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Abstract— This article deals with the observation problem in
traffic flow theory. The model used is the quasiilinear viscous
Burgers equation. Instead of using the traditional fixed sensors
to estimate the state of the traffic at given points, the measure-
ments here are obtained from Probe Vehicles (PVs). We propose
then a moving dynamic boundary observer whose boundaries
are defined by the trajectories of the PVs. The main result of
this article is the exponential convergence of the observation
error, and, in some cases, its finite-time convergence. Finally,
numerical simulations show that it is possible to observe the
traffic in the congested, free-flow, and mixed regimes provided
that the number of PVs is large enough.

I. INTRODUCTION

Traffic congestion is the main source of air pollution
and time consumption. Various control schemes have been
proposed recently [1], [2] to deal with congestion. Most of
them rely on a full-state knowledge. Here, we design an
implementable observer that provides the state estimate.

The quality of the observation highly depends on the
model. Traffic flow can be seen as an aggregate finite-
dimensional system as in [3], [4]. Such models are useful
to describe urban areas but become too complex when large
scale traffic flows are studied. To resolve the scalability prob-
lem, one can use hyperbolic Partial Differential Equations
(PDEs) instead [5]. This gives rise to an infinite-dimensional
system [6].

For infinite-dimensional hyperbolic systems, boundary ob-
servers are usually designed using the backstepping [7]. But,
most of the time, it is only possible to observe a specific
regime [8]. For instance, this prevents the observation of
mixed free/congested data which is the most important phase
for traffic control. To overcome this issue, using dynamical
boundary observers for quasilinear hyperbolic systems as in
[9], [10] proposed a multi-mode observer with an estimation
of each linearized mode. The final estimate is a merger of
these two observations, leading to a poor state reconstruction.

The previous method deals with a linearized system. This
is because it is difficult to draw boundary observers with
fixed sensors. Indeed, the characteristic velocity can be
positive and negative and, for causal purposes, we need to
define which boundary of the road is the input [11]. That may
lead to a switch between the first and the second boundary
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condition depending on if the information goes forward or
backward to the traffic flow.

Another kind of boundary observers that corrects this
causal problem is with a moving domain. These observers
are then with a time-dependent domain delimited by the
trajectories of the PVs [11], [12]. This is possible thanks to
measurements obtained by mobile phones [13] for instance
or well-equipped vehicles. The state reconstruction in this
case has been the topic of the recent article [14]. There, the
authors provide an algorithm to reconstruct in finite-time the
density. This is not a dynamic observation since it uses the
characteristic methodology. It is therefore highly subject to
noise and disturbance.

The goal of this paper is to derive a dynamical boundary
observer using PVs in a multi-mode context, i. e. in con-
gested, free-flow, and mixed regimes. The contributions are:

1) the convergence of the observer is proved using Lya-
punov arguments, leading to algebraic conditions ex-
pressed with matrix inequalities;

2) a new time-dependent Lyapunov functional, inspired
from hyperbolic systems, is proposed for studying the
viscous Burgers equation;

3) the limit case of the inviscid Burgers equation is
discussed.

Thanks to these novelties, we aim at reducing the effect of
uncertainties in the model or noise in the measurements.

The organization of the paper is as follows. The second
section explains some fundamentals of traffic flow and state
the model used throughout the paper. Section III is devoted
to the problem statement. Section IV studies the observation
error and provides a numerically tractable test ensuring the
exponential or finite-time convergence. Then, some numeri-
cal simulations are proposed to show the efficiency of the
designed observer. The conclusion draws perspectives for
future work.

Notation: In this paper, we denote by ∂x the differentia-
tion along the x axis. A shorter notation is ∂xf = fx. The
functional spaces Hi(I,D) refer to Sobolev spaces from I
to D and Ci are the spaces of continuously differentiable
functions up to a degree i. Similarly, L∞(I,D) refers to
bounded functions. R stands for the real axis while R+ is
the set of positive real numbers. In the case of symmetric
matrices, ? represents the lower diagonal part of the matrix
and A ≺ (�)B means that A−B is negative (semi-)definite.
For I ⊂ R, 1I is the indicator function of I .



Fig. 1. Fundamental diagram. The slope of (a) is the instantaneous speed
of the car while the slope of (b) (tangent to the curve) is the characteristic
speed.

II. TRAFFIC FLOW MODEL

Consider the Lighthill–Whitham–Richards model of the
traffic flow [5], [15]: ∂tρ+ ∂xQ(ρ) = 0,

ρ(0, x) = ρ0(x),
(1)

where ρ : R+×R→ [0, 1] is the density of cars and Q = ρVa
is the flow with the average speed Va(ρ). A typical choice
is

Va(ρ) = vf (1− ρ), Q(ρ) = vfρ(1− ρ), (2)

where vf is the free flow speed. Then the maximum flow
corresponds to the critical density ρcr = 0.5. The case ρ <
ρcr corresponds to the free flow, while ρ > ρcr refers to the
congested regime. That leads to the fundamental diagram
depicted in Figure 1.

Plugging (2) into (1) yields

∂tρ(t, x) + vf (1− 2ρ(t, x)) ∂xρ(t, x) = 0. (3)

This is the so-called Burgers equation [16] which is a quasi-
linear hyperbolic equation and it can be solved explicitly
using the characteristic method [17]. This method is based
on the knowledge of iso-density curves (t, xc(t)) such that
ρ(t, xc(t)) = ρ0(xc(0)). In this case, the PDE transforms
into an ordinary differential equation of the form: ẋc(t) =
1−2ρ(t, xc(t)). ẋc is the analogous of the group velocity ∂q

∂ρ
(slope of (b) in Figure 1) when it comes to study waves. As
long as characteristic curves do not intersect, there exists
a unique solution to the system with a relatively regular
solution [18], depending on the regularity of ρ0. After an
intersection, one needs to use the Rankine-Hugoniot equation
and Lax entropy condition [17] to ensure the uniqueness of
a solution. This solution may then be discontinuous with a
shock wave. This shock models the fact that the congestion
is moving in time and space. If the shock appears when
ρ ≤ ρcr, then ẋc ≥ 0 and the perturbation is propagating
forward in space. Otherwise, ẋc ≤ 0 and that means the
perturbation goes upstream the traffic flow and backward in
space.

The previous paragraph explains that this macroscopic
model of traffic flow shows two very different regimes

depending on the density on the road. Moreover, it also
shows that there might be discontinuities in the solution even
if the initial condition is as regular as desired [17]. One way
to get around this problem is to add a diffusion term γ > 0
[19], [20], [21] as follows: ∂tργ + vf (1− 2ργ) ∂xργ = γ∂xxργ ,

ργ(0, ·) = ρ0.
(4)

This new equation is usually referred to as the viscid Burgers
equation [16]. Using the Cole-Hopf transformation [22],
[23], it is also possible to explicitly solve this equation
leading to the following proposition:

Proposition 1: There exists a unique classical solution to
(4) for ρ0 ∈ L∞(R,R) and ργ ∈ C∞((0,∞) × R,R) ∩
C([0,∞), L∞(R,R)).

Besides the regularization property, it has been proved in
[17], [22] that ργ converges weakly to ρ when γ → 0. We
will then use the viscid burger equation as a model and see
if the conclusions extend to the case when γ goes to 0.

III. OBSERVER DESIGN AND PRELIMINARIES

For clarity, this section is divided in two. First, the
observer is designed and the problem is stated. Then, some
properties of the solution, useful in the sequel, are intro-
duced.

A. Observer design

We assume that N PVs are located on the road at xi ∈ R
for i ∈ {1, . . . , N}. These PVs are moving as particles in
the traffic flow, i.e., ẋi(t) = Va(ργ(t, xi(t))) = vf (1− ργ(t, xi(t))) ,

xi(0) = x0i ,

where x01 < x02 < · · · < x0N . We assume that PVs
can measure the local densities ργ(·, xi(·)). For each i ∈
{1, 2, . . . , N − 1}, we introduce an observer

∂tρ̂i + vf (1− 2ρ̂i) ∂xρ̂i = γ∂xxρ̂i,

t > 0, x ∈ (xi(t), xi+1(t)),

ρ̂i(t, xi(t)) = ργ(t, xi(t)),

ρ̂i(t, xi+1(t)) = ργ(t, xi+1(t)),

ρ̂i(0, ·) = ρ0(x0i ).

(5)

The state estimation is given by ρ̂(t, x) = ρ̂i(t, x) for x ∈
[xi(t), xi+1(t)]. The existence of a solution is dealt by using
the Faedo-Galerkin method [17]. It consists in introducing a
finite-dimensional approximation of ρ̂. In a manner similar
to the proof of Theorem 2 from [24], one can show that
the approximated solution is bounded by its initial condition
and consequently converges in a weak-sense. That results
in the existence of a unique solution to (5) denoted ρ̂i ∈
H1([0,∞), H2(xi, xi+1)).



Subtracting (5) from (4), we find that the estimation error
ε = ργ − ρ̂ satisfies

∂tε = −vf (1− 2ργ) ∂xε+ 2vfε∂xρ̂+ γ∂xxε,

t > 0, x ∈ (xi(t), xi+1(t)),

ε(t, xi+1(t)) = 0 = ε(t, xi(t)),

ε(0, x) = ρ0(x)− ρ0(x0i ), x ∈ (x0i , x
0
i+1).

(6)

We aim to derive the exponential stability conditions for (6)
guaranteeing the existence of α > 0 and K ≥ 1 such that

‖ε(t, ·)‖i ≤ K‖ε(0, ·)‖ie−αt ∀t ≥ 0, (7)

where

‖ε(t, ·)‖2i =

∫ xi+1(t)

xi(t)

ε2(t, x)dx.

B. Preliminaries

This subsection establishes some properties of ρ̂i that are
used in the sequel.

Lemma 1 (Maximum principle): The solutions of (4) and
(5) satisfy

ργ(t, x) ∈ [inf ρ0, sup ρ0], ∀t ≥ 0, x ∈ R,
ρ̂i(t, x) ∈ [inf ρ0, sup ρ0], ∀t ≥ 0, x ∈ [xi(t), xi+1(t)].

(8)
The proof is a combination of the standard maximum prin-
ciple (see, e.g., [25], [26]) and the change of variables
v(y, t) = ρ̂i(y(xi+1(t) − xi(t)) + xi(t), t) with y ∈ [0, 1]
as defined in [27].

Lemma 2: If inf(ρ0) > 0, there exists dM > 0 such that

0 ≤ di(t) = xi+1(t)− xi(t) ≤ dM , ∀t ≥ 0. (9)
The proof of this lemma is technical and therefore reported
in the appendix.

Lemma 3 (Wirtinger inequality, [28]): If f ∈ H1(a, b) is
such that f(a) = 0 = f(b), then

‖f‖L2 ≤ b− a
π
‖f ′‖L2 .

IV. CONVERGENCE CONDITIONS

In this section, we investigate the exponential stability of
the error between the real and observed states.

A. Stability analysis of (6)

Here is the main theorem of this article.
Theorem 1: Let

ρmin = inf ρ0(x) > 0, ρmax = sup ρ0(x), (10)

and dM be such that (9) holds. If there exist β, ξ, p0 ∈ R+

and p1 ∈ R such that

Ψξ(ρmax) � 0 and Ψξ(ρmin) � 0, (11)

where

Ψξ(ρ̄) =

Ψ11(ρ̄) + 2ξβ p1 − 2vf ρ̄

? −2 + p0
d2M
γπ2 e

ξγ−1dM

 ,
Ψ11(ρ̄) = vf

(
ρmax − 8

3 ρ̄− 4
3ρmin

)
ξ + p1ξ + ξ2 − γp0,

then (6) is exponentially stable.
Remark 1: The assumption that ρ0 is bounded is reason-

able since it holds for ρmax = 1 and we assume the road
is not empty. Nevertheless, in the case ρmax = 1, the study
presented in this article will be conservative. Since this is a
nonlinear equation, it is natural to work locally and therefore
consider only parts of the road where ρmax < 1. �

Proof: Due to the zero boundary conditions, the sta-
bility of (6) can be studied independently for each i ∈
{1, . . . , N − 1}. Consider the functional

V (t, ε(t, ·)) =

∫ xi+1(t)

xi(t)

ε2(t, x)χ(t, x)dx, (12)

where
χ(t, x) = e−λ(xi+1(t)−x). (13)

This functional is inspired by [9], [18], where hyperbolic
systems were considered. We however use it to study a
parabolic system. Since γ is small, the convection part of
(6) dominates the diffusion part and the ”characteristics”
propagate backward in space. Thus, the Lyapunov functional
has a higher weight towards the right boundary.

Clearly,

e−λdM ‖ε(t, ·)‖2i ≤ V (t, ε(t, ·)) ≤ ‖ε(t, ·)‖2i . (14)

Below we show that the conditions of the theorem guarantee
V̇ ≤ −2λβV . Indeed, we have

V̇ =− 2

∫ xi+1

xi

vf (1− 2ργ) εxεχ+ 4vf

∫ xi+1

xi

ε2ρ̂xχ

+ 2γ

∫ xi+1

xi

εxxεχ− λvf [1− ργ(t, xi+1(t))]V.

Since χx = λχ and ε(t, xi+1(t)) = ε(t, xi(t)) = 0,
integration by parts leads to

2

∫ xi+1

xi

εxεχ = −λV (15)

and ∫ xi+1

xi

ε2ρ̂xχ = −λ
∫ xi+1

xi

ε2ρ̂χ− 2

∫ xi+1

xi

εεxρ̂χ.

Therefore,

V̇ =λ

∫ xi+1

xi

[vf (ργ(t, xi+1(t))− 4ρ̂) + λγ]ε2χ

+ 4vf

∫ xi+1

xi

(ργ − 2ρ̂)εxεχ− 2γ

∫ xi+1

xi

ε2xχ.

Noting that (ργ − 2ρ̂) ε = ε2 − ρ̂ε, we get

V̇ =

∫ xi+1

xi

{
λ[vf (ργ(t, xi+1(t))− 4ρ̂) + λγ]ε2

+ 4vfεxε
2 − 4vf ρ̂εxε− 2γε2x

}
χ.

Since ∫ xi+1

xi

εxε
2χ =

λ

3

∫ xi+1

xi

(ργ − ρ̂)ε2χ,



the previous expression can be written as

V̇ =

∫ xi+1

xi

 ε
εx

>Φ

 ε
εx

χ,
where

Φ(t, x) =

φλ(t, x) −2vf ρ̂(t, x)

? −2γ

 ,
φλ(t, x) = λvf

(
ργ(t, xi+1(t))− 8

3
ρ̂− 4

3
ργ

)
+ λ2γ.

(16)
Lemma 3 and (15) imply

∫ xi+1

xi

 ε
εx

> (p0Φ0 + p1Φ1)

 ε
εx

χ ≥ 0

with p0 ≥ 0, p1 ∈ R,

Φ0 =

−1 0

0
d2M
π2 e

λdM

 and Φ1 =

λ 1

1 0

 .
Consequently,

V̇ ≤
∫ xi+1

xi

 ε
εx

> (Φ + p0Φ0 + p1Φ1)

 ε
εx

χ.
The negativity condition V̇ + 2λβV ≤ 0 is equivalent to

Φ(x) + p0Φ0 + p1Φ1 ≺

−2λβ 0

0 0

 ,
which is, by the Schur complement lemma, equivalent to

− 2γ + p0
d2M
π2

eλdM < 0,

φλ(t, x) + 2λβ + λp1 − p0 +
(p1 − 2vf ρ̂)

2

2γ − p0 d
2
M

π2 eλdM
< 0.

The last inequality holds if

θξ(ρ̂) = φ̄ξ(ρ̂) + 2ξβ − γp0 + ξp1 +
(p1 − 2vf ρ̂)

2

2− p0 d
2
M

γπ2 e
ξdM
γ

< 0

where ξ = γλ and φ̄ξ(ρ̂) = ξvf (ρmax − 8
3 ρ̂ − 4

3ρmin) +
ξ2. Since θξ is convex, θξ(ρ̂) ≤ 0 for ρ̂ ∈ [ρmin, ρmax] if
θξ(ρmin) ≤ 0 and θξ(ρmax) ≤ 0, which are equivalent to
Ψξ(ρmin) � 0 and Ψξ(ρmax) � 0 by the Schur complement
lemma. Hence, the conditions of the theorem guarantee V̇ +
2λβV ≤ 0. Using the comparison principle and (14), we
obtain (7) with K = eξdM/(2γ) and α = λβ.

For a fixed ξ, (11) are linear matrix inequalities (LMIs),
which can be efficiently solved numerically. The minimum
of φ̄ξ is obtained for

ξ∗(ρ̄) = −vf
(
ρmax − 8

3 ρ̄− 4
3ρmin

)
2

.

Since the minimum for θξ(ρ̄) is obtained for ξ ≤ ξ∗(ρ̄), we
perform a line-search for ξ ∈ [0,min(ξ∗(ρmin), ξ∗(ρmax)] to
verify the conditions of Theorem 1.

Remark 2: The previous stability analysis is conservative
since Φ(t, x) is bounded by a constant matrix. Φ0 and Φ1

are introduced to relax this bounding. �
Remark 3: Note that the more PVs there are, the larger β

can be (and consequently, the decay-rate is larger). Indeed,
in this case, dM decreases and p0 can be larger. �

B. Behavior in the inviscid case

It has been proved in [16], [22] that the solution of (4)
weakly convergence to the solution of (3) when γ → 0. For
γ = 0, the observer (5) becomes overdetermined and one
of the boundary conditions should be removed. Based on
the characteristic methodology, we should remove the left
boundary condition to keep the system causal{

∂tρ̂i(t, x) = −vf (1− 2ρ̂i(t, x)) ∂xρ̂i(t, x)

ρ̂i(t, xi+1(t)) = ργ(t, xi+1(t)).
(17)

If (11) stays feasible for a given ξ > 0 and p0 = 0, then,
by choosing λ = ξγ−1, we get V̇ + 2λβV < 0. The error is
then exponentially stable for any γ > 0 and we get

∀t ≥ 0, ‖ε(t)‖i ≤ eλ
dM
2 e−λβt‖ρ0 − ρ0(x0i )‖i

≤
(
e
dM
2 −βt

)λ
‖ρ0 − ρ0(x0i )‖i.

Note that γ → 0 implies λ→∞, leading to two cases:
1) t ≤ t∗ = dM

2β : ε stays bounded (cf. Lemma 1);

2) t > t∗: then
(
e
dM
2 −βt

)λ
−−−→
γ→0

0 and ‖ε(t)‖i = 0.

That means ρ̂ converges weakly and in finite time t∗ to ρ.
Remark 4: Note that the convergence time t∗ is decreas-

ing when there are more PVs (i.e. dM is decreasing). �

V. NUMERICAL SIMULATIONS AND DISCUSSION

This section is devoted to numerical simulations to con-
clude on the efficiency of the proposed method.

A. Solution of matrix inequalities (11)

Figure 2 represents the solution to the optimization prob-
lem on a grid of ρmin, ρmax using a line-search algorithm
with vf = 70 km.h−1, and γ = 3 km2.h−1. The colorbar
represents the distance between each PV.

If the maximal distance between two PVs is 0, then, of
course, the observation is possible no matter ρmin or ρmax.
If dM > 0, the quality of the observation decreases as ρmax

increases or ρmin decreases. That is, the less information
there are on the traffic state, the more PVs are needed.

We can easily see on this plot that the congested regime
(ρmin ≥ 0.5) is almost everywhere well observed with very
few PVs. Since the road is fully congested, the vehicles
move at low speed making the observation easier. For the
free flow regime (ρmax ≤ 0.5), a similar conclusion can
be drawn. Indeed, few PVs are enough to observe the
road. The main problem in the free flow regime comes
from the lack of interaction between vehicles, making the
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Fig. 2. Maximum dM for which (11) are feasible.

observation sometimes difficult. The mixed regime is the
most challenging one and requires to use many PVs.

B. A numerical example

To show the effectiveness of the main theorem, a nu-
merical simulation is proposed. This is a Godunov-based
numerical scheme with 300 discretization points in space.
The proposed example is with vf = 70 km.h−1, γ = 3
km2.h−1 and has the following initial condition:

ρ0(x) = (0.5 + 0.1 sin(5t)) 1(−∞,3) + 0.4 1[3,3.6)

+ 0.5 1[3.6,3.7) + 0.65 1[3.7,∞). (18)

The four PVs are located at x04 = 1.1, x03 = 0.8, x02 = 0.6 and
x01 = 0.1. The simulation is in Figure 3 and the trajectories
of the PVs are plotted in red. One can see in Figure 3d
that the maximal distance between two PVs is 0.6km and
in Figure 3c that after 1.5min, the observer has converged.
However, the matrix inequalities (11) gives a maximal β of
0.859 so a convergence in finite time in less than 20min.
The obtained stability conditions are therefore conservative
and we can assess stability of the error only in the case of
small dM , even if it is still converging for higher values in
simulations.

VI. CONCLUSION

In this paper, we derived an observer for traffic flow
using probe vehicles. The observer can be seen as a moving
boundaries PDE system. Sufficient conditions expressed in
terms of linear matrix inequalities with a tuning parameter
are given to ensure the exponential or finite-time convergence
of the observation error. Numerical simulations show that
the convergence area is relatively large. Future work will be
devoted to extending this method to other traffic flow models
and designing a Luenberger-type observer to increase the
stability regions and improve the robustness.

APPENDIX I
PROOF OF LEMMA 2

• Note first that di(0) > 0. Assume that there exists t such
that di(t) < 0. Since di is differentiable, that means there
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Fig. 3. Numerical simulation of the original and observed systems.



exists t∗ ∈ [0, t] such that di(t∗) = 0 with

ḋi(t
∗) = vf

(
ργ(t∗, xi(t

∗)− ργ(t∗, xi(t
∗)+
)
< 0.

This is impossible since ργ is continuous. Consequently, we
get di ≥ 0.
• Denote by Ni the number of cars between the probe

vehicles i and i+ 1. We get the following:

Ni(t) =

∫ xi+1(t)

xi(t)

ργ(t, s)ds.

If inf(ρ0) > 0, then, according to Lemma 1, we get that:

inf(ρ0)di(t) ≤ Ni(t) ≤ sup(ρ0)di(t).

The existence of dM is then ensured if Ni is bounded.
Let us first differentiate Ni along time, that leads to:

Ṅ(t) = γ
{
∂xργ(xi+1(t))− ∂xργ(xi(t))

}
.

To derive an explicit expression of Ṅi, we can use the
Cole-Hopf transformation [22] together with the change of
variables defined in [29]. We then get a solution to (4):

ργ(t, x) =
γ

vf

wx(t, x)

w(t, x)
+
vf
2
,

where w is the solution of the heat equation with diffusion
coefficient γ, written as:

w(t, x) =
1√

2πγt

∫ ∞
−∞

φ(ξ) exp

(
− (x− ξ)2

γt

)
dξ

with φ chosen to satisfies the initial condition. Differentiating
ργ yields:

∂xργ(t, x) =
γ

vf

wxx(t, x)

w(t, x)
− γ

vf

wx(t, x)2

w(t, x)2
.

Since w is bounded (maximum principle) and that the
integrals exist, one can show that there exists K (which is
time-independent) such that

Ṅi(t) ≤ K
1

t2
.

Integrating the previous expression demonstrates that Ni is
bounded and that ends the proof.

Remark 5: Note that the condition inf ρ0 > 0 is not
necessary and can be replaced by the improper integral∫∞
−∞ ρ0 > 0. Indeed; as noted in [22], in this case, there

exists T ≥ 0 such that inf ργ(T, ·) > 0 and the same proof
applies straightforwardly. �
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