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ABSTRACT
Vehicle platooning is a promising technology that can lead
to significant fuel savings and emission reduction. However,
the macroscopic impact of vehicle platoons on highway traf-
fic is not yet well understood. In this article, we propose
a new fluid queuing model to study the macroscopic in-
teraction between randomly arriving vehicle platoons and
the background traffic at highway bottlenecks. This model,
viewed as a stochastic switched system, is analyzed for two
practically relevant priority rules: proportional (or mixed)
and segmented priority. We provide intuitive stability con-
ditions, and obtain bounds on the long-run average length
and variance of queues for both priority rules. We use these
results to study how platoon-induced congestion varies with
the fraction of platooned vehicles, and their characteristics
such as intra-platoon spacing and arrival rate. Our analysis
reveals a basic tradeoff between congestion induced by the
randomness of platoon arrivals, and efficiency gain due to a
tighter intra-platoon spacing. This naturally leads to condi-
tions under which the proportional priority is preferred over
segmented priority. Somewhat surprisingly, our analytical
results are in agreement with the simulation results based
on a more sophisticated two-class cell transmission model.

Keywords
Connected and autonomous vehicles, vehicle platooning, smart
highways, fluid queuing model, stochastic switched systems.

1. INTRODUCTION
Platooning of connected vehicles is considered as an ef-

fective way of improving traffic throughput [5, 19, 27] and
reducing environmental externalities [1,4,28]. Although the
idea of automatically regulating a string of vehicles is well-
known [6, 18], it is only over the last few years that ex-
tensive experimental studies in real-world traffic conditions
have been conducted [1, 21, 28]. With the rapid advance-
ments in vehicle platooning technology [24], it seems plau-
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sible that semi-automated highway systems will be practi-
cally viable soon [12]. However, we still lack a realistic and
tractable model that captures the macroscopic impact of pla-
tooning operations on highway congestion. We posit that a
major challenge in integration of vehicle platoons into ex-
isting highway systems is our limited understanding of how
vehicle platoons interact with (and impact) highway traffic.

In this article, we propose a new fluid queuing model
that captures the macroscopic impact of platooning oper-
ations on highway congestion. This model belongs to a
class of stochastic switched models or piecewise-determinstic
Markov processes (PDMP). Our work is complementary to
the two lines of existing literature: first, on modeling and
control of microscopic platoon behavior [1, 23, 26]; and sec-
ond, on partial differential equation models of interaction
between slowly moving (large) vehicles on background traf-
fic [10, 15]. While the previous work provides a good foun-
dation to study platooning in specific scenarios, it does not
naturally lead to a tractable way to design efficient network-
level operations. Our model captures the macroscopic inter-
action between platoons of connected vehicles and ordinary
vehicles, and permits a tractable analysis that can lead to
practical insights on the design of platoon operations. We
mainly focus on three questions:

1. How to model the sharing of highway capacity between
vehicle platoons and the background traffic?

2. How do the key parameters of vehicle platoons, in-
cluding penetration rate, platoon length, and vehicle
spacing within a platoon, affect highway performance?

3. How to evaluate the strategies for allocating road ca-
pacity between ordinary vehicles and platoons?

Our model (Section 2) captures the following important
features of vehicle platoons. First, vehicle platoons can act
as temporary bottlenecks for other vehicles. We use a two-
class fluid queuing model to capture the sharing of highway
capacity between vehicle platoons and the background traf-
fic. Second, the headways between platoons and the lengths
of platoons are subject to random variations. We use a
Markov process to capture such randomness. Third, vehicles
within a platoon have smaller spacing compared to ordinary
vehicles. We scale down the queuing effect due to vehicle
platoons according to a pre-defined inter-vehicle spacing ra-
tio for the two traffic classes. Note that our model does
not account for (i) the impact of speed difference between
platoons and background traffic, (ii) the formation/split of
platoons, (iii) the microscopic (vehicle-level) interaction be-
tween platoons and background traffic.



Importantly, we view the fluid queuing model as a reduced-
order model of the more sophisticated (and rather well-
studied) cell-transmission model (CTM, see Section 2.3).
Although our model does not capture the spatial propa-
gation of congestion (which CTM does), we find that the
estimates of traffic queues for a single highway bottleneck –
as obtained by our model – are in general agreement with
the simulation results obtained from the CTM (Section 4.1).
Thus, an important aspect of our work is the simplicity and
analytical tractability of the fluid queuing model for study
of platooning operations at individual highway bottlenecks.

Our stability analysis (Section 3) focuses on the queuing
resulting the interaction between two classes of traffic. We
first provide an intuitive stability result based on the theory
of convergence of stochastic fluid queuing systems [14, 20].
We consider the traffic queue to be stable if the time-average
of its moment generating function is bounded. Then, based
on known results regarding the steady-state distribution of
stochastic fluid queuing systems [16], we derive analytical
bounds for the average and variance of the queue lengths un-
der proportional priority, and the exact queue lengths under
segmented priority.

We also consider the impact of key parameters of vehicle
platoons on traffic queue (Section 4). Main insights include:
(i) increase of the fraction of connected vehicles typically
reduce congestion; however, if the highway is in free flow
without platooning, then introduction of platooning may in-
duce congestion due the randomness in platoon arrivals; (ii)
short platoons lead to less congestion than long platoons;
(iii) prioritizing platoons over background traffic does not
necessarily reduces congestion.

2. TRAFFIC MODELS WITH PLATOONS
In this section, we introduce two models for highway traffic

with vehicle platooning at highway bottlenecks. We first
introduce a stochastic two-class fluid queuing model (FQM),
and then an analogous stochastic two-class cell transmission
model (CTM).

Figure 1: A highway bottleneck.

We focus on the most basic setting of a highway bottleneck
with both vehicle platoons and ordinary vehicles (Figure 1).
When a platoon is passing through the bottleneck, for a
period of time, one lane is occupied by the platoon and not
available to the background traffic. Thus, queuing happens
upstream to the bottleneck.

2.1 Stochastic platoon arrival process
Let us model the randomness in the arrival process at the

highway bottleneck; as we show subsequently, this model is
simple enough to be integrated with the FQM and the CTM,
both of which account for the interaction between the two
traffic classes (although in different ways). The first class is
the background traffic, with a constant inflow rate a > 0.
The second class is the connected vehicles (platoons), with a
stochastic, time-varying inflow rate B(t). The unit of traffic
flows is vehicles per hour (veh/hr).

We assume that (i) the inter-platoon headways are i.i.d.
and exponentially distributed with the average 1/λ, and (ii)
the number of vehicles in platoons are also i.i.d. and expo-
nentially distributed with the average v/(µh), where v is the
free-flow speed and h is the intra-platoon spacing. These as-
sumptions are motivated by the inherent uncertainty in the
formation, split, and movement of platoons [17]. Specifically,
exponential distribution is commonly used model of random-
ness in vehicle headways [13]. In addition, for our purposes,
the random platoon lengths can be also modeled as expo-
nentially distributed random variables. With these assump-
tions, we use a two-state Markov process to model the arrival
of platoons. Thus, {B(t); t ≥ 0} is a continuous-time, two-
state Markov process with state space B := {0, v/h}; see
Figure 2 for an illustration.

Figure 2: Platoon headway Xk and length Yk are random
(left). The arrival process of connected vehicles B(t) is a

two-state Markov process (right).

By standard results in Markov process (see e.g. [11]), the
average inflow rate of connected vehicles is

B = lim
t→∞

1

t

∫ t

0

B(τ)dτ =
λ

λ+ µ

v

h
, a.s. (1)

where “a.s.” means almost surely.

2.2 Fluid queuing model
The fluid queuing model is a simple model that can be

used to study highway bottlenecks [22]. The essence of the
FQM is to consider the highway bottleneck as a server with
an infinite-sized buffer that stores the vehicles waiting for
discharge. If there are vehicles waiting in the buffer, then the
server discharges the vehicles at the saturation rate, denoted
by u. The unit of u is veh/hr. If no traffic is waiting in the
buffer, then the rate at which the server discharges traffic is
the minimum of the saturation rate and the inflow rate.

The evolution of the traffic queue depends on the pri-
ority rule, i.e. how the server’s saturation rate (i.e. the
bottleneck’s capacity) is allocated to the two traffic classes.
Thanks to the simplicity of the FQM, we can consider two
operational policies for capacity allocation. In the first pol-
icy, we model a highway bottleneck as a single server with
the proportional priority ; i.e., the road’s capacity is allo-
cated to a class of traffic is proportional to the fraction of
this class of traffic in the aggregate traffic queue. In the
second policy, we consider the case where vehicle platoons
are prioritized to get discharged; we name this policy as seg-
mented priority, which is motivated by the idea of dedicated
lanes for connected vehicles [3].

Queuing dynamics: proportional priority
This priority rule corresponds to a highway where connected
and ordinary vehicles share all lanes of the highway. This is
a typical capacity allocation model for a highway that allows
for mixing between connected and ordinary vehicles [29].

Figure 3 shows the two-class FQM. The (hybrid) state of
the fluid queuing system is (b, qa, qb), where b ∈ B is the in-
flow of connected vehicles, qa ∈ R≥0 is the queue of ordinary



Figure 3: FQM (left) and CTM (right) under the
proportional priority rule.

vehicles, and qb ∈ R≥0 is the queue of connected vehicles.
To capture the reduced intra-platoon vehicle spacing, we
scale down queues of connected vehicles according to the
spacing reduction enabled by platooning. More specifically,
currently available platooning technology is able to reduce
intra-platoon spacing to less than half of that between or-
dinary vehicles [1, 19]. We model this by scaling down the
traffic queue and flow of connected vehicles with a coefficient
(h/H). Thus, we define the effective queue length as

q = qa +
h

H
qb,

and the effective discharge rate as

f = fa +
h

H
fb.

Then, the effective discharge rate can be expressed as a func-
tion of b and q:

f(b, q) =

{
min{a+ (h/H)b, u}, q = 0,
u, q > 0.

Furthermore, the discharge rates of each class of traffic are
given by

fa(b, qa, qb) =


qa

qa+ h
H
qb
f(b, qa + h

H
qb), qa + qb > 0,

min
{
a, a

a+ h
H
b
u
}
, qa + qb = 0,

(2a)

h

H
fb(b, qa, qb) = f(b, qa +

h

H
qb)− fa(b, qa, qb). (2b)

The above formulae essentially mean that the server’s sat-
uration rate is allocated to a class of traffic is proportional
to this class’s fraction in the aggregate (effective) queue. If
qa + qb = 0, then the server’s saturation rate is allocated
according to a class’s fraction in the aggregate (effective)
inflow rate.

Throughout this article, we use lower-case letters (e.g.
b and q) to denote the state variable, and upper-case let-
ters (e.g. B(t) and Q(t)) to denote the stochastic processes.
Thus, the evolution of the queues Qa(t) and Qb(t) is gov-
erned by the following dynamics:

Qa(0) = qa,
d

dt
Qa(t) = a− fa(B(t), Qa(t), Qb(t)), (3a)

Qb(0) = qb,
d

dt
Qb(t) = B(t)− fb(B(t), Qa(t), Qb(t)). (3b)

One can check that, with the discharged rates defined in (2),
Qa(t) and Qb(t) are continuous in t; thus Q(t) = Qa(t) +
(h/H)Qb(t) is also continuous in t.

We can also use the infinitesimal generator to represent
the stochastic dynamics of the FQM. Since {B(t); t ≥ 0} is
a stationary two-state Markov process and since Q(t) is con-
tinuous in t, the FQM under proportional priority is right-
continuous with left limits (RCLL, see [2]). Hence, by [9],
the infinitesimal generator of the FQM under proportional

priority can be written in operator form as follows:

Lg(b, qa, qb)

=
(
a− fa(b, qa, qb)

) ∂g
∂qa

+
(
b− fb(b, qa, qb)

) ∂g
∂qb

+ 1{b=0}λ
(
g(v/h, qa, qb)− g(0, qa, qb)

)
+ 1{b=v/h}µ

(
g(0, qa, qb)− g(v/h, qa, qb)

)
, (4)

where g is any function smooth in the continuous arguments,
and 1 is the indicator function.

We say that the FQM under proportional priority is stable
if there exists a constant C > 0 such that, for any initial
condition (b, qa, qb) ∈ B × R2

≥0,

lim sup
t→∞

1

t

∫ t

0

E
[

exp
(
Qa(s) + (h/H)Qb(s)

)]
ds ≤ C. (5)

This notion of stability is in line with that considered by
Dai and Meyn for FQMs [8]. Essentially, it captures the
boundedness of moments of queue lengths.

We are also interested in the steady-state joint distribu-
tion of (B(t), Qa(t), Qb(t)), called the invariant probability
measure, denoted by πprop. This measure is defined on
the hybrid space B × R2

≥0. In general, boundedness of mo-
ments does not ensure convergence towards a unique invari-
ant probability measure [8]. However, we will show while
proving Theorem 1 that a stable FQM necessarily converges
to a unique invariant probability measure.

With πprop, the steady-state average qprop and variance

σ2
prop of the effective queue lengths can be obtained as fol-

lows:

qprop =

∫
B×R2

≥0

qdπprop,

σ2
prop =

∫
B×R2

≥0

(q − qprop)2dπprop.

We are able to derive qprop and σ2
prop in Section 3. Based on

properties of the effective queue length, we will also derive
bounds on the actual queue length Qa(t) +Qb(t).

Furthermore, we define the throughput under proportional
priority, denoted by Jprop, as follows:

Jprop = sup{a+B : (5) holds}. (6)

i.e. the supremum of the set of average aggregate arrival
rates a + B such that the effective queue is stable; see (1)
for the definition of B.

Queuing dynamics: segmented priority
This priority rule is motivated by the idea of segmenting
ordinary and connected vehicles and prioritizing connected
vehicles in certain lanes [3]. For ease of presentation, we
consider a highway bottleneck with two identical lanes; see
Figure 4(a). Since the total capacity of the bottleneck is
u, each lane has a capacity of u/2. The two traffic classes
travel through the bottleneck as follows. When no connected
vehicles are arriving, i.e. when B(t) = 0, ordinary vehicles
are evenly distributed over two lanes; that is, background
traffic enters each lane at rate a/2. When B(t) = v/h,
ordinary vehicles are restricted to one lane (server 2); the
other lane (server 1) is dedicated to platoons. Note that in
this setting lane changes are not allowed at the bottleneck.



(a) A bottleneck with segmented priority.

(b) FQM (left) and CTM (right) under the segmented pri-
ority rule.

Figure 4: Relation between queue length and fraction of
connected vehicles.

Under the above priority rule, we can model the bottle-
neck as two parallel servers as shown in Figure 4(b). Let
Ak(t) be the rate at which the background traffic enters the
k-th server. The segmented priority rule leads to the follow-
ing:

A1(t) =

{
0, B(t) > 0,
a/2, B(t) = 0,

A2(t) =

{
a, B(t) > 0,
a/2, B(t) = 0,

Let qak (resp. qbk) be the traffic queue of ordinary vehicles
(resp. connected vehicles) in the k-th server. The effective
queue lengths are

qk = qak + (h/H)qbk, k = 1, 2.

The discharge rates are given by

f1(b, q) =

 min{a/2, u/2}, q = 0, b = 0,
min{b, u/2}, q = 0, b > 0,
u/2, q > 0.

f2(b, q) =

 min{a/2, u/2}, q = 0, b = 0,
min{a, u/2}, q = 0, b > 0,
u/2, q > 0.

Then, the dynamics of the effective queues can be written
as follows:

Q1(0) = q1,
d

dt
Q1(t) = A1(t) +

h

H
B(t)− f1(B(t), Q(t)),

Q2(0) = q2,
d

dt
Q2(t) = A1(t)− f2(B(t), Q(t)).

For the above two-server system, we assume the following:

a < u, v/H ≤ u/2. (7)

The first assumption is a trivial necessary condition for sta-
bility. The second assumption essentially ensures that vehi-
cle platoons are always in free flow if not interacting with
the background traffic. This assumption is typically satis-
fied by highway traffic, since the capacity of a highway lane
(u/2 in this case) is equal to the quotient between free-flow
speed v and minimal free-flow spacing H [7].

Assuming that (7) holds implies that the inflow to server 1
is always less than the capacity of server 1; hence Q1(t) van-
ishes. Therefore, we only need to consider Q2(t) for steady-
state analysis. Note that server 2 is essentially a single-

class fluid queuing system, since no platoons enter server 2.
Hence, Q2(t) = Qa2(t).

We say that the FQM under segmented priority is stable
if there exists C > 0 such that, for any initial condition
(b, qa1 , q

b
1, q

a
2 , q

b
2) ∈ B × R4

≥0,

lim sup
t→∞

1

t

∫ t

0

E
[

exp
(
Q2(s)

)]
ds ≤ C.

If the system is stable, there exists an invariant probabil-
ity measure πseg on B × R4

≥0, and the steady-state average

qseg and variance σ2
seg of queue lengths can be obtained as

follows:

qseg =

∫
B×R4

≥0

q2dπseg,

σ2
seg =

∫
B×R4

≥0

(q2 − qseg)2dπseg.

We will compute qseg, σ2
seg, in Section 3.

Furthermore, we define the throughput under segmented
priority, denoted by Jseg, as the supremum of the set of

average aggregate demand ā = λ+µ/2
λ+µ

a such that the system
is stable.

2.3 Cell transmission model
We now integrate our model of stochastic arrival process of

vehicle platoons with the (classical) cell transmission model
(CTM), which enables us to capture the spatial distribution
of the two traffic classes within a highway bottleneck.

Before specifying the CTM, we briefly discuss on the re-
lation between the FQM and the CTM. The two models
are broadly consistent for the purpose of modeling aggregate
congestion effect resulting from mismatch between traffic de-
mand and available capacity. For example, Shen et al. [25]
showed that the optimal routing policy for certain CTM net-
works can also be obtained from their FQM counterparts.
In this article, we assume correspondence between the key
parameters of the two models, including free-flow speed and
bottleneck capacity; see Figures 3 and 4(b).

However, the two models also have important differences.
First, the FQM always discharges the stored queue at the
maximum saturation rate, while the discharged flow of the
CTM may be smaller than the capacity if the traffic density
at the bottleneck is less than the critical density. Therefore,
the FQM gives a smaller estimate of traffic congestion than
the CTM. Second, the CTM captures the spatial distribu-
tion of congestion and its propagation over various sections
of the highway, while the FQM only considers the aggregate
traffic queue.

In this article, we simulate the steady-state traffic volumes
upstream to the bottleneck for the two-class CTM and com-
pare their qualitative behavior with that of the analytical
estimates (or bounds) of queue lengths obtained from the
FQM (Section 4.1). This enables us to compare the aggre-
gate impact of stochastic platoon arrivals on the build-up
of traffic queues across the two models, without having to
handle the spatial propagation of congestion.

For presentation of two-class CTM, we view the highway
bottleneck introduced earlier as a segment consisting of K
cells, and for the sake of simplicity, we assume that the cells
are homogeneous and have unit lengths. We now present
the dynamics of the CTM.



Under the proportional priority, the state of the highway
is the vector of ordinary vehicles’ density na = [na1 , . . . n

a
K ]T

and the vector of connected vehicles’ density nb = [nb1, . . . n
b
K ]T ;

see Figure 3. Given density vectors na and nb, the aggregate
flow out of each cell is given by

fk(na, nb)

= min

{
v

(
nak +

h

H
nbk

)
, U, w

(
n̄−

(
nak+1 +

h

H
nbk+1

))}
,

k = 1, . . . ,K − 1,

fK(na, nb) = min

{
v

(
naK +

h

H
nbK

)
, u

}
,

where v, h,H are the same as defined for the FQM, U is
the capacity of Cells 1 through K − 1, u is the capacity of
Cell k, i.e. the bottleneck, w is the congestion wave speed,
and n̄ is the jam density. Here u is equal to the satura-
tion rate of the FQM, and is assumed to be less than U .
This flow-density relation follows from the classical triangu-
lar/trapezoidal fundamental diagram for highway traffic [7].

The aggregate flow is proportionally distributed to both
traffic classes as follows:

fak (na, nb) =

{
nak

na
k
+ h
H
nb
k

fk(na, nb), na + h
H
nb > 0,

0, o.w.,

fbk(na, nb) =

{
nbk

na
k
+ h
H
nb
k

fk(na, nb), na + h
H
nb > 0,

0, o.w.,

k = 1, . . . ,K.

Then, for any initial condition na, nb the dynamics of the
CTM is specified by

dNa
1 (t)

dt
= a− fa1 (Na(t), Nb(t)),

dNb
1 (t)

dt
= B(t)− fb1 (Na(t), Nb(t)),

dNa
k (t)

dt
= fak−1(Na(t), Nb(t))− fak (Na(t), Nb(t)),

dNb
k(t)

dt
= fbk−1(Na(t), Nb(t))− fbk(Na(t), Nb(t)),

k = 2, . . . ,K.

Note that the CTM under proportional priority is similar to
the model introduced by Wright et al. [29], except for the
stochastic arrival process B(t).

Analogous to the FQM under segmented priority, the CTM
for highway under segmented priority can be defined by con-
sidering independent, parallel CTMs; see Figure 4(b). That
is, the top lane can be viewed as a two-class CTM, and
the bottom lane can be viewed as a single-class CTM. The
presentation of this model is similar to the CTM under pro-
portional priority, and is omitted for the sake of brevity.

3. STABILITY ANALYSIS OF FLUID QUEU-
ING MODEL

In this section, we study the stability of the FQM under
two priority rules and characterize the effective and actual
queue lengths under the two priority rules.

Our first result states that the FQM is stable under pro-
portional priority if the average aggregate inflow rate is
strictly less than the server’s saturation rate:

Theorem 1 (Stability under proportional priority). The
two-class fluid queuing system is stable under proportional
priority if

a+
λ

λ+ µ

v

H
< u. (8)

Furthermore, if (8) holds, then, for any initial condition
(b, qa, qb) ∈ B × R2

≥0, the joint distribution of the hybrid
state (B(t), Qa(t), Qb(t)), denoted by Pt(b, qa, qb), converges
to a unique probability measure πprop, i.e.

lim
t→∞
‖Pt(b, qa, qb)− πprop‖TV= 0, (9)

where ‖·‖TV is the total variation distance.

Proof. The proof of the boundedness of moments (in the
sense of (5)) is based on a Foster-Lyapunov-type criterion
introduced by Meyn and Tweedie [20, Theorem 4.3], which
we recall in our setting as follows: if there exist constants
c > 0 and d <∞, and a norm-like function1 V : B ×R2

≥0 →
R, such that

LV (b, qa, qb) ≤ −cV (b, qa, qb) + d, ∀(b, qa, qb) ∈ B × R2
≥0,
(10)

then the FQM is stable in the sense of (5). Next, we pre-
scribe the function V and explicitly construct the constants
c and d.

Suppose that (8) holds. Let us consider the switched ex-
ponential Lyapunov function

V (b, qa, qb) =

{
k0e

γ(qa+(h/H)qb), b = 0,

k1e
γ(qa+(h/H)qb), b = v/h.

(11)

The parameters γ, k0, and k1 are constructed as follows. If
a+ v/H ≤ u, we let

k0 = 2 max{1/λ, 1/µ}, k1 = 2k0, γ =
λk0 + 1

(u− a)k0
,

which are positive under (8); otherwise, we let

γ =
(λ+ µ)(u− a− λ

λ+µ
v
H

)

2(u− a)(a+ v
H
− u)

, (12a)

k0 =
γ(a+ v

H
− u) + λ+ µ

γ((λ+ µ)(u− a− λ
λ+µ

v
H

)− γ(u− a)(a+ v
H
− u))

,

(12b)

k1 =
γ(a− u) + λ+ µ

γ((λ+ µ)(u− a− λ
λ+µ

v
H

)− γ(u− a)(a+ v
H
− u))

.

(12c)

which are also positive under (8) and a + v/H > u. In
addition, we construct the constants c and d as follows:

c =
1

2γk1
, d = max

b∈B
|LV (b, 0, 0) + cV (b, 0, 0)|.

Next, we verify (10) with V , c, and d as constructed above.
Note that, for b = 0, qa + qb = 0, we have

LV (0, 0, 0) ≤ |LV (0, 0, 0)|
≤ max

b∈B
|LV (b, 0, 0) + cV (b, 0, 0)|−cV (0, 0, 0)

= −cV (0, 0, 0) + d;

1That is, for each b ∈ B, V →∞ if qa →∞ or qb →∞.



for b = 0, qa + qb > 0, we have

LV = k0(a− u)γeγ(qa+(h/H)qb) + λ(k0 − k1)eγ(qa+(h/H)qb)

=
(
k0γ(a− u) + λ(k0 − k1)

)
eγ(qa+(h/H)qb)

≤ −eγ(qa+(h/H)qb) ≤ −cV ≤ −cV + d;

similarly, one can show that LV ≤ −cV + d for b = v/h and
(qa, qb) ∈ R2

≥0.
Finally, since we have verified (10), we can apply [20, The-

orem 4.3] and obtain (5).
To obtain (9), i.e. the convergence towards a unique

invariant probability measure πprop, note that, under (8),
we have a < u. Hence, the aggregate traffic queue nec-
essarily decreases when B(t) = 0. Therefore, for any ini-
tial condition, there is a strictly positive probability that
Qa(t) = Qb(t) = 0 for a sufficiently large t. That is, the
state (0, 0, 0) ∈ B×R2

≥0 can be attained with positive prob-
ability. Then, one can adapt the proof of [2, Theorem 4.6]
and obtain the convergence to a unique invariant probabil-
ity measure (in the sense of total variation distance). For
details of this argument, we refer the readers to [14,16].

In fact, for a stable FQM, we can also study the queue
length:

Proposition 1. For the FQM under proportional priority,
if (8) holds, the steady-state effective queue length qprop and

variance σ2
prop can be analytically expressed as follows:

qprop =

{
0, a+ v

H
< u,

λ
(λ+µ)2

a+ v
H
−u

u−a− λ
λ+µ

v
H

v
H
, o.w. (13a)

σ2
prop =

 0, a+ v
H
< u,

λ
(λ+µ)3

(a+ v
H
−u)(u−a)(

u−a− λ
λ+µ

v
H

)2
v
H
, o.w. (13b)

Furthermore, the steady-state actual queue length q̃ = qa,prop+

qb,prop and its variance σ̃2 satisfy

qprop ≤ q̃ ≤
(

1

1 + θ
+

θ

1 + θ

H

h

)
qprop,

σ2
prop ≤ σ̃2 ≤

(
1

1 + θ
+

θ

1 + θ

H

h

)2

σ2
prop,

where θ = v
Ha
.

The derivation of the above result is based on the following
lemma:

Lemma 1. Under proportional priority, the following set

Qinv :=

{
[qa, qb]

T ∈ R2
≥0 :

h

H
qb ≤ θqa

}
,

is globally attracting, i.e., for any initial condition (b, qa, qb) ∈
B × R2

≥0,

lim
t→∞

inf
[ξa,ξb]

T

∈Qinv

∥∥∥[Qa(t), Qb(t)]
T − [ξa, ξb]

T
∥∥∥
2

= 0,

and positively invariant2, i.e., for any initial condition (b, qa, qb) ∈
B ×Qinv,

[Qa(t), Qb(t)]
T ∈ Qinv, ∀t ≥ 0.

qa
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0

2

4

6

8

10

Invariant set

b = 0

b = v/h

Figure 5: Illustration of the queuing dynamics and the
invariant set Qinv under proportional priority. The arrows
represent the vectors of time-derivatives defined in (3) for

both b = 0 and for b = v/h.

This lemma can be proved by utilizing properties of the
queuing dynamics (3). We omit the proof here due to space
limitations. Figure 5 illustrates the basic intuition behind
this result. The proof entails that, for any b ∈ B and for
any [qa, qb]

T such that [qa, qb]
T /∈ Qinv, the vector of time-

derivatives of the queue lengths has a non-zero component
that points to the interior of the invariant set Qinv.

Proof of Proposition 1. Average effective queue lengths and
variance: Kulkarni gives an analytical expression for the
steady-state distribution of the queue length in a single-class
FQM that switches between a finite number of modes [16,
Theorem 11.6]. In the particular setting of this proposi-
tion, the steady-state joint distribution of (b, q) can be rep-
resented as a probability density function (pdf) as follows:

f(b, q) =

{
zδ0 + α1e

−q/β , b = 0,

α2e
−q/β , b = v/H,

(14)

where

z =
1

λ+ µ

(
µ− λa+ v/H − u

u− a

)
, α1 =

λz

u− a ,

α2 =
λz

a+ v/H − u , β =

(
µ

a+ v/H − u −
λ

u− a

)−1

,

and δ0 is the Dirac delta function centered at 0. Hence, we
can obtain the expected value qprop and variance σ2

prop of
the effective queue q, which are given by (13a) and (13b),
respectively.

Lower bounds for the actual queue length: Since the actual
queue length (qa + qb) is no less than the effective queue
length q, qprop and σ2

prop are straightforward lower bounds

for the expected value q̃ and variance σ̃2 of the actual queue.
Upper bounds for the actual queue length: Recall the in-

variant set Qinv from Lemma 1. For each (qa, qb) ∈ Qinv,
since (h/H)qb ≤ θqa, we have

1 + θ

θ

h

H
qb ≤ qa +

h

H
qb. (15)

Then,

qa + qb = qa + (H/h)
h

H
qb = qa +

h

H
qb + (H/h− 1)

h

H
qb

2See [2] for details regarding invariant sets for PDMPs.



(15)
≤ (qa +

h

H
qb) + (H/h− 1)

θ

1 + θ
(qa +

h

H
qb)

=

(
1

1 + θ
+

θ

1 + θ

H

h

)
(qa +

h

H
qb). (16)

Since the setQinv is globally attracting and positively invari-
ant, the invariant probability measure πprop vanishes outside
Qinv [2]. Therefore,

q̃ =

∫
B×R2

≥0

(qa + qb)dπprop =

∫
B×Qinv

(qa + qb)dπprop

(16)
≤
(

1

1 + θ
+

θ

1 + θ

H

h

)∫
{0,v/h}×R2

≥0

(qa +
h

H
qb)dπprop

=

(
1

1 + θ
+

θ

1 + θ

H

h

)
q;

the last equality results from the fact that πprop gives the
same average value of (qa+ h

H
qb) as the pdf in (14) does. The

upper bound for variance the variance σ2
prop of the actual

queue can be similarly obtained.

An analogous result regarding the stability and queue
length of the FQM under segmented priority can be derived:

Proposition 2 (Segmented priority). Consider the two-
class fluid queuing model and assume that (7) holds. Then
the model is stable if

λ+ µ/2

λ+ µ
a < u/2. (17)

Furthermore, under (17), the average and variance of queue
length are given by

qseg =

{
0, a < u/2,

λ
(λ+µ)2

(a−u/2)a/2
u/2−λ+µ/2

λ+µ
a
, o.w.

σ2
seg =

{
0, a < u/2,

λ
(λ+µ)2

(a−u/2)(u/2−a/2)a/2(
u/2−λ+µ/2

λ+µ
a
)2 , o.w.

Proof. Note that, under (7), the set {(qa1 , qb1, qa2 , qb2) ∈ R4
≥0 :

qa1 = qb1 = qb2 = 0} is globally attracting and positively
invariant under the segmented priority; i.e. Qa2(t) could be
arbitrarily large, but Qa1(t), Qb1(t), and Qb2(t) necessarily
vanish after sufficiently long time. Hence, we only need to
consider the queue Qa2(t). Note that the server 2 can be
viewed as a single-class FQM. Thus, the rest of the proof is
analogous to that of Theorem 1.

4. PLATOONING OPERATIONS
We are now ready to discuss how characteristics of pla-

toons (specifically, penetration rate of connected vehicles,
vehicle spacing within platoons, platoon length, and prior-
ity rule) affect traffic queue. Table 1 lists the nominal values
considered in this section.

Fraction of platooned vehicles
The fraction of platooned vehicles can be written as

η =
B

a+B
=

λ
λ+µ

v
h

a+ λ
λ+µ

v
h

,

Table 1: Nominal parameters of traffic flow and platoons.

Name Symbol Value unit
Cell length l 1 mi
Free-flow speed v 60 mi/hr
Congestion wave speed w 20 mi/hr
Jam density (per lane) ρ 100 veh/mi
Capacity (per lane) u 1500 veh/hr

Average aggregate demand a+ B 3600 veh/hr
Spacing ratio h/H 1/3 N/A
Penetration rate of platooned vehicles η 0.4375 N/A

Platoon arrival rate λ 30 hr−1

where B is the average inflow of connected vehicles given
by (1). Suppose that we fix the aggregate average demand
a+B, the platoon lengths µ, and the space h, and vary λ (or
equivalently η). Figure 6 shows how the (bounds of) queue
length vary with fraction of platooned vehicles. When the
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Figure 6: Impact of fraction of platooned vehicles on
(actual) queue length.

average aggregate demand a+B is smaller than the capac-
ity u, this relation is characterized by a cap-shaped curve
(Figure 6(a)). The points worth noting are: (i) at a low
fraction, platooning increases the randomness of the arrival
process, and thus increases the traffic queue, and (ii) as the
fraction increases further, the gain of the reduced within-
platoon spacing compensates for the increase in randomness
of the arrival process. From a practical perspective, the in-
efficient fraction of platooned vehicles (≈ 0.1 in this exam-
ple) should be avoided to limit the effect of random platoon
arrivals. Furthermore, there exists a threshold η0 beyond
which no queue exists:

η0 = 1− u− v/H
a+B

.



To see this, note that, for η > η0, we have

a+
h

H
B(t) ≤ a+

v

H
= (1− η)(a+B) +

v

H
< u,

and thus the queue never grows. Hence, if the fraction of
connected vehicles is greater than η0, then the traffic on the
highway can maintain free flow even with a high density,
thanks to the reduced spacing between platooned vehicles.

When the average aggregate demand is greater than the
capacity (Figure 6(b)), the q− η curve has an elbow-shaped
shape. In this case, note that, to ensure stability, at least a
certain fraction of the total demand should be connected ve-
hicles such that the excessive demand is compensated by the
reduced spacing between platooned vehicles. This threshold,
η1, can be obtained from Theorem 1:

η1 =
(a+B − u)+

(a+B)(1− h/H)
.

Beyond this threshold, the queue length decreases with the
fraction of platooned vehicles.

Intra-platoon spacing
Now we study the benefit of reducing the intra-platoon spac-
ing. Current technology enables reduction of inter-vehicle
spacing by 50% or more [1]. Suppose that we fix the ag-
gregate average demand a+B and vary h. For the queue
to be stable, the spacing should not exceed the following
threshold:

h1 <
u− η(a+B)

(1− η)(a+B)
H.

Figure 7 shows how the queue varies with the ratio H/h
when the average aggregate demand is greater than the ca-
pacity, i.e. a+B > u. As expected, queue length decreases
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Figure 7: Impact of intra-platoon spacing on queue length.

as H/h increases. In addition, the curve becomes shallow
as the ratio increases, implying that an excessively high ra-
tio (more than 3 in Figure 7) does not bring much benefit.
Note that high H/h ratios are not recommended for safety
consideration either [1].

Arrival frequency and lengths of platoons
Another question of practical interest is whether connected
vehicles should form a large number of short platoons or a
small number of long platoons. Platoon lengths affect fuel
consumption and the ease of implementation [1]. Here, we
focus on how average platoon length affect the traffic queue.
Suppose that we fix the ratio between λ and µ, and vary
λ. That is, we fix the fraction of platooned vehicles η, but
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Figure 8: Impact of platoon arrival frequency on queue
length.

vary the frequency and lengths of the platoons. Figure 8
shows that a high frequency leads to a smaller queue. The
reason is that, as the platoons become more frequent and
shorter, the probability of forming a long queue decreases. A
practical interpretation in the setting illustrated in Figure 1
is that it is more difficult for long platoons to go through
the bottleneck than short ones.

Priority rule
In Figures 6, 7, and 8, the queue lengths resulting from
segmented priority are also plotted. Figure 6(a) implies
that, with a low fraction of platooning, proportional pri-
ority leads to smaller traffic queues. This is intuitive in
that prioritization of platooned vehicles under-utilizes the
road’s capacity if the fraction η is low. However, as the frac-
tion increases (say greater than 0.4 in the figure), the queue
length associated with segmented priority approaches the
lower bound of that associated with proportional priority.
In addition, Figure 7 implies that the relative benefit of seg-
menting two classes of traffic increases as the intra-platoon
spacing decreases. Figure 8 implies that the relative benefit
of segmenting does not significantly vary with the transi-
tion rates. However, in all the above-mentioned figures, the
queue lengths associated with segmented priority are never
below the lower bounds associated with proportional pri-
ority. Therefore, segmented priority is not guaranteed to
outperform the proportional priority, at least in the setting
being considered here. In a broader range of settings, seg-
mented priority may outperform proportional priority when
the ratio H/h is very high, i.e. when the intra-platoon spac-
ing is very short.

Finally, we can obtain from Theorem 1 that the through-
put (as defined in (6)) under proportional priority is

Jprop =
u

1− η + (h/H)η
.

That is, throughput increases with the fraction of connected
vehicles. Similarly, we can obtain from Proposition 2 that
the throughput under segmented priority is

Jseg = min

{
u

1− η ,
2H

hη
u,

λ+ µ

(1− η)(2λ+ µ)
u

}
for 0 < η < 1. One can show that

Jprop > Jseg, if η >

λ
λ+µ

λ
λ+µ

+ h
H

;
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Figure 9: Relation between traffic queue in CTM and platooning characteristics (a+B > u).

Jprop < Jseg, if η <

λ
λ+µ

λ
λ+µ

+ h
H

.

That is if the fraction of connected vehicles is high, then
the segmented priority leads to a smaller throughput. The
intuition is that, in such a scenario, one lane (server 1 in
Figure 4(b)) is not sufficient to serve the platoons, while the
other lane (server 2) is under-utilized.

4.1 Comparison with cell transition model
In this subsection, we demonstrate via simulation that

the insights obtained using the FQM largely extend to more
detailed CTM as described in Section 2.3. The simulation
model consists of K = 10 two-lane cells, and its parameters
are given in Table 1.

In order to compare the behavior of the CTM and the
FQM, we need to define an analogue notion to queues based
on traffic flows or densities. One simple choice is to use the
total number of vehicles accumulated per cell N averaged
over a long time. This accumulation is due to congestion
induced by stochastic vehicle platoon arrival, and it can be
calculated by averaging the difference between the inflow
to the first cell and the outflow from the last cell. With
discretized simulation time steps, we have

N =
T∑
τ=1

a+B(τ∆t)− fK(τ∆t)

TK
, (18)

over the duration T∆t of the simulation.
Note that the quantity defined above does not immedi-

ately correspond to the traffic queue in FQM. The reason is
that, in the CTM, vehicles need a nonzero time to go through
the cells, and thus the traffic densities in the CTM are not
zero even when the entire highway is in free flow. However,
since the evolution of queue lengths (3) is also governed by
the difference between inflow and outflow, N is the natu-
ral choice for comparison against q̄, and we indeed see from
Figures 6 to 8 that there is a qualitative agreement.

The results of the simulations with different fractions of
connected vehicles η are shown on Figure 9(a). The simu-
lated average number of accumulated vehicles decrease with
η, similarly to the plot of analytical expression of average
queue lengths, as shown on Figure 6(b). In case of segmented
priority, the number of accumulated vehicles is larger due to
lower lane utilization. In this case, the congestion solely re-
sults from the accumulation of the ordinary vehicles, and

connected vehicles can pass through freely.
Varying spacing ratio gives similar results (Figure 9(b)) to

the ones shown in Figure 7. Note that since the road space
that a vehicle takes consists of the length of the vehicle and
the headway it keeps, and platooning can only reduce the
headway, the maximum realistic spacing ratio will be limited
by both physical and safety reasons.

The results of simulations with different transition rates λ
are shown on Figure 9(c). The transition rate effectively de-
termines the average platoon length, with low λ correspond-
ing to few very long platoons, and high λ with many short
platoons. The number of accumulated vehicles decreases
with increasing λ, since shorter queues are discharged faster;
this trend agrees with Figure 8.

Thus, our computational study shows that the FQM is
fairly consistent with the CTM in terms of estimating the
impact of platooned vehicles on traffic conditions.

5. CONCLUDING REMARKS
In this article, we propose a two-class fluid queuing model

to study the traffic congestion induced by vehicle platoon-
ing at highway bottlenecks. Using this model, we are able
to evaluate the impact of parameters of vehicle platoons and
the priority rule on traffic congestion and throughput. This
work can be extended in several directions. First, to con-
sider the impact of congestion downstream to a bottleneck,
tandem FQMs with finite buffers can be considered. Known
results [16] imply that, for FQMs with finite buffers, aver-
age platoon length affects not only queue length, but also
stability. Second, our approach can be used to study con-
trol of platoons in response to local traffic conditions, such
as time-varying demand of background traffic and road ca-
pacity perturbations. Of particular interest is the tradeoff
between throughput gain and fuel savings.
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