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Abstract: Cell-based approximations of PDE traffic models are widely used for traffic prediction
and control. However, in order to represent the traffic state with good resolution, cell-based
models often require a short cell length, which results in a very large number of states. We
propose a new transition system traffic model, based on the front tracking method for solving
the LWR PDE model. Assuming piecewise-linear flux function and piecewise-constant initial
conditions, this model gives an exact solution. Furthermore, it is easier to extend, has fewer
states and, although its dynamics are intrinsically hybrid, is faster to simulate than an equivalent
cell-based approximation. The model is extended to enable handling moving bottlenecks as well
as probabilistic traffic breakdowns and capacity drops at static bottlenecks. A control strategy
that utilizes controlled moving bottlenecks for bottleneck decongestion is described and tested in
simulation. It is shown that we are able to keep the static bottleneck in free flow by creating
controlled moving bottlenecks at specific instances along on the road, and using them to regulate
the incoming traffic flow.
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1. INTRODUCTION

Ever since the development of the Lighthill-Whitham-
Richards (LWR) traffic model, Lighthill and Whitham
(1955) and Richards (1956), predicting and tracking the
evolution of traffic shock waves has been an important
part of modelling traffic. This problem gave rise to a
multitude of PDE traffic models (with LWR being the
simplest of them), where the traffic flow is described using
hyperbolic conservation laws, see Lax (1973). Drawing
upon the substantial body of mathematical literature on
this class of PDEs, these models have been used to capture
a variety of complex phenomena that arise in traffic, such
as moving bottlenecks, as in Delle Monache and Goatin
(2014), phantom jams in Flynn et al. (2009), and traffic
phase transitions in Blandin et al. (2011).

Although these models can be very rich, their complexity
is not conducive to control design, leading to relatively few
works explicitly considering them for control, e.g., Yu and
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Krstic (2019). For practical implementation, where issues
like model calibration need to be resolved, most traffic
control systems are using cell-based discretized models
such as METANET, in Kotsialos et al. (2002), or the Cell
Transmission Model (CTM), Daganzo (1994), see Baskar
et al. (2011) for a survey. A notable exception are ad
hoc control algorithms, like those based directly on shock
wave theory in Hegyi et al. (2008), or controlled moving
bottlenecks in Čičić and Johansson (2018), where the
control actions are calculated by analysing and predicting
the evolution of traffic waves, and then applied on a cell-
based traffic model. In order to represent the traffic with
good resolution, these cell-based models often require a
short cell length, which results in a large number of states.
Additionally, these models require various extensions to
correctly model relevant traffic phenomena such as moving
bottlenecks and stop-and-go waves, since diffusion, which
is inherent in their formulation, destroys the representation
of crisp wavefronts.

The main focus of this paper is on developing a simple
traffic model that is not cell-based. Inspired by the fact
that the CTM is equivalent to discretizing the LWR model,
with appropriate flux function, using the Godunov scheme,
see Lebacque (1996), we use another method for solving
PDEs, known as front tracking, given in Glimm et al.
(1981), Holden and Risebro (2015). The main contribution
is in formulating a front tracking transition system traffic
model, where the traffic situation is described by the



positions of wavefronts and traffic densities between them,
and its evolution is governed by appropriately defined
transitions. This model eliminates diffusion, is easier to
extend, has fewer states and, although its dynamics are
intrinsically hybrid, is faster to simulate than an equivalent
CTM. Furthermore, since the model directly corresponds
to solving a composite Riemann problem, we are able to
include many results derived for the LWR model, like
handling moving bottlenecks.

To showcase the flexibility of this framework, we extend the
basic model to capture the stochastic capacity at stationary
bottlenecks and capacity drop. Traditionally, and in most
practical applications, capacity has been considered as
constant for given road geometry, but since in reality traffic
breakdowns can occur at various traffic demand levels,
capacity is often modelled as a probability distribution, as
in Brilon et al. (2005). Furthermore, this approach allows
us to model the reduction of capacity of the bottleneck
following the onset of congestion, like in Srivastava and
Geroliminis (2013).

The paper is structured as follows. First, in Section 2 we
describe the front tracking solution of the LWR model.
Next, using the said solution, in Section 3 we present the
proposed front tracking transition system traffic model,
and in Section 4 introduce moving and static bottlenecks
with probabilistic traffic breakdown into the model. Then,
in Section 5 we propose a control law for bottleneck
decongestion using controlled moving bottlenecks and in
Section 6 show its effectiveness in simulation. Finally, in
Section 7 we conclude the paper and present some directions
for future work.

2. SOLUTION OF THE LWR MODEL

The LWR model is a first-order scalar hyperbolic conserva-
tion law given by the partial differential equation

∂ρ(t, x)

∂t
+
∂Q(ρ(t, x))

∂x
= 0, (1)

where the conserved quantity ρ(t, x) is the traffic density,
and Q(ρ) is the flux function. The model assumes that
the speed of the vehicles can be directly expressed as a
function of traffic density as v(ρ), and that the traffic flow
is simply Q(ρ) = v(ρ)ρ. We are interested in finding the
weak solution to the general initial value problem that
satisfies the entropy conditions, i.e. the so called entropy
solution, see Holden and Risebro (2015).

2.1 Initial conditions and flux function

The initial condition ρ(0, x) is a function of position x, and
we assume that it can be approximated by a piecewise-
constant function

ρ(0, x) =


ρ1, x < X1...
ρi, Xi−1 < x < Xi...
ρN+1, x > XN

(2)

to an arbitrary degree of accuracy. Furthermore, ρ(0, x)
is non-negative and bounded by some value P , known
as jam density, 0 ≤ ρ(0, x) ≤ P . The flux function Q(ρ)
is Lipschitz continuous and has support [0, p], p ≤ P .

Traditionally, this function was taken to be strictly concave,
with the earliest choice being the Greenshields fundamental
diagram that assumes that speed decreases linearly with
traffic density, vG(ρ) = V

(
1− ρ

P

)
, ρ ∈ [0, P ], yielding a

quadratic flux function QG(ρ) = vG(ρ)ρ, ρ ∈ [0, P ]. We
may approximate any such function to arbitrary degree
of accuracy as a polygon, i.e., continuous piecewise-linear,
function Q,

Q(ρ) =



V0ρ, 0 ≤ ρ ≤ σ0,

Q(σ0) + V1(ρ− σ0), σ0 < ρ ≤ σ1,...
Q(σi−1) + Vi(ρ− σi−1), σi−1 < ρ ≤ σi,

...
Q(σm) + Vm(ρ− σm), σm < ρ ≤ P,

(3)

where Q(σm) + Vm(P − σm) = 0. We denote the set of
nodes in the definition of Q as

ΣQ = {σ0, . . . , σm} ,

and the set of slopes between nodes as

VQ = {V0, . . . , Vm} .

The set of all functions Q(ρ) that satisfy these requirements
will be denoted Q.
Greenshields fundamental diagram, and various modifica-
tions thereof, does not fit the actual traffic data particu-
larly well. Another simple choice is the triangular (Newel-
Daganzo) fundamental diagram,

Qσ∆(ρ) =

{
V ρ, 0 ≤ ρ ≤ σ,
W (P − ρ) , σ < ρ ≤ P, (4)

with W = V σ
P−σ , which distinguishes between two phases

of traffic: free flow where 0 ≤ ρ ≤ σ and v(ρ) = V ,
and congestion where σ < ρ ≤ P and v(ρ) decreases
as ρ increases. This flux function is piecewise-linear, and
described by (3) with node σ0 = σ (critical density) and
slopes V0 = V (free flow speed), V1 = −W (congestion wave
speed). In this work, we will use (4) to model the default
behaviour of the traffic.

The front tracking corresponds to solving a sequence of Rie-
mann problems, to find the entropy solution for a piecewise-
constant approximation of initial conditions ρ(0, x), assum-
ing a piecewise-linear flux function. Effectively, instead
of solving the exact PDE problem approximately, as is
done in cell-based discretization, this method solves the
approximate problem exactly. If we assume that the flux
function is continuous and piecewise-linear, the solution
obtained is of the form

ρ(t, x) =


ρ1, x < X1 + Λ1t,...
ρi, Xi−1 + Λi−1t < x < Xi + Λit,...
ρN ′+1, x > XN ′ + ΛN ′t,

with Λi−1 ≤ Λi wherever Xi−1 = Xi. We denote by Λi the
transition speeds, defined either by the Rankine-Hugoniot
condition

Λi =
Qi(ρi+1)−Qi(ρi)

ρi+1 − ρi
, (5)

if Qi = Qi+1, or externally if Qi 6= Qi+1.
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Fig. 1. The flux functions and its envelopes on [ρmin, ρmax].

The solution consists of zones of constant density separated
by fronts Xi + Λit where we have a discontinuity in density.
This solution holds for t ∈ [0, τ ], where τ is the minimum
time when two fronts collide, Xi−1 + Λi−1τ = Xi + Λiτ ,
with Λi−1 > Λi. To get the solution after that time, we solve
a new composite Riemann problem for initial conditions
ρ(τ, x), and by iterating this step, we can obtain exact
entropy solution to the initial value problem (1), (2), ρ(t, x)
for any t. Furthermore, the front tracking method yields
exact solutions in case when the flux function is piecewise
linear and initial conditions piecewise constant, which will
be the case we consider here.

2.2 Lower convex and upper concave envelopes

When solving Riemann problems for an arbitrary Q ∈ Q,
with initial datum

ρ(0, x) =

{
ρ−, x < 0,

ρ+, x > 0,

we need to calculate lower convex envelope or upper
concave envelope of the flux function if ρ− < ρ+ or ρ− > ρ+,
respectively. We define these envelopes

Q̃
ρ− ρ+

Q (ρ) =

{
Q̆

ρ− ρ+
Q (ρ), ρ− < ρ+

“Q
ρ− ρ+

Q (ρ), ρ− > ρ+

Q̆
ρ− ρ+

Q (ρ)=sup {q(ρ) :q(ρ)≤Q(ρ), q convex, ρ∈ [ρ−, ρ+]}

“Q
ρ− ρ+

Q (ρ)=inf {q(ρ) :q(ρ)≥Q(ρ), q concave, ρ∈ [ρ+, ρ−]}

on [ρmin, ρmax], ρmin = min(ρ−, ρ+), ρmax = max(ρ−, ρ+).
An illustration of upper concave and lower convex envelopes
of a piecewise-linear flux function is given in Figure 1.

Note that Q̃
ρ− ρ+

Q (ρ) also is a polygon on [ρmin, ρmax] and it
can be defined in the same way as (3),

Q̃(ρ) =


Q(ρ−) + Ṽ0(ρ− ρmin), ρmin ≤ ρ ≤ σ̃1,

Q(σ̃1) + Ṽ1(ρ− σ̃1), σ̃1 ≤ ρ ≤ σ̃2,...
Q(σ̃m̃) + Ṽm̃(ρ− σ̃m̃), σ̃m̃ ≤ ρ ≤ ρmax,

omitting superscript ρ− and ρ+ and subscript Q, and not
requiring that Q̃(ρmax) = 0. We write the vector of slopes
of such polygon Ṽ

ρ− ρ+
Q , ordered from Ṽ0 to Ṽm̃ for ρ− < ρ+

or from Ṽm̃ to Ṽ0 for ρ− > ρ+. All nodes of Q̃, σ̃i, are also

nodes of Q, σi, on [ρmin, ρmax], and they can be determined
by efficient convex hull algorithms.

Finally, we denote the sorted (ascending if ρ− < ρ+ and
descending if ρ− > ρ+) column vector of elements of Σ̃ as
Σ̃, and its length as m̃. Same as with envelopes Q̃

ρ− ρ+
Q (ρ),

Σ̃
ρ− ρ+

Q will consist of nodes of the lower convex or upper
concave envelope, depending on whether ρ− or ρ+ is larger,

Σ̃
ρ− ρ+

Q =

{
Σ̆

ρ− ρ+
Q , ρ− < ρ+,

“Σ
ρ− ρ+

Q , ρ− > ρ+,

The flux function for which Σ̃ and m̃ are calculated is
written in subscript.

3. FRONT TRACKING TRANSITION SYSTEM MODEL

The described procedure, with continuously changing
solution between two composite Riemann problem solving
instances and jumps resulting from them, lends itself to
a transition system formulation. We follow the transition
system formulation given in Tabuada (2009), and define
the evolution of the front tracking solution to the scalar
conservation as the execution of the transition system
given by the quadruple (X ,X0, U,→). We will describe
this formulation part by part in this section.

3.1 States and initial states

The set of states X = (n, t, Z,R,Q) is composed of:

• Number of active states: n ∈ N, n ≤ N
• Time: t ∈ R≥0

• Front positions: Z ∈ RN , zi ≤ zi+1 for i = 1, . . . , n

• Traffic densities: R ∈ [0, P ]
N+1

• Flux functions: Q ∈ QN+1, where Q is a set of
piecewise linear continuous functions with support
[0, p], p ≤ P

The maximum number of states N can be taken large
enough so that the number of states never exceeds it.
However, only the active states, which we will denote

z = [z1 . . . zn]
>

= [ In 0n×N−n ]Z

ρ = [ρ1 . . . ρn+1]
>

= [ In+1 0n+1×N−n ]R,

and flux functions Q1, . . . , Qn+1, influence the behaviour
of the system, so when describing the transitions, we only
define their updates, and the inactive states may take
arbitrary values. Effectively, the dimension of active states
will vary as a part of the model dynamics.

The set of initial states X0 can be the same as the set of
all states, but in that case, we may be forced to take some
number of Riemann transitions, described in the following
section, at t = 0. This can be counteracted by imposing
additional conditions on the set of initial states,

ρi 6= ρi+1, Σ̃
ρi ρi+1

Qi = ∅, if Qi = Qi+1, (6a)
ρi = r−, ρi+1 = r+, if Qi 6= Qi+1, (6b)

where r− and r+ are given as the optimizers of the
optimization problem



maximize
r−,r+

Qi(r−)− Λir−

s.t. Qi+1(r+)−Qi(r−) = Λi(r+ − r−),
Ṽ

ρi r−
Qi

< Λi,

Ṽ
r+ ρi+1

Qi+1
> Λi.

(7)

These conditions define the admissible set of states. Solving
the optimization problem (7) is equivalent to solving a
Riemann problem at the boundary between zones de-
scribed with flux functions Qi and Qi+1, assuming the
transition speed Λi is imposed as an external input. For
most simple flux functions used in practice, solving this
maximization problem can be done explicitly. Furthermore,
note that optimal r− and r+ will always be such that
either r− ∈ ΣQi ∪ {ρi} or r+ ∈ ΣQi+1

∪ {ρi+1}. Therefore,
the problem can be solved by forming a set of all possible
pairings of (r−, r+), and then checking the second and
third constraint for each of them, in order of descending
Qi(r−)− Λir−, so that the first pair to satisfy these con-
straints is the optimizer.

Given the current state X of the transition system, the
density function ρ(t, x) describing the current state of
the system can be reconstructed based on z1, . . . , zn and
ρ1, . . . , ρn+1,

ρ(t, x) =


ρ1, x < z1,...
ρi, zi−1 < x < zi,...
ρn+1, x > zn.

Note that we use notation ρ(t, x) for the reconstructed
function, and ρ=[ρ1 . . . ρn+1]

> for the vector of traffic
densities.

3.2 Inputs and transitions

In this subsection, we will describe the various transitions
that model the evolution of the transition system. For each
of the transitions, the states that do not change will be
omitted from the description.

Homogeneous Riemann transitions ∼i: The first
type of transitions results from solving a Riemann problem
at the position of a wavefront that is not an interface
between different flux functions. For this transition to
be possible at zi, we require that Qi = Qi+1 and that
the condition (6a) is not satisfied. The transition can be
described by

(n, z, ρ,Q)
∼i−−→ (n′, z′, ρ′, Q′)

n′ = n+ m̃
ρi ρi+1

Qi
− 2,

z′ =
[
z1 . . .zi−1 zi1>m̃ρi ρi+1

Qi
−1

zi+1 . . .zn
]>

,

ρ′ =
[
ρ1 . . .ρi−1 Σ̃ρi ρi+1

Qi

>
ρi+2 . . .ρn+1

]>
,

Q′ =
[
Q1 . . .Qi−1 Qi1>m̃ρi ρi+1

Qi
−1
Qi+2 . . .Qn+1

]>
.

Depending on ρi and ρi+1, the number of active states can
decrease (if ρi = ρi+1), increase (in case of rarefaction) or
stay the same.

Heterogenous Riemann transitions qi: These tran-
sitions can occur at interfaces between zones with different
flux functions. They ensure that the condition (6b) is satis-
fied at the interface between two flux functions, Qi 6=Qi+1.
The transition can be described by

(n, z, ρ,Q)
qi−→ (n′, z′, ρ′, Q′)

n′=n+ m̃
ρi r−

Qi
+ m̃
r+ ρi+1

Qi+1
− 2,

z′=
[
z1 . . . zi−1 zi1>

m̃
ρi r−

Qi
+ m̃
r+ ρi+1

Qi+1
−1

zi+1 . . .zn
]>
,

ρ′=
[
ρ1 . . . ρi−1 Σ̃

ρi r−
Qi

Σ̃
r+ ρi+1

Qi+1
ρi+2 . . .ρn+1

]>
,

Q′=
[
Q1 . . .Qi−1 Qi1>

m̃
ρi r−

Qi

Qi+11>
m̃

r+ ρi+1
Qi+1

Qi+1 . . .Qn+1

]>
,

where densities r− and r+ are again obtained by solving
the optimization problem (7).

Passage of time τ and front interactions −i:
Passage of time transition describes the propagation of
wave fronts between their interactions, and can only be
taken if the state is admissible (i.e. the condition (6)
holds), positions of active fronts z are monotonically non-
decreasing, and for every zi = zi+1 we also have Λi < Λi+1.
Traffic densities ρ, number of active states n and flux
functions Q do not change in these transitions, so those
will be omitted from the description. Only the wavefront
positions of active states (i = 1, . . . , n) are changed. We
define this transition by

(t, z)
τ−→ (t′, z′)

t′ = t+ τ, z′ = z + Λτ

where Λ = [Λ1 . . . Λn]
>, and the wave speeds Λi are given

as the transition speeds of the Rankine-Hugoniot condition
(5) if Qi+1 = Qi, or are an external input in case Qi+1 6= Qi.

This transition can be taken for τ ≤ τ∗, where τ∗ is the
minimum of the time to next front interaction

τ∗z = min

{
zi+1 − zi
Λi − Λi+1

∣∣∣∣ zi+1 ≥ zi,Λi > Λi+1

}
and the time to next externally generated event τ∗e ,
τ∗ = min {τ∗z , τ∗e }.
A front interaction transition is taken when two fronts
interact, or collide, i.e., their position becomes equal,
zi = zi+1 while their distance is decreasing, Λi > Λi+1. The
front interaction transition corresponds to deactivating one
state,

(n, z, ρ,Q)
−i−−→ (n′, z′, ρ′, Q′)

n′ = n− 1, z′ = An\i+1z,
ρ′ = An\i+1ρ, Q′ = An\i+1Q,

where An\i = [e1 . . . ei−1 ei+1 . . . en] and ei are the
standard basis vectors. If Qi 6= Qi+1, this transition is
likely to cause condition (6b) to be violated, thus it will be
followed by transition qi.

State insertion +(ρ+, x+)i and flux function transi-
tion Q(q, i, j,Λi,Λj): Here we describe two useful ex-
ogenous transitions. The state insertion transition consists
of adding two fronts at position x+ downstream of front i,
with zi ≤ x+ ≤ zi+1, with density ρ+,



(n, z, ρ,Q)
+(ρ+,x+)i−−−−−−−→ (n′, z′, ρ′, Q′)
n′ = n+ 2,

z′ = [ z1 . . . zi x+ x+ zi+1 . . .zn]
>
,

ρ′ = [ ρ1 . . . ρi ρi+1 ρ+ ρi+1 . . .ρn+1]
>
,

Q′ = [Q1 . . .Qi Qi+1 Qi+1 Qi+1 . . .Qn+1]
>
.

It is only necessary to specify i if zi = x+ or zi+1 = x+, in
order to disambiguate the ordering of wavefronts.

Finally, flux function transitions cover various changes done
to flux functions in specific areas. The transition is defined
as

(Q)
Q(q,i,j,Λi,Λj)−−−−−−−−−→ (Q′)

Q′ = [Q1 . . .Qi q. . .q Qj+1 . . .Qn]
>
,

with q ∈ Q and j > i. It is required that wave speeds Λi
and Λj are externally defined if q 6= Qi−1 and q 6= Qj+1,
respectively. Formally, this change has no immediate effect
on any of the other states, but it is likely to force a number
of transitions at the boundaries of changed flux functions.
Furthermore, since some wave speeds may be changed,
the passage of time transition will now change the front
positions in a different way.

4. MODELLING MOVING AND STATIC BOTTLENECKS

Using two exogenous transitions, it is easy to model the
creation and influence of controlled moving bottlenecks
through the new transition system traffic model. We denote
the scaled triangular flux function

Qσs∆ (ρ) =

{
V ρ, 0 ≤ ρ ≤ σs,
W
(
P σs

σ − ρ
)
, σs < ρ ≤ P σs

σ ,

where σs is the new critical density. We may model the
addition of a bottleneck at position xb, moving at speed
ub and reducing the capacity of the road at its position to
V σb by:

(1) Taking a transition +(σb, xb)i− . A zone of density σb
is added donwstream of front i−, zi− ≤ xb ≤ xi−+1.

(2) Taking a transition Q(Qσb∆ , i− + 1, i− + 2, ub, ub). The
flux function at the position of the bottleneck is
scaled down so that its capacity is V σb, and both
the upstream and downstream ends of the bottleneck
will move at speed ub.

A similar procedure can be applied to create a moving
bottleneck of nonzero length. Note that it is required to
ensure that ub is always taken such that

ub

(
ρ+ − P

σb
σ

)
≥ Q+(ρ+),

where ρ+ and Q+ are the traffic density and flux function
immediately downstream of the moving bottleneck. The
speed or capacity of the moving bottleneck can be changed
by taking a transition Q(Q

σ′b
∆ , ib, ib + 1, u′b, u

′
b), where σ

′
b

and u′b are the new critical density and moving bottleneck
speed, respectively.

Note that with ub = 0, this approach also allows us to model
stochastic traffic breakdown and capacity drop. A static
bottleneck will be in free flow for low levels of demand. As
the demand increases, the probability of traffic breakdown
will start increasing. The stochastic capacity of a bottleneck

is given by specifying the probability of traffic breakdown
within some time interval T , given the demand level q, as
in Brilon et al. (2005). The probability of traffic breakdown
is taken to be Weibull-distributed,

FB(T, q) = 1− e−
T
T0

( qβ )
−α

,

where parameters T0, α0 and β0 are positive design param-
eters obtained from estimating the stochastic capacity of
the bottleneck. Conversely, the time to breakdown is an
exponentially distributed random variable parametrised by
q, Θq ∼ exp(TB(q)−1). We denote by TB(q) the mean time
to breakdown, given as a function of the current traffic
demand at the bottleneck,

TB(q) = T0

(
q

β0

)−α0

.

If the bottleneck at position xb is in free flow, and demand
at its position stays q = V ρ(t, xb) longer than the time
to breakdown Θq, we say that there has been a traffic
breakdown at the bottleneck, and drop its capacity to V σd.
If the demand at the bottleneck changes to q′ before the
time to breakdown has elapsed, we generate a new time
to breakdown parametrised by the new demand Θq′ and
repeat the process. We implement the bottleneck activation
and capacity drop by simply adding a static bottleneck,
ub = 0, with critical density σd at the bottleneck position
xb. By choosing σd, we impose the discharge rate V σd of
the bottleneck with active capacity drop.

Once the bottleneck is active and congested, we consider
it to have been resolved once all the congestion has been
dissipated and the demand at its position drops below
q < V σd. We implement its return to free flow by taking a
transition Q(Qσ∆, ib, ib+1, 0, 0). This way, the flux function
in the zone of the bottleneck becomes equal to that of the
road. Note that while technically a breakdown can happen
for any q, it is only necessary to consider the case when
q > V σd, since otherwise the breakdown would immediately
be resolved.

5. BOTTLENECK DECONGESTION CONTROL

To showcase the use of the proposed transition system
traffic model, we design a simple control law for bottleneck
decongestion using controlled moving bottlenecks. We
assume that we are able to create controlled moving
bottlenecks at arbitrary positions on the road xbi , and
control how many lanes they take; in real application,
this will depend on availability of suitable infrastructure-
controllable vehicles. Assuming a three lane road, we say
that a moving bottleneck can either take two lanes, in
which case it is described by flux function Qσmin

∆ , or one
lane, corresponding to Qσmax

∆ , thus limiting the overtaking
flow at its position to V σmin and V σmax, respectively. This
way, we are able to regulate the traffic flow and restrict it
when and where it is required.

Once the flow at the bottleneck is high enough and a traffic
breakdown occurs at time t0, as described in Section 4, the
controller can react by activating some vehicles on the road
to act as controlled moving bottlenecks and help decongest
the stationary bottleneck. We assume that the discharge
rate of the static bottleneck V σd lies between these two



ub ρi zi ρi+1 ub zi+1 ρi+2 zi+2

Fig. 2. An illustration of how bottleneck decongestion control is
calculated. The trajectories of the bottlenecks are indicated by
dashed lines and the text above the arrows indicates the intensity
of traffic flow past moving and static bottleneck. Brighter colour
indicates higher traffic density. Once a traffic breakdown is
detected, controlled moving bottlenecks are created at desired
positions.

overtaking flows, V σmin < V σd < V σmax. To simplify the
calculation, we also assume that all moving bottlenecks
move at same speed ub.

Starting with t = t0, the controlled moving bottlenecks will
restrict the flow to the bottleneck by taking two lanes. Then,
once we predict that the overtaking flow from a moving
bottleneck will no longer feed into congestion, we change
the flux function at that moving bottleneck from Qσmin

∆
to Qσmax

∆ , allowing more vehicles to pass. As illustrated in
Figure 2, the first controlled moving bottleneck is created
at distance d1 ≥ D0 from the bottleneck, where D0 > 0 is
some minimum distance and

d1 ≥ τ1(t0)ub =
ub
V

∫XB
XB−d1 ρ(t0, x)dx

σd − σmin
,

and τ1(t0) is how long the moving bottleneck is restricting
the overtaking flow to V σmin. After t = t0 + τ1(t0), the
overtaking flow restriction is raised to V σmax, in order
to start dissipating the congestion that built up behind
the moving bottleneck. In order to handle the worst-case
scenario, we assume that there will be an immediate traffic
breakdown when this congestion reaches XB .

Each subsequent controlled moving bottleneck will dissipate
the congestion that remains after the previous moving
bottleneck reaches the XB and the congestion built up
behind it causes a new traffic breakdown. Subsequent
moving bottlenecks are created with distance of at least
Dmin to the previous one, di ≥ di−1 +Dmin, at minimum
distance such that

di ≥ τi(t0)ub =
ub
V

n0
i + k1V τi−1 + k2di−1 − σmindi

σd − σmax
,

n0
i (t0) =

∫ XB−di−1

XB−di
ρ(t0, x)dx,

k1 = σmax − σmin,

k2 = σmin +
V

ub
(σd − σmin) .

(a) No control.

(b) With control.
Fig. 3. A simulation example comparing the evolution of traffic

without and with control. Brighter colour indicates higher traffic
density.

The overtaking flow is limited to Vσmin for t∈ [t0,t0+τi(t0)],
and V σmax for t > t0 + τi(t0) until the moving bottleneck i
reaches XB . Once we detect that moving bottleneck i will
reach XB with no congestion left to dissipate, i.e., when
condition∫ XB−di

XB− Vub di
ρ(t0, x)dx > (V τi − di)σmin +

(
V

ub
di − V τi

)
σmax

is satisfied, no additional controlled moving bottlenecks
will be created. Once the controlled moving bottlenecks are
created, we update the timing of overtaking flow restriction
changes every time the situation at the static bottleneck
changes, e.g., if a new traffic breakdown is triggered, or if
a predicted traffic breakdown is delayed.

6. SIMULATION RESULTS

The simulation results of an example are shown in Figure 3,
comparing the case where we apply no control and let the
traffic evolve freely, and the case where we apply bottleneck
decongestion control. We consider a stretch of highway, with
no on- and off-ramps and a bottleneck at position XB . The
initial density ρ(0, x) is piecewise constant and randomly
generated, with average value ρ̄, resulting in a varying
traffic flow at the position of the bottleneck. The time the
first traffic breakdown happens (in this case at t0 ≈ 0.21)
is taken to be the same in both cases, and the simulations
run independently starting with that point.

As can be seen from Figure 3b, by delaying the arrival of a
part of the traffic, we are able to maintain free flow at the



Fig. 4. Traffic flow at XB with and without control, compared with
the demand.

bottleneck. Control action is recalculated in order to react
to changes at the bottleneck, and new controlled moving
bottlenecks are added when needed. Since in this case the
average initial traffic density is larger than the density
at which the traffic flows out of the congested bottleneck,
ρ̄ > σd, once a traffic breakdown happens, it is likely that
congestion will persist and grow, since the average inflow
to the queue will be larger than its outflow.

The flow at the position of the bottleneck is shown in
Figure 4. We can see that the traffic flow follows the
demand until t0, when a traffic breakdown happens. In the
controlled case, we manage to return to the unperturbed
state around t = 0.65, whereas in the uncontrolled case the
congestion at the bottleneck keeps accumulating. A total
of Nc = 2106 vehicles was served from t = 0.1 to t = 0.7 in
the controlled case, compared to Nn = 1990 vehicles in the
uncontrolled case, corresponding to a queue of Nq = 116
vehicles at t = 0.7.

7. CONCLUSION

In this work, we propose a new transition system traffic
model that is based on the front tracking solution of
the LWR model. In case a piecewise linear fundamental
diagram and piecewise constant initial conditions are used
the presented model captures exactly the evolution of
traffic, while also being computationally cheap to simulate.
Additionally, the model can easily be extended, by including
new types of transitions, which was demonstrated by
capturing the dynamics of moving and static bottlenecks. A
stochastic model of traffic breakdown at static bottlenecks
is given, and an example control law was designed for
bottleneck decongestion.

While effective, the described control law is derived for
worst case and does not consider the stochastic nature of
bottleneck dynamics. One direction for future work will be
leveraging additional information to increase efficiency, e.g.,
by considering more complex traffic breakdown dynamics
to avoid excessive traffic flow restriction after dissipating
the queue at the bottleneck. This will also allow designing
proactive control laws that act before the actual traffic
breakdown and try to preempt it by spreading the delay
more evenly even before the traffic breakdown, thus making
it more likely that the traffic will stay in free flow.
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