in the control problems, and guar-
antee of the nonnegative traffic speed [4]. Particularly, we
consider a piece-wise affine fundamental diagram (FD) and
a dynamical queue with limited length on each ramp [5].
Different from the optimization objective in [11], we tradeoff
the average flow speed and the queue length (i.e., the number
of waiting cars in each on-ramp) in our objective function.
To sum up, the main contributions of this paper are:
(1) Considering the jam density and the upper bounds on

the queue lengths and the ramp metering, we provide a
feasibility condition with respect to the external demand
to ensure the controllability of the freeway.

(2) We propose a backward algorithm for the coupled
optimization problem and show that the solution by the
backward optimization algorithm is a Nash equilibrium.

(3) We simplify the optimization problem to only maxi-
mization of the average flow speed, provide an explicit
distributed controller, and prove that this controller is
globally optimal.

This paper is organized as follows. Section II introduces
the CTM and presents a feasibility condition for the external
demand. Section III formulates an optimization problem and
provides an algorithm. Section IV simplifies the optimization
problem and derives a distributed controller. Section V
simulates a numerical example. Section VI concludes.

Notation: The k-th element of a vector x is denoted by xk.
A cell of the CTM is indexed by k. The set of nonnegative
integers is denoted by N.

II. PRELIMINARIES

A. Cell Transmission Model

We use the asymmetric CTM [4], [5], [11] to describe a
freeway in Fig 1 and Fig. 2. The freeway is partitioned into
n+1 cells, each with one on- and one off-ramp. Denote by
C = {0, . . . ,n} the index set of the cells. The model variables
and parameters are listed in Table I. Assume that the split
ratio of cell k is constant, which means that a fixed portion
βk of the total flow of cell k leaves from its off-ramp [5].
Define β̄k = 1−βk. Following the mass conservation laws,



TABLE I
MODEL VARIABLES AND PARAMETERS

Symbol Name Range Unit
ρk density [0, ρ̄k] cars/km
fk flow [0,Fk] cars/h
qk queue length [0, q̄k] cars
uk metering rate [0, ūk] cars/h
rk external traffic demand [0,∞) cars/h
ρc

k critical density wk
vk+wk

ρ̄k cars/km
ρ̄k jam density (0,∞) cars/km
βk split ratio [0,1) 1
β̄k 1−βk (0,1] 1
vk free flow speed (0,∞) km/h
wk congestion wave speed (0,∞) km/h
lk cell length (0,∞) km
δ sampling period Assumption 2.1 h

the dynamics of cell k ∈ C in the CTM is governed by

ρk(t +1) = ρk(t)+
δ

lk
( fk−1(t)+uk(t)−

1
β̄k

fk(t)), (1a)

qk(t +1) = qk(t)+δ (rk(t)−uk(t)). (1b)

The flow f (t) in the CTM is a function of the density ρ(t).
Particularly, the flow fk(t) is constrained by the demand
dk(ρk(t)), the capacity Fk, and the supply sk+1(ρk+1(t)):

f−1(t) = 0, (2a)
fk(t) = min{dk(ρk(t)),Fk,sk+1(ρk+1(t))}, 0≤ k < n, (2b)
fn(t) = min{dn(ρn(t)),Fn} (2c)

which corresponds to the so-called FD in Fig. 3. The demand
dk(ρk(t)) = β̄kvkρk(t) is the number of the vehicles that
want to move from cell k to k+1 at time t and the supply
sk(ρk(t)) = wk(ρ̄k−ρk(t)) is the remaining free space of cell
k at time t. The critical density is ρc

k =
wk

vk+wk
ρ̄k. The capacity

Fk of cell k satisfies Fk = min{dk(ρ
c
k ),sk+1(ρ

c
k+1)}. Cell k is

said to be free at time t if ρk(t)∈ [0,ρc
k ] and to be congested

if ρk(t) ∈ (ρc
k , ρ̄k].

cell 0 cell k cell k+1 cell n

Fig. 1. A freeway with n+1 cells

fk(t)fk−1(t)

rk(t)

βk
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cell k

Fig. 2. Model of cell k

Remark 2.1: In this paper, the initial cell is equipped with
one on-ramp, whose dynamics is the evolution of the queue
length. Thus, the flow of the initial cell is constrained by
FD. This is different from [11].

fk

ρk

Fk

0

β̄kvkρk

ρc
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wk+1(ρ̄k+1−ρk+1)

Fig. 3. Fundamental diagram

Assumption 2.1: The sampling period δ is a constant
satisfying 0 < δ < lk

vk
for ∀k ∈ C .

Typically, we have vk > wk and thus δ < lk
wk

. Given the
initial flow ρk(0), the initial queue length qk(0), and the
external traffic demand rk(t) for k ∈ C and t ∈ N, the
dynamical update of the states of the CTM is described by
(1a)-(1b) and (2a)-(2c). The states and the control inputs for
∀t ∈ N are constrained as follows{

ρk(t) ∈ [0, ρ̄k], fk(t) ∈ [0,Fk],

qk(t) ∈ [0, q̄k], uk(t) ∈ [0, ūk].
(3)

B. Dynamically Feasible External Demand

The following definitions state the feasibility of the exter-
nal traffic demand and the controllability of the freeway.

Definition 2.1: The external traffic demand r(t) is feasible
at time t if there exists a control input uk(t) ∈ [0, ūk] such
that the constraints (3) are satisfied for ∀k ∈ C .

Definition 2.2: The freeway is controllable at time t if the
external traffic demand r(t) is feasible.

The next theorem establishes the conditions under which
the freeway is recursively controllable.

Theorem 2.1: Under Assumption 2.1, provided that the
freeway is controllable at time t, the sufficient condition to
ensure the controllability of the freeway at time t +1 is

rk(t)≤
1
δ
(q̄k−qk(t))+hk(t), ∀k ∈ C , (4)

where hk(t) = min{ūk,(
lk
δ
−wk)(ρ̄k−ρk(t))}.

Proof: If ρk(t) ≥ 0, it follows from fk(t) ≤ dk(ρk(t))
and Assumption 2.1 that

ρk(t +1)≥ ρk(t)−
δ

β̄klk
fk(t)≥ (1− δ

lk
vk)ρk(t)≥ 0. (5)

Also the fact fk−1(t) ≤ sk(ρk(t)) yields that ρk(t + 1) ≤
ρk(t) + δ

lk
( fk−1(t) + uk(t)) ≤ ρk(t) + δ

lk
(wk(ρ̄k − ρk(t)) +

uk(t)). Given that ρk(t) ≤ ρ̄k, the sufficient condition to
ensure that ρk(t + 1) ≤ ρ̄k is uk(t) ≤ ( lk

δ
−wk)(ρ̄k− ρk(t)).

Similarly, given 0 ≤ qk(t) ≤ q̄k, the equivalent condition to
ensure 0 ≤ qk(t + 1) ≤ q̄k is 1

δ
(qk(t)− q̄k) + rk(t) ≤ uk ≤

1
δ

qk(t)+ rk(t). Furthermore, considering uk(t)≤ ūk, the suf-
ficient condition to ensure the controllability of the freeway
at time t +1 is 1

δ
(qk(t)− q̄k)+ rk(t)≤ ( lk

δ
−wk)(ρ̄k−ρk(t))

and 1
δ
(qk(t)− q̄k)+ rk(t)≤ ūk, which is equivalent to (4).



Remark 2.2: The sufficient condition (4) implies that the
external demand of cell k cannot exceed the total remaining
free space of this cell, which includes the free space available
in the on-ramp and the minimum of the upper bound on
uk and the free space available in the mainline part. The
underlying understanding is that if too many vehicles want
to enter cell k, this cell will become uncontrollable. In this
situation, the queue length of on-ramp is q̄k and the density
of the cell is the jam density ρ̄k.

Remark 2.3: In [11], the external demand is assumed to
be bounded 0 ≤ rk(t) ≤ ūk for ∀k ∈ C and t ∈ N. This
assumption will simplify the sufficient condition (4) to be
rk(t)≤ 1

δ
(q̄k−qk(t))+( lk

δ
−wk)(ρ̄k−ρk(t)), ∀k ∈ C .

Now let us unify the constraints (3) in a compact form. If
the condition (4) is satisfied at time t, then the set containing
the constraints (3) at time t + 1 is nonempty. Given the
variables ρk(t), fk(t),qk(t), fk−1(t) and rk(t), the constraints
in (3) at time t +1 can be written as the following form by
using the dynamics (1a)-(1b):

uk(t)≤
lk
δ
(ρ̄k−ρk(t))+

1
β̄ k

fk(t)− fk−1(t),

1
δ
(qk(t)− q̄k)+ rk(t)≤ uk(t)≤

1
δ

qk(t)+ rk(t).

We rewrite them in a compact form

u1
k(t)≤ uk(t)≤ u2

k(t), (6)

where

u1
k(t) = max{0, 1

δ
(qk(t)− q̄k)+ rk(t)}, (7a)

u2
k(t) = min{ūk,

lk
δ
(ρ̄k−ρk(t))+

1
β̄ k

fk(t)− fk−1(t),

1
δ

qk(t)+ rk(t)}. (7b)

Observe that the constraints on the states (ρk, fk,qk) and
the control input (uk) are transformed into an equivalent
constraint only in terms of the control input uk.

Remark 2.4: The lower bound u1
k(t) is to guarantee that

uk(t) ≥ 0 and the queue length qk(t + 1) ≤ q̄k. The upper
bound u2

k(t) is to ensure that the input uk(t)≤ ūk, the density
ρk(t +1)≤ ρ̄k, and the queue length qk(t +1)≥ 0.

III. DISTRIBUTED OPTIMIZATION PROBLEM

A. Problem Formulation

In this section, we will formulate a distributed optimization
problem which aims to tradeoff the average flow speed and
the queue length qk(t) for each cell. As in [12], the average
flow speed ξk of the traffic flow of cell k at time t can be
derived by

ξk(t) =
fk(t)
ρk(t)

, for ρk(t)> 0. (8)

Remark 3.1: If the flow of cell k is fk(t) = dk(ρk(t)),
the average flow speed ξk(t) is β̄kvk. Otherwise, it is less
than β̄kvk. By incorporating the average flow speed into the

optimization objective, we aim at controlling the cell k to be
free as much as possible.

Without loss of generality, we assume that the traffic
density ρk(t)> 0 for ∀k ∈ C and for ∀t ∈N. Assuming that
the freeway is controllable at time t and the external demand
rk(t) satisfies the condition (4), the optimization problem
Pk(t) of cell k at time t is formulated by

max
uk(t)

Jk(t +1) = ξk(t +1)−λkqk(t +1) (9a)

s.t. ρk(t +1) = ρk(t)+
δ

lk
( fk−1(t)+uk(t)−

1
β̄ k

fk(t)), (9b)

qk(t +1) = qk(t)+δ (rk(t)−uk(t)), (9c)

fk(t) =

{
min{dk(ρk(t)),Fk,sk+1(ρk+1(t))},k 6= n,
min{dn(ρn(t)),Fn}, k = n,

(9d)

u1
k(t)≤ uk(t)≤ u2

k(t), (9e)
ρk(t),qk(t),rk(t) given, (9f)

where u1
k(t) and u2

k(t) are respectively defined in (7a)-(7b);
λk ≥ 0 is a given tuning scalar to balance the average flow
speed and the queue length for each cell.

Remark 3.2: In the optimization problem above, we as-
sume that each cell is equipped with one on- and one
off-ramp. Although the practical application is not always
this case, this formulation contains all the possibilities. In
practice, we can set βk = 0 for the cell k which has no off-
ramp. Similarly, we can select q̄k = ūk = rk(t) = 0, ∀t ∈ N,
for cell k which has no on-ramp. Notice that there is no
ramp metering for cell without on-ramp, resulting in no
optimization for this cell.

Remark 3.3: The typical optimization objective for the
freeway in the works [5], [11] is to minimize the total
travel time (TTT) and the total waiting time (TWT) over
a finite horizon T : T T T = δ ∑

T
t=0 ∑

n
k=0 lkρk(t) and TWT =

δ ∑
T
t=0 ∑

n
k=0 qk(t). Actually, the essence of our objective

function coincides with the above items. Particularly, the
average flow speed corresponds to the travel time.

B. Backward Algorithm

It is well-known that the cells of the CTM are dynamically
coupled in the cascaded way due to the constraint (9d). The
solution to Pk(t) depends on the ramp metering uk+1(t)
of the next cell k+ 1. Thus, all the cells cannot implement
the optimization at the same time or synchronously. Notice
that the flow of the last cell only relies on its own demand
and capacity. In order to solve the optimization problem
Pk(t) for ∀k ∈ C in the distributed fashion, we propose a
backward algorithm, as stated in Algorithm 1. The algorithm
is implemented in a backward sequence, i.e. from the last
cell to the first cell, within one sampling period δ . In the
next subsection, we will analyze the complexity of the local
optimization problem and argue that the backward algorithm
is applicable in some situations.

Notice that Algorithm 1 is not a traditional iterative
algorithm, which requires the multiple iterations among the
cells within δ . Comparatively, Algorithm 1 only requires one



communication for each cell within δ and the optimization
problem Pk(t) of cell k only involves the local information.

Algorithm 1 Backward Algorithm
1: Initialize k = n.
2: Solve the optimization problem Pk(t). And obtain the

the solution u∗k(t) and the corresponding ρ∗k (t + 1). If
k = 0, stop.

3: Transmit s(ρ∗k (t +1))to cell k−1.
4: Set k = k−1.
5: Go to step 2.

Now we will discuss the property of the solution by
the backward algorithm from the perspective of the game
theory. Let Uk(t) = [u1

k(t),u
2
k(t)]. For the fixed time t, each

cell is a player, Jk(t + 1) in (9a) is the utility function
and uk(t) is the action variable in the corresponding action
set Uk(t). Considering the dynamical couplings between the
adjacent cells, we denote by Bk(uk+1(t)) the best-response
correspondence of cell k at time t:

Bk(uk+1(t)) = {uk(t) | uk(t) = arg max
uk(t)∈Uk(t)

Jk(t +1)}.

Theorem 3.1: The solution by Algorithm 1 is a Nash
equilibrium for the freeway at time t.

Proof: The solution u∗n(t) is obviously optimal since it
is independent of the other cells. The solutions of other cells
by Algorithm 1 satisfy u∗k(t) ∈ Bk(u∗k+1(t)) for 0 ≤ k < n.
Thus, u∗(t) is a Nash equilibrium at time t (see Definition
1.10 in [13]).

C. Analysis of Pk(t) Given uk+1(t)

Given the ramp metering uk+1(t), the supply sk+1(ρk+1(t+
1)) can be determined. Then the optimization problem Pk(t)
only involves the decision variable uk(t). For the ease of the
notation, we define ρk(t + 1) = ρk(t)+ δ

lk
( fk−1(t)+ uk(t)−

1
β̄k

fk(t)) , Gk(uk(t)). Denote by u3
k(t) the solution of the

following equation

dk(Gk(u3
k(t))) = min{Fk,sk+1(ρk+1(t +1))}. (10)

Notice that when uk(t) = u3
k(t), the flow is fk(t) =

dk(Gk(u3
k(t))). The introduction of u3

k(t) aims to justify the
possible values of the flow under the control of uk(t)∈Uk(t).
Recall (6) and (7a)-(7b). Then, the optimization problem
Pk(t) of cell k can be discussed in the following cases.

• Case 1: If u2
k(t)≤ u3

k(t), the optimization problem Pk(t)
becomes

max
uk(t)

J1
k (t +1) = λkδuk(t)+H1

k (t)

s.t. u1
k(t)≤ uk(t)≤ u2

k(t),

where H1
k (t) = β̄kvk−λk(qk(t)+δ rk(t)) is independent

of the decision variable uk(t). Obviously, the optimal
solution is uk(t) = u2

k(t).

• Case 2: If u3
k(t)≤ u1

k(t), the optimization problem Pk(t)
becomes

max
uk(t)

J2
k (t +1) =

Ak(t)
Bk(t)+αkuk(t)

+λkδuk(t)+H2
k (t)

s.t. u1
k(t)≤ uk(t)≤ u2

k(t),

where Ak(t) = min{Fk,sk+1(ρk+1(t + 1))}, Bk(t) =
ρk(t) + δ

lk
( fk−1(t) − 1

β̄ k
fk(t)), αk = δ

lk
, and H2

k (t) =

−λk(qk(t)+δ rk(t)). All of these variables are indepen-
dent of the decision variable uk(t). This optimization
can be easily solved by checking the monotonicity of
the J2

k (t +1) with respect to uk(t).
• Case 3: If u1

k(t)≤ u3
k(t)≤ u2

k(t), the optimization prob-
lem Pk(t) is divided into two subproblems:max
uk(t)

J1
k (t +1)

s.t. u1
k(t)≤ uk(t)≤ u3

k(t),

max
uk(t)

J2
k (t +1)

s.t. u3
k(t)≤ uk(t)≤ u2

k(t).

Then compare the two solutions obtained and determine
the optimal solution.

Remark 3.4: The above analysis shows that given uk+1(t),
the optimization problem Pk(t) can be solved efficiently.
Thus, the backward algorithm is applicable for the case in
which the sample period satisfies the communication time
and the computational time.

IV. MAXIMIZING THE AVERAGE FLOW SPEED

If λk = 0, the objective of the optimization problem
Pk(t) is only to maximize the average flow speed ξk(t).
The simplified optimization problem, denoted by Ps

k(t), is
written as

max
uk(t)

Jk(t +1) = ξk(t +1)

s.t. (9b),(9d), and (9e).

As mentioned before, the optimization problem Pk(t) for
∀k ∈ C can not be solved synchronously. If we simplify it
to Ps

k(t), it is shown that an explicit optimal solution to
Ps

k(t) can be obtained synchronously for ∀k ∈ C . Further,
this solution is also globally optimal.

Before Theorem 4.1, we introduce some notations. Let

ρ
1
k (t +1) = Gk(u1

k(t)) and ρ
2
k (t +1) = Gk(u2

k(t)).

And denote by us
k(t) the solution of the following equation

dk(Gk(us
k(t))) = min{Fk,sk+1(ρ

1
k+1(t +1))}, (11)

which is similar to (10).
Theorem 4.1: The set of the optimal solution to the sim-

plified optimization problem Ps
k(t), denoted by U∗k (t), is

given
• Case 1: If u2

k(t)≤ us
k(t), then U∗k (t) = [u1

k(t),u
2
k(t)];

• Case 2: If u1
k(t) ≤ us

k(t) < u2
k(t), then U∗k (t) =

[u1(k),us(k)];
• Case 3: If us

k(t)< u1
k(t), then U∗k (t) = {u1

k(t)}.



Proof: It follows that

ξk(t +1) =
min{dk(ρk(t +1)),Fk,sk+1(ρk+1(t +1))}

ρk(t +1)

≤ min{dk(ρk(t +1)),Fk,max{sk+1(ρk+1(t +1))}}
ρk(t +1)

=
min{dk(ρk(t +1)),Fk,sk+1(ρ

1
k+1(t +1))}

ρk(t +1)
. (12)

Since the average flow speed ξk(t) for ∀k ∈ C is nonin-
creasing with respect to ρk(t), ρk+1(t), uk(t), and uk+1(t) at
each time t, the optimal solution to the optimization problem
Ps

k(t) can be analyzed:
• Case 1: If dk(Gk(uk(t))) ≤ min{Fk,sk+1(ρ

1
k+1(t + 1))}

for u1
k(t) ≤ uk(t) ≤ u2

k(t), i.e. u2
k(t) ≤ us

k(t), the opti-
mal solution set to the optimization problem Ps

k(t) is
U∗k (t) = [u1

k(t),u
2
k(t)].

• Case 2: If dk(Gk(uk(t))) ≤ min{Fk,sk+1(ρ
1
k+1(t +

1))} for u1
k(t) ≤ uk(t) ≤ us

k(t) and dk(Gk(uk(t))) >
min{Fk,sk+1(ρ

1
k+1(t+1))} for for us

k(t)< uk(t)≤ u2
k(t),

i.e. u1
k(t)≤ us

k(t)< u2
k(t), the optimal solution set to the

optimization problem Ps
k(t) is U∗k (t) = [u1

k(t),u
s
k(t)].

• Case 3: If dk(Gk(uk(t))) > min{Fk,sk+1(ρ
1
k+1(t + 1))}

for u1
k(t) ≤ uk(t) ≤ u2

k(t), i.e. us
k(t) < u1

k(t), the opti-
mal solution set to the optimization problem Ps

k(t) is
U∗k (t) = {u1

k(t)}.
The proof is completed.

For the ease of the notation, we introduce ρ̂k+1 such that
sk+1(ρ̂k+1) = Fk, i.e. ρ̂k+1 = ρ̄k+1− Fk

wk+1
. We can verify that

ρ̂k+1 ≥ ρc
k+1 by the monotonicity of sk+1 and the definition

of Fk. Hence, it follows that Fk+1 ≤ dk+1(ρ̂k+1).
Theorem 4.2: The solution set U∗(t) =U∗0 (t)× . . .×U∗n (t)

is globally optimal, i.e. any element in the solution set U∗(t)
is the optimal solution to the centralized problem:

max
uk(t),∀k∈C

J(t +1) =
n

∑
k=0

ξk(t +1)

s.t. (9b),(9d), and (9e), ∀k ∈ C .
Proof: To verify that the solution set U∗(t) =U∗0 (t)×

. . .×U∗n (t) is globally optimal, it is sufficient to show that
the upper bound (12) on the average flow speed of each cell
can be achieved. It is equivalent to verify that the solution
set to Ps

k+1(t) can achieve min{Fk,sk+1(Gk+1(uk+1(t)))}=
min{Fk,sk+1(ρ

1
k+1(t+1))} for uk+1(t)∈U∗k+1(t). In order to

show this, we need to discuss the following cases:
• Case 1: If u2

k+1(t) ≤ us
k+1(t), we have

ρ1
k+1(t) ≤ ρ2

k+1(t) ≤ ρc
k+1 ≤ ρ̂k+1. Thus, min{Fk,

sk+1(Gk+1(uk+1(t)))}= Fk for uk+1(t) ∈U∗k+1(t).
• Case 2: If u1

k+1(t) ≤ us
k+1(t) < u2

k+1(t), we
have that ρ1

k+1(t) ≤ ρc
k+1 ≤ ρ̂k+1. Thus, min{Fk,

sk+1(Gk+1(uk+1(t)))}= Fk for uk+1(t) ∈U∗k+1(t).
• Case 3: If us

k+1(t) < u1
k+1(t), the optimal solu-

tion set of U∗k+1(t) only has one element u1
k+1(t),

which implies that min{Fk,sk+1(Gk+1(uk+1(t)))} =
min{Fk,sk+1(ρ

1
k+1(t +1))} for uk+1(t) ∈U∗k+1(t).

The proof is completed.

TABLE II
PARAMETER VALUES

cell k ρ̄k βk vk wk lk Fk ūk q̄k
0 250 0.15 90 21 0.6 4119.2 2200 50
1 250 0.10 90 28 0.8 4682.8 1800 50
2 250 0.17 90 25 0.8 4256.8 1800 50
3 250 0 90 21 0.8 4100.0 1800 50

Remark 4.1: For the last cell, the definitions of u3
n and us

n
only depends on Fn. The corresponding proof in Theorem
4.1 for the last cell can be further simplified.

Remark 4.2: The distributed, non-predictive controller in
[11] belongs to the solution set U∗(t) of this paper. This can
be interpreted as below: the controller in [11] aims to move
the local density to the critical density as fast as possible
while the controller in our paper aims to move the state of
each cell to be free as far as possible (including the critical
density). Notice that the controller in [11] is the maximum
point of the solution set U∗k (t) for ∀k ∈ C .

V. NUMERICAL EXAMPLE

We consider a simple freeway with 4 cells. The parameter
values are listed in Table II. The sampling period δ is 15
seconds and the simulation time is 60 minutes. The external
demands are r0(t) = 1500+500× rand(0,1), r1(t) = 1000+
500× rand(0,1), r2(t) = 1000 + 500× rand(0,1), r3(t) =
800+ 800× rand(0,1), where rand(0,1) denotes a random
value in (0,1). The initial density and the queue length
of each cell are ρ0(0) = ρ2(0) = 100, ρ1(0) = ρ3(0) = 50,
q0(0) = q1(0) = q2(0) = q3(0) = 5, respectively. The tuning
parameter λk in (9a) is set to be λk = 0.48 for all k. We
compare the balanced controller which aims to balance the
average flow speed and the queue length proposed in Section
III and the maximum speed controller which only aims to
maximize the average flow speed in Section IV.

The evolutions of density, flow, queue length, and average
flow speed under two different controllers are respectively
shown in Fig. 4 - Fig. 7. The difference between the balanced
controller and the maximum speed controller is clearly seen.
The average flow speed is maximized by the maximum
speed controller in a greedy way, i.e. by sacrificing the
queue length, while the balanced controller can tradeoff
the average flow speed and the queue length. To quantify
the control performance, we use two evaluation indexes
TWT = δ ∑

T
t=0 ∑

n
k=0 qk(t) and DIS= δ ∑

T
t=0 ∑

n
k=0 ξk(t) where

TWT is the total waiting time and DIS is the total travelling
distance. The saving of the total waiting time by the balanced
controller is

TWTMaxspeed−TWTbalanced

TWTMaxspeed
=

106.40−37.92
106.40

= 64.36%,

while the reduction of the total travelling distance is

DISbalanced−DISMaxspeed

DISbalanced
=

229.93−183.19
229.93

= 20.33%.

Furthermore, if we increase the tuning parameter λk from
0.48 to 2.4, the saving of the total waiting time by the
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Fig. 4. Evolutions of density under the balanced controller (left) and the
maximum speed controller (right)
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Fig. 5. Evolutions of flow under the balanced controller (left) and the
maximum speed controller (right)
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Fig. 6. Evolutions of queue under the balanced controller (left) and the
maximum speed controller (right)
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Fig. 7. Evolutions of average flow speed under the balanced controller
(left) and the maximum speed controller (right)

balanced controller will be 85.64%, which implies almost no
waiting time by the balanced controller. The above numerical
results are consistent with the essences of the two controllers
and the control algorithms of this paper can achieve a
distributed ramp metering with guaranteed performance.

VI. CONCLUSION
The distributed ramp metering problem of the CTM has

been studied in this paper by optimizing the weighted av-
erage flow speed of each cell and the queue length of each
on-ramp. We have proposed the feasible external demand to
ensure the controllability of the freeway. Under the assump-
tion of controllability, we have formulated an optimization
problem which achieves a trade-off between the maximum
average flow speed and the minimum queue length. A
backward algorithm has been proposed for this problem and
the corresponding solution is a Nash equilibrium. We have
further simplified the optimization problem to only maximize
the average flow speed and shown that the resulting explicit
distributed controller is globally optimal.

On-going work is the distributed control of the CTM
subject to the uncertain FD. The challenge of this problem
lies in the synthesis of the dynamics of the traffic flow and
the uncertain model of the FD.
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