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Abstract—The advent of automated, infrastructure-controlled
vehicles offers new opportunities for traffic control. Even when
the number of controlled vehicles is small, they can significantly
affect the surrounding traffic. One way of regulating traffic is by
using the automated vehicles as controlled moving bottlenecks.
We present an extension of the cell transmission model that
includes the influence of moving bottlenecks, consistently with
the corresponding PDE traffic model. Based on this model,
a control strategy is derived for traffic jam resolution. The
strategy is tested in simulations, and shown to reduce the
average travel time of surrounding vehicles, while also helping
dissipate the traffic jam faster and ensuring the controlled
vehicle avoids it.

I. INTRODUCTION

Traffic congestion has been a problem for a long time,
and with increasing urbanization, its gravity can only be
expected to increase in the future. The two major causes
of traffic congestion are excess demand and poor traffic
management [1]. Mitigating excess demand typically requires
costly investment in transportation infrastructure, so it is
desirable to attempt to reduce congestions by employing
better traffic management.

The traditional methods of traffic control, such as variable
speed limits [2], [3], ramp metering [4], [1] and their combi-
nations [5], [6] have successfully been used to manage traffic
systems, improve their efficiency and reduce congestions.
While effective, these methods often require costly additional
equipment for communicating or enforcing the control ac-
tions. Furthermore, the fact that this equipment is fixed at
certain locations reduces the flexibility of these systems.

The increasing prevalence of intelligent vehicles and trans-
portation systems, as well as development of a digital infras-
tructure that supports them, offers us new means of traffic
management that have been underutilized so far. Even if the
portion of intelligent vehicles is small, we can influence the
surrounding traffic by using them as actuators, as was shown
on the example of stop-and-go wave dissipation [7].

One way we can model actuation by an automated vehicle
is by considering it a controlled moving bottleneck. If a
vehicle moves slower than the surrounding traffic, it affects
the traffic flow by limiting the number of vehicles that can
move past it, as shown on Figure 1. Moving bottlenecks have

mostly been considered in the literature in an experimental
and empirical way [8], or in the framework of kinematic
wave theory [9] and PDE traffic models [10], [11], [12].
While moving bottlenecks are usually seen as detrimental to
traffic efficiency, the prospect of controlling them for traffic
regulation has attracted some attention lately [13]. Heavy-
duty vehicles and vehicle platoons are typically slow-moving
and naturally act as moving bottlenecks. In the future, we can
expect fleet management systems to employ some centralized
remote control over vehicles, using V2I communication to
enable advanced route planning [14]. Since in addition, these
vehicles would send their status to the fleet management
system and receive reference speed profiles to follow, this
makes them an ideal candidate for this purpose.

The problem we are focusing on in this paper is stop-
and-go wave dissipation, here assumed to be caused by a
temporary reduction of road capacity. In contrast to some
previous solutions that used variable speed limits (notable
example being SPECIALIST [15]) or used autonomous ve-
hicles in ring road traffic [7], we propose using a controlled
automated vehicle acting as a moving bottleneck. In order to
do this, we first model the influence of moving bottlenecks
for the cell transmission model (CTM) in a way that is
consistent with the corresponding PDE traffic model. Note
that adopting a richer traffic model that captures the capacity
drop phenomenon could broaden the range of applications of
this method, but it would also prevent us from introducing
moving bottlenecks in a concise and consistent manner, due
to the lack of an equivalent first-order PDE model.

The main contribution of this paper is the introduction
of moving bottlenecks to CTM, derived from PDE moving

Fig. 1: Traffic separated into three zones caused by the moving bot-
tleneck (vehicle indicated "B"): (1) unaffected oncoming vehicles,
(2) congestion zone upstream, with increased traffic density and
reduced speed and (3) "starvation" zone downstream, with lower
traffic density and possibly higher speed.
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bottleneck models by solving a composite Riemann problem
for cells adjacent to it. From the composite Riemann problem
solution we obtain the traffic flow updates, as well as the
position update for the controlled automated vehicle. This
approach allows extensions to other PDE traffic models and
different traffic phenomena, such as police cars. The resulting
model enables control design using the speed of the moving
bottleneck as control variable and cell traffic densities as mea-
surements. In the simulation study, we present one control
law example, which was shown to improve the efficiency of
the traffic by faster dissipating the traffic jam and reducing
average travel time.

The paper is organized as follows. In Section II
we present the well-known CTM and Lighthill-Whitham-
Richards (LWR) PDE model. In Section III we introduce
the moving bottleneck model, and show how to include it
into the CTM. Next, in Section IV we give an example of
traffic control using a controlled moving bottleneck. Finally,
in Section V we demonstrate the use of the model through
simulations and then conclude in Section VI.

II. TRAFFIC MODEL

Consider a stretch of highway with no on- or off-ramps.
According to the standard CTM formulation [16], the evolu-
tion of traffic density 𝜌𝑖 in cell 𝑖 is given by

𝜌𝑖(𝑡+ 1) = 𝜌𝑡𝑖 +
𝑇

𝐿
(𝑞𝑖−1(𝑡)− 𝑞𝑖(𝑡)) , 𝑖 = 1, . . . 𝑁. (1)

Here we assume all cells are of same length 𝐿 and 𝑇 is the
time step. By 𝑞𝑖(𝑡) we denote the outflow from cell 𝑖,

𝑞𝑖(𝑡) = min (𝑉 𝜌𝑖(𝑡), 𝑉 𝜎,𝑊 (𝑃 − 𝜌𝑖+1(𝑡))) , (2)

where 𝑉 is the free flow speed, 𝑊 the congestion wave
speed, 𝜎 the critical density, at which we have maximum
flow and 𝑃 the jam density. In order to obtain a triangular
fundamental diagram, we set the congestion wave speed to
𝑊 = 𝑉 𝜎

𝑃−𝜎 , so that 𝑉 𝜎 = 𝑊 (𝑃 − 𝜎). We can handle
the boundaries of the model by separately defining either the
flow into the first cell 𝑞0(𝑡) and out of the last cell 𝑞𝑁 (𝑡), or
boundary traffic densities 𝜌0(𝑡) and 𝜌𝑁+1(𝑡).

This model was shown [17] to be equivalent to a discretiza-
tion of the LWR model using the Godunov scheme. The LWR
model is a non-linear first-order partial differential equation,

𝜕𝜏𝜌+ 𝜕𝑥 (𝜌 · 𝑣(𝜌)) = 0, (3)

where 𝑣(𝜌) is the traffic speed expressed as a function of
traffic density. To avoid confusion, we will use 𝜏 to denote the
(continuous) time in PDEs and 𝑡 to denote the (discrete) time
step in CTM. Using the piecewise-linear Newell-Daganzo
flux function [16], we have

𝑄(𝜌) =

{︃
𝑉 𝜌, 0 ≤ 𝜌 ≤ 𝜎,

𝑊 (𝑃 − 𝜌), 𝜎 < 𝜌 ≤ 𝑃,
(4)

and the traffic speed dependence on traffic density is

𝑣(𝜌) =

{︃
𝑉, 0 ≤ 𝜌 ≤ 𝜎,

𝑊
(︁

𝑃
𝜌 − 1

)︁
, 𝜎 < 𝜌 ≤ 𝑃.

Godunov discretization of (3) corresponds
to taking piecewise constant initial conditions,
𝜌(0, 𝑥)=𝜌𝑖(𝑡), 𝑥 ∈(𝑋𝑖,𝑋𝑖+1) and, with boundary conditions

𝜌(0, 𝑥)=𝜌0(𝑡), 𝑥<𝑋1, and 𝜌(0, 𝑥)=𝜌𝑁+1, 𝑥>𝑋𝑁 + 𝐿,
solving the composite Riemann problem for time up to
𝜏 = 𝑇 . We can then obtain the cell traffic density at the
next time step 𝜌(𝑡+1) by averaging the solution of the PDE
𝜌(𝑇, 𝑥) over the length of each individual cell.

Since the flux function is piecewise linear, the solution of
(3), 𝜌(𝜏, 𝑥), will be piecewise constant in 𝑥 for every 𝜏 , and
it can be calculated by solving Riemann problems for cell
interfaces. The solution will consist of one or two wavefronts,
depending on the density upstream of the cell interface, 𝜌-
and downstream, 𝜌+. In case we have a congestion upstream
𝜌- > 𝜎, and free flow downstream 𝜌+ ≤ 𝜎, the solution will
be a rarefraction fan, with two wavefronts,

𝜌(𝜏, 𝑥) =

⎧⎪⎨⎪⎩
𝜌-, 𝑥 < −𝑊𝜏

𝜎, −𝑊𝜏 < 𝑥 < 𝑉 𝜏,

𝜌+, 𝑥 > 𝑉 𝜏.

Otherwise, the solution will have one wavefront,

𝜌(𝜏, 𝑥) =

{︃
𝜌-, 𝑥 < Λ(𝜌-, 𝜌+)𝜏,

𝜌+, 𝑥 > Λ(𝜌-, 𝜌+)𝜏,

where Λ(𝜌-, 𝜌+) is the Rankine-Hugoniot transition speed,

Λ(𝜌-, 𝜌+) =
𝑄(𝜌+)−𝑄(𝜌-)

𝜌+ − 𝜌-
.

III. MOVING BOTTLENECK MODEL

In this section we introduce the moving bottleneck into the
traffic model. We first describe the Riemann problems that
arise from it and then apply a Godunov-like scheme to obtain
traffic flow updates.

Assume we have a vehicle in traffic, at position 𝜒𝑏(𝜏)
and moving at speed 𝑢𝑏 that is lower than the speed of the
surrounding traffic 𝑣(𝜌(𝜏, 𝜒𝑏(𝜏)+)). This vehicle acts as a
moving bottleneck, restricting the amount of traffic flow that
can pass by it, as shown in Figure 1. We model this effect by
using a different flow model at the position of the vehicle.

Let the flux function at the moving bottleneck position,
𝑄𝑏(𝜌), be of the same form as (4), with different parameters,

𝑄𝑏(𝜌) =

{︃
𝑉𝑏𝜌, 𝜌 ≤ 𝜎𝑏,

𝑊𝑏(𝑃𝑏 − 𝜌), 𝜌 > 𝜎𝑏,

where 𝑊𝑏 = 𝑊 𝑉𝑏

𝑉 .
In order to model the capacity reduction in presence of

a bottleneck, we introduce a new parameter 𝛽 ∈ [0, 1] that
describes the severity of the bottleneck. Density parameters
𝜎 and 𝑃 are reduced to

𝜎(𝑥𝑏) = 𝜎𝑏 = 𝜎(1− 𝛽),

𝑃 (𝑥𝑏) = 𝑃𝑏 = 𝑃 (1− 𝛽).

Since it depends on the behaviour of drivers, we would have
to experimentally determine 𝛽, but in general, it can be
taken to be close to the portion of the road that the moving
bottleneck takes. For example, if one of two lanes is blocked,
we can set 𝛽 = 0.5, or we might choose a somewhat higher
value to capture additional "friction" effects.

Furthermore, we allow the free flow speed at the position
of the bottleneck 𝑉𝑏 to differ from the free flow speed else-
where, possibly even as a function of 𝑢𝑏. This enables us to
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model the overtaking behaviour in more detail, with 𝑉𝑏 > 𝑉
indicating eagerness, and 𝑉𝑏 < 𝑉 indicating reluctance to
overtake. To ensure that the Rankine-Hugoniot condition can
be satisfied at moving bottleneck interfaces, we also need
𝑢𝑏 ≤ 𝑉𝑏 ≤ 𝑉−𝑢𝑏𝛽

1−𝛽 . As with 𝛽, 𝑉𝑏 depends on driver
behaviour, and would have to be experimentally determined.
We make the standing assumption that 𝑉𝑏 is constant, 𝑉𝑏 > 𝑉
and 𝑢𝑏 ≤ 𝑉

𝛽 − 𝑉𝑏(1−𝛽)
𝛽 .

To model the influence the moving bottleneck has on the
surrounding traffic, we solve two Riemann problems, one for
its head and one for its tail. We denote the traffic density
upstream of the bottleneck as 𝜌- and downstream 𝜌+, and the
traffic density in the bottleneck zone as 𝜌𝑏.

Consider first the head of the bottleneck. The Riemann
problem corresponding to it is

𝜕𝜏𝜌+ 𝜕𝑥 (𝑄+(𝜌, 𝑢𝑏, 𝑥, 𝜏)) = 0,

𝑄+(𝜌, 𝑢𝑏, 𝑥, 𝜏) =

{︃
𝑄𝑏(𝜌), 𝑥 < 𝑢𝑏𝜏,

𝑄(𝜌), 𝑥 > 𝑢𝑏𝜏,

𝜌(0, 𝑥) =

{︃
𝜌𝑏, 𝑥 < 0,

𝜌+, 𝑥 > 0.

We control the movement of the bottleneck, so the tran-
sition speed between the zones where different models are
valid has to be equal to its speed 𝑢𝑏. The Rankine-Hugoniot
condition for the discontinuity, 𝑢𝑏(𝜌+−𝜌𝑏)=𝑄(𝜌+)−𝑄𝑏(𝜌𝑏),
can only hold for 𝜌+ = 𝑟𝑓 (𝜌𝑏, 𝑢𝑏) or 𝜌+ = 𝑟𝑐(𝜌𝑏, 𝑢𝑏), where

𝑟𝑓 (𝜌𝑏, 𝑢𝑏) =
𝑄𝑏(𝜌𝑏)− 𝑢𝑏𝜌𝑏

𝑉 − 𝑢𝑏
,

𝑟𝑐(𝜌𝑏, 𝑢𝑏) =
𝑊𝑃 −𝑄𝑏(𝜌𝑏) + 𝑢𝑏𝜌𝑏

𝑊 + 𝑢𝑏
.

Note that for 𝑉𝑏 = 𝑉 , 𝑟𝑓 (𝜌𝑏, 𝑢𝑏) does not depend on 𝑢𝑏.
Otherwise, the solution to the Riemann problem will be

a rarefraction fan with an additional zone of traffic density
𝑟𝑓 (𝜌𝑏, 𝑢𝑏+), where 𝑢𝑏+ = min(𝑢𝑏, 𝑣(𝜌+)) (corresponding to
zone (3) in Figure 1),

𝜌(𝜏, 𝑥) =

⎧⎪⎨⎪⎩
𝜌𝑏, 𝑥 < 𝑢𝑏+𝜏,

𝑟𝑓 (𝜌𝑏, 𝑢𝑏+), 𝑢𝑏+𝜏 < 𝑥 < Λ(𝑟𝑓 (𝜌𝑏, 𝑢𝑏+), 𝜌+)𝜏,

𝜌+, 𝑥 > Λ(𝑟𝑓 (𝜌𝑏, 𝑢𝑏+), 𝜌+)𝜏.

Next, the Riemann problem corresponding to the tail of
the bottleneck is

𝜕𝜏𝜌+ 𝜕𝑥 (𝑄-(𝜌, 𝑥, 𝜏)) = 0,

𝑄-(𝜌, 𝑢𝑏, 𝑥, 𝜏) =

{︃
𝑄(𝜌), 𝑥 < 𝑢𝑏𝜏,

𝑄𝑏(𝜌), 𝑥 > 𝑢𝑏𝜏,

𝜌(0, 𝑥) =

{︃
𝜌-, 𝑥 < 0,

𝜌𝑏, 𝑥 > 0.

Rankine-Hugoniot condition, 𝑢(𝜌𝑏−𝜌-)=𝑄𝑏(𝜌𝑏)−𝑄(𝜌-),
can only hold for 𝜌- = 𝑟𝑓 (𝜌𝑏, 𝑢𝑏) or 𝜌- = 𝑟𝑐(𝜌𝑏, 𝑢𝑏). Oth-
erwise, the entropy solution is

𝜌(𝜏, 𝑥) =

⎧⎪⎨⎪⎩
𝜌-, 𝑥 < Λ(𝜌-, 𝑟𝑐(𝜌𝑏, 𝑢𝑏)),

𝑟𝑐(𝜌𝑏, 𝑢𝑏), Λ(𝜌-, 𝑟𝑐(𝜌𝑏, 𝑢𝑏)) < 𝑥 < 𝑢𝑏𝜏,

𝜌𝑏, 𝑥 > 𝑢𝑏𝜏,

and the zone of traffic density 𝑟𝑐(𝜌𝑏, 𝑢𝑏) corresponds to zone
(2) in Figure 1.

Finally, by assuming that the traffic moves past the bottle-
neck at maximum flow rate, we can calculate 𝜌𝑏 as

𝜌𝑏 =

⎧⎪⎨⎪⎩
𝑉−𝑢𝑏

𝑉𝑏−𝑢𝑏
𝜌±, 𝜌± < 𝑟𝑓 (𝜎𝑏, 𝑢𝑏),

𝜎𝑏, 𝜌± ∈ 𝐼𝑓𝑐(𝜌𝑏, 𝑢𝑏),
𝑊𝑏𝑃𝑏−𝑊𝑃+(𝑊+𝑢𝑏)𝜌±

𝑊𝑏+𝑢𝑏
, 𝜌± > 𝑟𝑐(𝜎𝑏, 𝑢𝑏),

where 𝐼𝑓𝑐(𝜌𝑏, 𝑢𝑏) = [𝑟𝑓 (𝜌𝑏, 𝑢𝑏), 𝑟𝑐(𝜌𝑏, 𝑢𝑏)], and

𝜌± =

{︃
𝜌+, Λ(𝜌+, 𝜌-) ≤ 𝑢𝑏,

𝜌-, Λ(𝜌+, 𝜌-) > 𝑢𝑏.

Whenever 𝑣(𝜌+) < 𝑢𝑏, we use 𝑢𝑏+ instead of 𝑢𝑏.
We can now apply a similar Godunov-like scheme to

calculate the effects of the moving bottleneck on traffic flows
of adjacent cells. If 𝑋𝑖 ≤ 𝑥𝑏(𝑡) < 𝑋𝑖 + 𝐿, where 𝑥𝑏(𝑡) is
the position of the moving bottleneck at time 𝑡, the moving
bottleneck is in cell 𝑖 and 𝑖𝑏(𝑡) = 𝑖. For compactness, we
will omit writing the time step for all CTM-related variables
wherever it is obvious. The resulting model will be the same
as the already described standard CTM (1)–(2) for 𝑖 ̸= 𝑖𝑏,
𝑖 ̸= 𝑖𝑏 − 1. For these two cells, we will have

𝑞𝑖𝑏 = min(𝑉 𝜌𝑖𝑏 , 𝑉 𝜎,𝑊 (𝑃 − 𝜌𝑖𝑏+1)) + Δ𝑞𝑏,

𝑞𝑖𝑏−1 = min(𝑉 𝜌𝑖𝑏−1, 𝑉 𝜎,𝑊 (𝑃 − 𝜌𝑖𝑏)) + Δ𝑞𝑏-.
(5)

The behaviour of the moving bottleneck is described by two
additional states, its position 𝑥𝑏(𝑡) and the traffic density
directly upstream of it 𝜌𝑏-(𝑡). The second additional state
is necessery in order to properly model the flow of traffic
past the bottleneck [12], effectively splitting the cell 𝑖 into
two parts. We will keep 𝜌𝑖(𝑡) as a state and instead, calculate
the traffic density downstream of the bottleneck as

𝜌𝑏+ =
𝐿𝜌𝑖𝑏 − (𝑥𝑏 −𝑋𝑖𝑏)𝜌𝑏-

𝐿− (𝑥𝑏 −𝑋𝑖𝑏)
.

We obtain Δ𝑞𝑏(𝑡) and Δ𝑞𝑏-(𝑡), as well as updates 𝑥𝑏(𝑡+1)
and 𝜌𝑏-(𝑡+ 1) by solving the composite Riemann problem

𝜕𝜏𝜌+ 𝜕𝑥 (𝑄(𝜌, 𝑢𝑏, 𝑥, 𝜏)) = 0,

𝑄(𝜌, 𝑢𝑏, 𝑥, 𝜏) =

{︃
𝑄(𝜌), 𝑥 ̸= 𝜒𝑏(𝜏),

𝑄𝑏(𝜌), 𝑥 = 𝜒𝑏(𝜏),

𝜒𝑏(𝜏) = min (𝑢𝑏, 𝑣(𝜌(𝜏, 𝜒𝑏(𝜏)+)) ,

𝜌(0, 𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑖𝑏−1, 𝑥 < 𝑋𝑖𝑏 ,

𝜌𝑏-, 𝑋𝑖𝑏 < 𝑥 < 𝑥𝑏,

𝜌𝑏+, 𝑥𝑏 < 𝑥 < 𝑋𝑖𝑏+1,

𝜌𝑖𝑏+1, 𝑥 > 𝑋𝑖𝑏+1,

𝜒𝑏(0) = 𝑥𝑏,

for 𝜏 up to 𝑇 . The solution is easily obtained through front
tracking, and an example is shown in Figure 2.

Formally, we may write the solution at 𝜏 = 𝑇 as[︂
𝜌(𝑇, 𝑥)
𝜒𝑏(𝑇 )

]︂
= 𝒫𝑇 (𝜌𝑖𝑏−1, 𝜌𝑖𝑏 , 𝜌𝑖𝑏+1;𝑥𝑏, 𝑢𝑏, 𝜌𝑏-), (6)

and obtain the changes in traffic flow as

Δ𝑞𝑏=
1

𝑇

∫︁ 𝑋𝑖𝑏+2

𝑋𝑖𝑏+1

𝜌(𝑇, 𝑥)𝑑𝑥−max
(︁
Λ(𝜌

𝑖𝑏
,𝜌𝑖𝑏+1),0

)︁(︁
𝜌𝑖𝑏+1−𝜌

𝑖𝑏

)︁
,

Δ𝑞𝑏-=
1

𝑇

∫︁ 𝑋𝑖𝑏

𝑋𝑖𝑏−1

𝜌(𝑇, 𝑥)𝑑𝑥−min
(︀
Λ(𝜌𝑖𝑏-1,𝜌𝑖𝑏),0

)︀(︀
𝜌𝑖𝑏-1−𝜌𝑖𝑏

)︀
,

(7)
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ρi−1 = 16 ρb− = 14, ρb+ = 13 ρi+1 = 25
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′
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ρ
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b+ = 25
ρ
′

i+1 = 24.8847

Fig. 2: Front tracking solution example for 𝜏 ∈ [0, 𝑇 ]. Note that
the moving bottleneck slows down when it enters the traffic from
cell 𝑖+ 1.
where 𝜌

𝑖𝑏
= min(𝜌𝑖𝑏 , 𝜎) and 𝜌𝑖𝑏 = max(𝜌𝑖𝑏 , 𝜎). We also

obtain the new position of the bottleneck,
𝑥𝑏(𝑡+ 1) = 𝜒𝑏(𝑇 ), (8)

and the new traffic density upstream of it,

𝜌𝑏-(𝑡+1)=

⎧⎨⎩
∫︀ 𝜒𝑏(𝑇 )

𝑋𝑖𝑏(𝑡+1)
𝜌(𝑇,𝑥)𝑑𝑥

𝜒𝑏(𝑇 )−𝑋𝑖𝑏(𝑡+1)
, 𝜌𝑖𝑏(𝑡+1)∈𝐼𝑓𝑐(𝜌𝑏, 𝑢𝑏),

𝜌𝑖(𝑡+1), 𝜌𝑖𝑏(𝑡+1) /∈𝐼𝑓𝑐(𝜌𝑏, 𝑢𝑏).
(9)

To summarize, the model we propose is CTM (1)–(2),
augmented by adding the effect of the moving bottleneck
(7) onto the traffic flows from cells 𝑖𝑏 and 𝑖𝑏− 1 (5). To
properly model the dynamics of the moving bottleneck, we
require adding two additional states (8) and (9) obtained from
the solution (6) of the composite Riemann problem. The
proposed model is simple and tractable, as well as consistent
with the PDE moving bottleneck traffic models.

IV. TRAFFIC CONTROL VIA CONTROLLED MOVING
BOTTLENECK

In this section we derive a control law for moving traffic
jam dissipation and avoidance, in accordance with the pre-
viously derived model. We are using the speed of controlled
automated vehicle 𝑢𝑏(𝑡) as a control variable, and assuming
that we know cell traffic densities 𝜌𝑖(𝑡). For readability, (𝑡)
will be omitted.

We denote by 𝑥𝑑 and 𝑥𝑐 the positions of traffic jam head
and tail, 𝑥𝑏 the position of the automated vehicle and 𝜌 the
vector of cell traffic densities. The traffic jam encompasses
a number of cells, 𝑥𝑐 =𝑋𝑖𝑐 , 𝑥𝑑(𝑡) =𝑋𝑖𝑑 , and we say that
a cell 𝑖 is a part of the traffic jam if 𝜌𝑖>𝜌𝑗 where 𝜌𝑗>𝜎 is
some predefined density. The speed of the automated vehicle
will be controlled as 𝑢𝑏=𝒰(𝑥𝑏, 𝑥𝑐, 𝑥𝑑, 𝜌), within some limits,

Fig. 3: Front tracking calculation of 𝑢𝑏(𝑡).

𝑢𝑏∈ [𝑢min, 𝑢max]. The control law 𝒰 is a static mapping from
its arguments to 𝑢𝑏. It is calculated and applied at every 𝑡,
taking into account the updated states. The calculation of 𝒰
will be described in the remainder of this section, and is
illustrated in Figure 3. A representation of the control loop
is shown in Figure 4.

The control objective we consider here is, from the per-
spective of the controlled vehicle, avoiding the traffic jam.
If there is no traffic jam ahead of the controlled vehicle, it
can continue driving at speed 𝑢0. However, if a traffic jam
does appear, the controlled vehicle can reduce its speed, in
order to make it dissipate faster. We calculate and apply some
constant controlled automated vehicle speed 𝑢𝑏 so that the
congestion downstream of it is cleared as soon as possible
and, if feasible, so that the vehicle avoids the congestion with
minimum delay. Since 𝑢𝑏 > 𝑢min, this might not always be
possible, in which case the vehicle will move at its minimum
speed until it has passed the traffic jam.

For the vehicle to avoid the traffic jam with minimum
delay, at some 𝜏 = 𝑇𝑐, we need

𝜒𝑏(𝑇𝑐) = 𝜒𝑐(𝑇𝑐) = 𝜒𝑑(𝑇𝑐). (10)

Here we denote by 𝜒* the predicted evolution of 𝑥* in PDE
framework. We assume that the congestion head will move
at some constant speed 𝜆𝑑,

𝜒𝑑(𝜏) = 𝑥𝑑 + 𝜆𝑑𝜏, 𝜒𝑑(0) = 𝑥𝑑.

While the reduction of capacity is still in effect, this speed
will be 𝜆𝑑 = 0, and afterwards, while the traffic jam is being
discharged, 𝜆𝑑 = −𝑊 . For the position of the controlled
vehicle, we have

𝜒𝑏(𝜏) = 𝑥𝑏 + 𝑢𝑏𝜏, 𝜒𝑏(0) = 𝑥𝑏.

From (10), we can calculate the dependence of 𝑇𝑐 on 𝑢𝑏,

𝑇𝑐(𝑢𝑏) =
𝑥𝑑 − 𝑥𝑏

𝑢𝑏 − 𝜆𝑑
, (11)

and for the position of the traffic jam tail at 𝜏 = 𝑇𝑐 we write

𝜒𝑐(𝑇𝑐) = 𝑥𝑐 +Δ𝜒𝑐(𝜌, 𝑢𝑏).

The dynamics of 𝜒𝑐(𝜏) are hard to describe in closed
form, but we may calculate Δ𝜒𝑐 by the composite Riemann
problem for initial conditions

𝜌(0, 𝑥) =

⎧⎪⎨⎪⎩
𝑟𝑓 (𝜎𝑏, 𝑢𝑏), 𝑥 ≤ 𝑥𝑏,

𝜌𝑖, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1), 𝑥𝑐 > 𝑥 > 𝑥𝑏,

𝜌𝑐, 𝑥 > 𝑥𝑐,

by front tracking for 𝜏 ∈ [0, 𝑇𝑐]. Note that here we model
the influence of the moving bottleneck by formally taking
the initial traffic density to be equal to 𝑟𝑓 (𝜎𝑏, 𝑢𝑏) everywhere
upstream of it. Then, we can write

Fig. 4: Control loop example. Cell traffic densities 𝜌𝑖 are color-
coded (warmer is higher density).
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(a) Controlled (b) Fast (c) Slow
Fig. 5: Traffic densities and moving bottleneck trajectories for the three cases.

Δ𝜒𝑐(𝜌, 𝑢𝑏) = Δ𝜒𝑐,0(𝜌) + Δ𝜒𝑐,𝑢𝑏
(𝑢𝑏),

Δ𝜒𝑐,0(𝜌) =

𝑖𝑐−𝑖𝑏∑︁
𝑗=1

𝜆𝑗Δ𝜏𝑗 ,

Δ𝜒𝑐,𝑢𝑏
(𝑢𝑏) =

𝑥𝑐 − 𝑥𝑏 +Δ𝜒𝑐,0(𝜌)− 𝑇𝑐,0(𝜌)𝑢𝑏

𝑢𝑏 − 𝜆𝑓 (𝑢𝑏)
𝜆𝑓 (𝑢𝑏),

where
𝜆𝑗 = Λ(𝜌𝑖𝑐−𝑗 , 𝜌𝑐) ,

Δ𝜏𝑗 =

{︃
𝐿

𝑉−𝜆𝑗
, 𝑖𝑐 − 𝑗 > 𝑖𝑏,

(𝑖𝑏+1)𝐿−𝑥𝑏

𝑉−𝜆𝑗
, 𝑖𝑐 − 𝑗 = 𝑖𝑏,

𝑇𝑐,0(𝜌) =

𝑖𝑐−𝑖𝑏∑︁
𝑗=1

Δ𝜏𝑗 ,

𝜆𝑓 (𝑢𝑏) = Λ(𝑟𝑓 (𝜎𝑏, 𝑢𝑏), 𝜌𝑐).

Substituting (11), we calculate 𝑢𝑏 so that

𝑥𝑐 +Δ𝜒𝑐,0(𝜌) + Δ𝜒𝑐,𝑢𝑏
(𝑢𝑏) = 𝑥𝑏 +

𝑢𝑏(𝑥𝑑 − 𝑥𝑏)

𝑢𝑏 − 𝜆𝑑
.

at each 𝑡 until there is no more congestion ahead of the
controlled vehicle. If 𝑢𝑏 is calculated to be less than 𝑢min

or greater than 𝑢max, we apply these extreme values instead.

V. SIMULATION RESULTS

We tested the model and the control law in simulations.
The simulation scenario in question is as follows:

1) 𝑡 < 𝑡0: The traffic is in free flow, with heterogeneous
traffic density. The controlled automated vehicle is
moving at speed 𝑢0.

2) 𝑡0 ≤ 𝑡 < 𝑡1: A traffic jam is caused by a reduction
of capacity at position 𝑥𝑑(𝑡0). The automated vehicle
is acting as a moving bottleneck, and its speed is
controlled so that the traffic jam is cleared as soon as
possible.

3) 𝑡 ≥ 𝑡1, 𝑥𝑏(𝑡) ≤ 𝑥𝑑(𝑡): The reduction of capacity is
removed and the traffic jam is being resolved. The auto-
mated vehicle’s speed is controlled so that it dissipates
and avoids the traffic jam with minimum delay.

4) 𝑥𝑏(𝑡) > 𝑥𝑑(𝑡): The vehicle has passed the traffic jam
and it continues at speed 𝑢0.

The simulation results for 𝑢0 = 80 km/h are shown on
Figure 5. Warmer colors represent higher traffic density and
the traffic jam is outlined in dashed red line. The trajectory
of the controlled automated vehicle is represented by full
red line. The parameters of the fundamental diagram we
used were 𝑉 = 110 km/h, 𝜎 = 15 veh/km, 𝑃 = 70 veh/km
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Fig. 6: Controlled vehicle speeds for the three cases.

and we take 𝜌𝑗 so that 𝑣(𝜌𝑗) = 𝑢0. Note that the traffic
densities given here are per lane. The parameters of the
moving bottleneck are 𝛽 = 0.4 and 𝑉𝑏 = 120 km/h.

The reduction of capacity happens at 𝑡0 = 0.1 and lasts
for 15 minutes. During this time, the capacity at 𝑥𝑑 = 40
is reduced to 30%. The minimum and maximum speeds of
the controlled vehicle are taken to be 𝑢min = 50 km/h and
𝑢max = 100 km/h. We compare three cases:

1) Controlled: The vehicle is controlled according to the
control law from Section IV.

2) Fast: The vehicle does not reduce its speed, and con-
tinues at 𝑢0.

3) Slow: The vehicle reduces its speed to 𝑢min until there
is no longer any traffic jam ahead of it.

We can see that by implementing such control strategy,
the controlled vehicle avoids the traffic jam with little delay,
while also helping resolve it faster. In second case, the
controlled vehicle does traverse the road segment the fastest
out of the three cases, but it does not help clear the traffic
jam, and is forced to sharply reduce its speed while inside
the congestion, as shown on Figure 6. In case the vehicle
reduces its speed to 𝑢min, it helps resolve the traffic jam, but
it is unnecessarily delayed.

We also tested the influence this control law has on the
surrounding traffic, through 100 simulation runs for randomly
generated background traffic and four different 𝑢0. As perfor-
mance metric, we will consider the average travel time (ATT)
calculated for vehicles entering the road segment after the
controlled automated vehicle. The ATTs are calculated for 51
vehicles travelling at average traffic speeds of the cells they
are in. The first vehicle enters the road segment concurrently
with the controlled vehicle, and the last one enters half an
hour later. We also plot in dashed black line the trajectories
of every fifth (to avoid cluttering the figures) such vehicle on
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Fig. 7: Average travel times in hours comparison.
TABLE I: Average travel times. Without delays, 𝐴𝑇𝑇0 = 0.5 h

𝑢0[km/h] Controlled Fast Slow
70 0.5415 0.5435 0.5477
80 0.5364 0.5393 0.5414
90 0.5331 0.5350 0.5364

100 0.5327 0.5349 0.5381

Figure 5. The results are shown on Figure 7 and in Table I.
We can see that employing the described control law

leads to a reduction in ATT compared to both other cases,
in addition to ensuring more desirable conditions for the
controlled automated vehicle. In case the controlled vehicle
keeps its speed at 𝑢min until there is no more congestion
ahead of it, the ATT is increased due to causing unnecessary
additional congestion. Note that the control law was not
explicitly derived in order to minimize ATT, so we might get
even greater reduction by using optimization-based control.

VI. CONCLUSION

In this paper we presented a simple way to include moving
bottlenecks into the CTM framework that is consistent with
the corresponding PDE model. The main purpose of such
model is to facilitate deriving control laws traffic control
problems through controlling a single automated vehicle that
will act as a moving bottleneck. The example control problem
we considered here is traffic jam dissipation with the added
controlled-vehicle-centric control objective of minimizing
controlled vehicle delay and avoiding the traffic jam, and
the designed control law was shown to achieve good results.
It was shown that we can reduce the average travel time by
controlling a single automated vehicle.

We can envision many possible directions of future work.
This approach can be extended to different, more complex
traffic models, in particular the inverse-lambda phase transi-
tion CTM. It is also straightforward to extend this approach
to consider different types of bottlenecks, such as police
cars and long bottlenecks, as well as multiple bottlenecks.
Finally, more complicated control problems can be tackled,
for example including uncertain traffic information, multiple
traffic jams or different constraints.
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