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ABSTRACT | The development of sustainable transportation 

infrastructure for people and goods, using new technology and 

business models, can prove beneficial or detrimental for mobility, 

depending on its design and use. The focus of this paper is on the 

increasing impact new mobility services have on traffic patterns 

and transportation efficiency in general. Over the last decade, 

the rise of the mobile internet and the usage of mobile devices 

have enabled ubiquitous traffic information. With the increased 

adoption of specific smartphone applications, the number of 

users of routing applications has become large enough to disrupt 

traffic flow patterns in a significant manner. Similarly, but at a 

slightly slower pace, novel services for freight transportation and 

city logistics improve the efficiency of goods transportation and 
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change the use of road infrastructure. This paper provides a 

general four-layer framework for modeling these new trends. 

The main motivation behind the development is to provide a 

unifying formal system description that can at the same time 

encompass system physics (flow and motion of vehicles) as 

well as coordination strategies under various information 

and cooperation structures. To showcase the framework, we 

apply it to the specific challenge of modeling and analyzing the 

integration of routing applications in today's transportation 

systems. In this framework, at the lowest layer (flow 

dynamics), we distinguish routed users from nonrouted users. 

A distributed parameter model based on a nonlocal partial 

differential equation is introduced and analyzed. The second 

layer incorporates connected services (e.g., routing) and other 

applications used to optimize the local performance of the 

system. As inputs to those applications, we propose a third 

layer introducing the incentive design and global objectives, 

which are typically varying over the day depending on road 

and weather conditions, external events, etc. The high-level 

planning is handled on the fourth layer taking social long-

term objectives into account. We illustrate the framework 

by considering its ability to model at two different levels. 

Specific to vehicular traffic, numerical examples enable us to 

demonstrate the links between the traffic network layer and 

the routing decision layer. With a second example on optimized 

freight transport, we then discuss the links between the 

cooperative control layer and the lower layers. The congestion 

pricing in Stockholm is used to illustrate how also the social 

planning layer can be incorporated in future mobility services.

KEYWORDS | Coordination of platooning, impact of traffic 

routed by apps; mobility managment services; nonlocal PDE; 
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routing behavior for different information patterns; scheduling; 

traffic flow; traffic simulation with PDE; wardrop

I .  IN TRODUCTION

Traffic congestion is increasing at alarming rates in cities 
worldwide [1]–[3]. Computing, communication, and sensing 
technologies are transforming the transportation infrastructure 
and have enabled the engineering community to provide new 
services leveraging vehicular and information technologies [4].

A. Motivation

One of the most unanticipated impacts of information 
technology on the transportation system has come from rout-
ing services through in-vehicle navigation devices or smart-
phones. Coverage of the road network by these apps has 
expanded dramatically [5], leading to massive adoption of ser-
vices such as Google (with Waze) and Apple [6]. The fact that 
these apps are also massively used by mobility-as-a-service 
companies (like Uber and Lyft) accelerates the  phenomenon. 
The rise of ubiquitous transportation information available to 
both the public and companies has  disrupted numerous sub-
urban areas, leading to various unexpected outcomes.

Congestion patterns that never existed before have 
emerged. The displacement of traffic flows is a major motiva-
tion for this paper, and is illustrated by a simple motivational 
example in Fig. 1. In this example, as shown in Fig. 1(a), we 
study three parallel paths possible for motorists to drive along 
I-210 in the Los Angeles basin: on the I-210 freeway, or on one 
of two parallel arterials commonly used for detours. The simu-
lation model relies on an extension of the user equilibrium [7] 
to multiclass flows integrating users enabled by routing apps 
[8]. The figure shows the convergence of travel time to a sin-
gle value as the proportion of motorists using the routing app 
grows. At 0% usage (representative of the situation around 
2005 when no routing information was available), most of the 

traffic would stay on the freeway, leading to high freeway travel 
time and low arterial travel times. As the proportion of app 
usage increases, travel times get “equalized” among possible 
routes as more traffic is diverted onto the arterial roads, lead-
ing to a Nash equilibrium at around 17% of app usage. In gen-
eral, the increased adoption of apps leads to the growth of the 
number of vehicles progressively routed outside the freeways 
through so-called traffic “shortcuts.” While this might in some 
cases decongest the freeways, it contributes to transferring 
flow to arterial roads, which are less efficient in processing traf-
fic due to urban infrastructure (lights, stop signs, etc.), never 
specifically designed for such traffic flow. Because individual 
motorists are essentially given a “selfish” route (i.e., their own 
shortest path) by the routing service, the process is progres-
sively steering the system toward an equilibrium that might be 
a Nash equilibrium, but not efficient from a social viewpoint. 
This phenomenon is commonly observed in suburban areas in 
the United States, and frequently appears in the news [9]–[12]. 
It presents a key motivation of this paper, as the design of novel 
mobility services needs to systematically integrate traffic flow 
dynamics with decisions made by individual users as well as 
higher level forms of resource allocations and cooperations. 
Since routing in this setup needs to be considered time dynami-
cally, we therefore aim for a time-dynamical description.

B. Contributions

This paper is meant to introduce the new challenges of 
mobility services to the scientific community and to pre-
sent a class of models that are general but also sufficiently 
realistic to tackle the presented issues. On an abstract level 
it analyzes and structures the problems which have to be 
addressed in order to do so.

In particular, the contributions of this paper are struc-
tured around the four-layer decision diagram in Fig. 2. The 
top “social planning” layer represents the implementation of 
transportation policies and design of incentives introduced 

Fig. 1. Motivating example to illustrate progressive steering of traffic flows to a Nash equilibrium with increased app usage. (a) City of 
Pasadena with I-210 (red) and north (blue) and south (red) arterial roads. (b) Travel time over I-210 and arterial roads as function of 
percentage getting rerouted to north and south arterials. Demand corresponds to 27 500 veh/h.
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by enabling infrastructure systems, such as the introduction 
of novel traffic management. “Cooperative control” aims at 
the actual control of traffic for the social benefit of everyone. 
It uses control mechanisms such as dynamic tolls, priority 
lanes, and traffic light control. This layer has a direct influ-
ence on the actual traffic situation, while “social planning” 
implements long-term strategies.

•  We propose a mathematical model to describe the 
flow dynamics on the traffic network. A novel use of 
nonlocal terms in a transport partial differential equa-
tion (PDE) makes it possible to consider conservation 
laws on a network without the mathematical difficul-
ties to obtain the well-posedness of boundary condi-
tions at the nodes of the network. This new model 
demonstrates the general applicability of our frame-
work and could be replaced by any other flow model.

•  We prove existence and uniqueness of the solutions to 
the model we present, i.e., uniqueness of the nonlocal 
balance laws on the network for given routing func-
tions, coupled by the boundary data at the nodes.

•  We incorporate flow which has additional information 
(for instance, with a routing application) and flow who 
does not and therefore follows a different routing pattern 
into the same nonlocal PDE framework by considering 
routed and nonrouted flow as different commodities.

•  We present different approaches to decide the dif-
ferent actions of routed and nonrouted users. These 
 decisions are described in an abstract and broadly 
applicable framework.

•  We introduce time-dependent split functions at the 
nodes of the network to represent routing decisions. 
For given split ratios, we show that there exists a 
unique solution on the entire network, also taking into 

account departure rate of traffic. Then, these results 
allow to interpret the splits as a function dependent 
on the load of parts of the network, network scenario, 
congestion of outgoing roads, and actual travel time. 
This set of considerations can be expanded further as 
the model matures.

•  We describe a mobility service that utilizes the “coop-
erative control” layer of Fig. 2. In particular, as partial or 
full automation of vehicular and freight traffic provides 
significant opportunities for optimization of transporta-
tion efficiency, we consider a service based on collabo-
rative routing algorithms and platooning of heavy-duty 
vehicles, which, for instance, can be exposed to freight 
signal prioritization at traffic intersections.

•  We discuss how several mechanisms exist to pro-
mote cooperation opportunities in an urban setting, 
emphasizing the need of the systematic integration 
of the “social planning” layer. Road tolling, conges-
tion pricing, and incentivization through rewards are 
examples of such mechanisms. The discussion focuses 
on the current and future cordon pricing system in 
Stockholm.

The design of a four-layer architecture with full integra-
tion of all layers is still a major and open challenge. In this 
work, we have mainly focused on identifying the layered 
information structure and have demonstrated steps toward 
integration of the two lower layers.

C. Related Work

There is a significant amount of work on modeling trans-
portation networks. It is impossible in a paper like the pre-
sent one to review the entire literature on this topic. Thus, we 
chose to only mention classes of models with a few references 
for each, to give a sense of where we fit in the landscape of 
published work. Specific to the problems of interest, one can 
classify the published work in four categories.

1)  Microsimulation models. This framework enables the 
description of vehicle-by-vehicle dynamics at scales 
which can include second-by-second movement. With 
such a framework, embodied by numerous commer-
cial software tools such as Aimsun [13], VISSIM [14], 
not much analytical work can be done to character-
ize the problems described in the present algorithm. 
However, heuristic and experimental approaches are 
commonly used by practitioners for simulation pur-
poses; see, in particular, [15] for an overview.

2)  Mesosimulation models. This framework enables 
the description of platoons of vehicles through a 
network, while conserving some level of descrip-
tion of their individual dynamics. While analytical 
approaches to this framework are possible, they are 
more involved; see, in particular, [16] and references 
therein for an overview.

Fig. 2. Considered four-layer decision framework. The red ªrouting 
decisionº layer has drastically changed traffic behavior in some 
major U.S. cities over the last years. Systematically integrating 
cooperative control and social planning into the design of mobility 
services has the potential of improving traffic behavior in the future.
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3)  Macroscopic models. This approach has traditionally 
been at the core of the transportation engineering 
community, since the seminal work of Lighthill–
Whitham–Richards (LWR) [17], [18]. Hundreds of 
papers were written on these models, their applica-
tion to networks, and their discretization. Many of 
these formulations lend themselves to theory, which 
namely consists of: a) existence and uniqueness proofs 
for solutions of their equations (as in this paper); b) 
controllability, optimality, and observability results 
when problems are well-posed; and c) proper discre-
tizations with proofs of convergence, with the most 
notable scheme written by Godunov in 1957 [19].

4)  Operations research models. Further discretiza-
tion of network models at an aggregate level can be 
broadly characterized as operations research models, 
and encompasses queuing networks, delay networks, 
Jackson networks, and many models developed for spe-
cific applications, in particular, the seminal Merchant–
Nemhauser model [20]. These models have very broad 
scopes of application which range from air traffic con-
trol to supply chains (and traffic in particular).

The work presented in this paper falls mainly in the cat-
egory of macroscopic models above. For a complete review 
of this class of models, the reader is referred to the seminal 
book by Garavello et al. [21]. Note that while this framework 
enables elegant treatment of aggregate flows, some of the 
issues linked to dynamic traffic assignment for these flow 
models are still unresolved and open (as will appear in the 
way we enunciate these problems in our approach).

Although our framework is different from most existing 
macroscopic models in several aspects (e.g., multiclass flow 
and time-dependent routing at nodes), existing traffic network 
modeling approaches inspired our work significantly. The spe-
cific flow model we consider first in this paper was introduced 
in [22]. Mathematical properties of simplified versions or 
archetypes on bounded domains were studied in [23] and [24]. 
An extension to multiclass frameworks was presented in [25]. 
In [26] and [27], nonlocal conservation laws on unbounded 
domains were considered. For an introduction to general traf-
fic flow models, we refer the reader to the monograph [28], 
which gives an exhaustive overview of traffic modeling using 
networks of PDEs (mostly extensions of the LWR model). 
Note that for the four categories of models presented above, 
also routing choices have been the topic of a vast amount of 
literature. For example, routing behavior has been modeled 
through a variety of so-called logit functions, e.g., [29]–[32].

The integration of mobility services and app usage with 
detailed traffic flow models is a new research area and thus 
has not been thoroughly studied. The advantage of taking 
such a cross-layer modeling approach was recently explored 
for control and coordination of a large fleet of heavy-duty 
vehicles that exploits the benefits of vehicle platooning [33]. 
The development of this specific freight transport service 

was motivated by the concept of an automated highway sys-
tem [34], [35], in which vehicles are organized in platoons to 
increase traffic flow under strict safety guarantees. Vehicle 
platooning is widely being considered as an important auto-
mated vehicle technology; see [36] for an overview.

Finally, as should appear with the broad scope of the four 
categories above, the variety of models available for this type 
of problems is significant. The reason why we chose to focus 
our approach on a new traffic model, was 1) to show the 
generality of the overall framework; and 2) to demonstrate 
that the complexity of the model (i.e., nonlocal conservation 
laws) can be handled in the framework.

D. Outline

The outline of this paper is as follows. A general frame-
work for cooperative transportation systems was presented 
in the decision diagram in Fig. 2. It relies on a detailed traf-
fic flow model, which is introduced in Section II. How to 
integrate information patterns from routed and nonrouted 
traffic flows is also presented. The determination of actual 
routing policies is given in Section III for local and global 
routing information. Section IV presents a mobility service 
for cooperative freight transportation based on these mod-
els. The section discusses how traffic flow patterns can be 
controlled over individual links, for instance, for optimizing 
opportunities for vehicle platooning. Then, it is described 
how such local control can be combined with global coordi-
nation to form a cooperative freight transportation system, 
even under given data privacy guarantees. Existing and 
evolving cordon pricing strategies in Stockholm are briefly 
presented in Section V. Finally, Section VI gives the con-
clusions and outlines a few items for future work.

II .  MODELING TR A FFIC ON 
NET WOR K S

This section builds on traditional network notations for 
flow networks, and uses the resulting framework to later 
build an entire description of the PDE flow models used 
throughout the paper. The goal of this model, beyond its 
intrinsic use, is to demonstrate the generality of the pre-
sented framework.

A. Fundamental Notation

Definition 1 (Function Spaces and Sets): We define the 
following sets of functions for  I,   I  ̃   ⊂ ℝ  open and real intervals 
and  p ∈ [1, ∞ ):

  L   ∞  (I;   I ̃  )  : =  {f  :  I ↦   I  ̃  :  f Lebesgue-measurable 

 and essentially bounded} 

  L   p  (I)  : =  {f  :  I → ℝ :  f Lebesgue measurable :

  ∫ 
I
      (f(y))    p   dy < ∞}  
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Both sets are interpreted modulo changes of Lebesgue 
measure zero. In addition, we define functions which vary 
continuously in time when measuring space in   L   p  , i.e.,

 C(I;  L   p  (  I ̃  ))  :=  { f  :  I →  L   p  (  I ̃  ) :   lim  
t→  t  ̃  

      ‖f(t, ⋅)− f(  t ̃  , ⋅)‖   L   p (  I ̃  )  

  = 0  ∀   t ̃   ∈ I  ∋  t} .  

B. Network and Dynamics on the Network

We define a network as follows.

Definition 2 (Network): We call a graph  (V, A)  with  V ⊂  ℕ ≥1     
the set of nodes and  A ⊆ V × V  the set of links a network, if 
the graph is directed and connected. In addition, for  v ∈ V  
we define 

   A in   (v)  : = {a ∈ A : a ends in v}  

   A out   (v)  := {a ∈ A : a originates in v}.    

Equipped with this definition, we can now proceed to 
the fundamental notation for any dynamics on the network. 
We do this in a general way, without explicitly defining the 
traffic dynamics, since our approach is applicable to any 
time-dependent traffic flow.

Consider Fig. 3 as an illustration for the notation 
around a single node. Let  T ∈  ℝ >0    be a finite time horizon. 
On every link  a ∈ A  we introduce time- and space-depend-
ent traffic dynamics   ρ  a   : (0, T) × (0, 1)→  ℝ ≥0   . Thereby,   
ρ  a   (t, x)  can be interpreted as the density of vehicles at 
position  x ∈ (0, 1)  at time  t ∈ (0, T)  on link  a ∈ A . We have 
thus assumed, without loss of generality, that every link is 
scaled to unit length.

Definition 3 (Inflow and Outflow of a Link): For every 
link  a ∈ A  in the network, we call   u a   : (0, T)→  ℝ ≥0    the flow 
of vehicles entering link  a  and   y a   : (0, T)→  ℝ ≥0    the flow of 
vehicles exiting the link.

To describe the topology of the network and to imple-
ment a routing at nodes, we define time-dependent splits 
over the entire network.

Definition 4 (Set of Splits  Θ ): Consider a network as 
described above. Let the set of possible splits at the nodes 
be denoted 

   Θ :=  
{

 θ  a  v  ∈  L   ∞  ((0, T);  ℝ ≥0  ) :   ∑ 
 a ̃  ∈ A out  (v)

   θ   a ̃    
v   (t) = 1, 

  v ∈ V, a ∈  A out   (v),  t ∈ (0, T) a.e.
}

   (1)

where  θ :=   ( θ  a  v )  v∈V,a∈ A out      and   θ  a  v  : (0, T)→ ℝ  represents the 
ratio of the flow, entering node  v  and leaving for link  a ∈  
A out   (v) . For the definition of   L   ∞   we refer to Definition 1.

Hence, the set  Θ  represents the routing in the network 
and guarantees conservation of flow over the nodes.

Remark 1: In case that    |A out  (v) | = 1  for a  v ∈ V , there is obvi-
ously no routing necessary, which also follows from the defi-
nition of  Θ .

We next define the sources in the network, i.e., the flow 
entering the network. For notational simplicity, we assume to 
start with only one destination. Flow can enter the network at 
every node, so we define the set of sources in the following way.

Definition 5 (Set of Sources  S ): For every node  v ∈ V  of the 
network, the set of sources is denoted 

  S  :=  { s  a  v   ∈  L   ∞  ((0, T);  ℝ ≥0  ),  v ∈ V, a ∈  A out   (v)}   (2)

with element  s  :=   ( s  a  v  )  v∈V,a∈ A out  (v)   .
Then, over each node, the following constraints have to 

be satisfied.

Definition 6 (Flow Conservation at Nodes): The flow 
node constraints at a node  v ∈ V  for given  s ∈ S  and  θ ∈ Θ  
over a network satisfy 

  s  a  v   (t) +  θ  a  v  (t)⋅   ∑ 
 a ̃  ∈ A in  (v)

   y  a ̃      (t) =  u a   (t)   ∀ v ∈ V, 

  a ∈  A out   (v),  t ∈ (0, T) a.e.  (3)

This flow conservation states that all flow entering the 
nodes has to be the same as all flow exiting the nodes, add-
ing the flow that departures at the node. Depending on the 
splits  θ  in the network and the entering flows  s , traffic is 
distributed in the network according to the traffic dynamics, 
which will be detailed next.

C. Nonlocal PDE Model

As discussed earlier, nonlocal PDE models are rela-
tively new in the transportation engineering literature. 
The reason for the selection of such a model here is to illus-
trate the generality of our framework. In the following, we 
assume that traffic flow can be modeled as a fluid; hence, 
the choice of a macroscopic model. We assume for reasons 
of simplicity that there is only one destination, which will 
be generalized later.

Fig. 3. Illustration of traffic network dynamics at the level of node  
v ∈ V .
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The PDE model we consider is a so-called nonlocal con-
servation law as introduced in [37] and studied with regard 
to uniqueness and regularity of solutions in [23]. It is specifi-
cally considered in [27] for modeling traffic flow. A multi-
commodity extension on networks is presented and studied 
in [25]. Conservation laws are frequently used for modeling 
traffic flow [28]. These models have an intrinsic velocity so 
that they encode travel time naturally.

On a given link  a ∈ A  with density   ρ  a   : (0, T) × (0, 1)→  
ℝ ≥0   , the model is given by 

   ∂ __ ∂ t    ρ  a   (t, x) +   ∂ ___ ∂ x   ( λ  a   (t,  ∫ 
b(x)

  
d(x)

   ρ  a    (t, y) dy)   ρ  a   (t, x))  = 0 , 

  (t, x) ∈ (0, T) × (0, 1) ,  a ∈ A  (4)
  ρ  a   (0, x) =  ρ  a,0   (x), x ∈ (0, 1),  a ∈ A  (5)

   λ  a   (t,  ∫ 
b(0)

  
d(0)

   ρ  a    (t, y) dy)   ρ  a   (t, 0) =  u a   (t), t  ∈ (0, T),  a  ∈  A  (6)

   λ  a   (t,  ∫ 
b(1)

  
d(1)

   ρ  a    (t, y) dy)   ρ  a   (t, 1) =  y a   (t), t  ∈ (0, T),  a  ∈  A.    (7)

The function   λ  a    represents the velocity of the traffic flow at 
time  t ∈ (0, T) . We assume that it is a strictly positive con-
tinuously differentiable function and that it only depends 
on the average density of   ρ  a    in a given neighborhood of  x 
∈ (0, 1) . Potentially, this neighborhood can be the whole 
link. For traffic flow models, it is natural to assume that 
the velocity   λ  a    is a monotonically decreasing function of 
the density   ρ  a   . The density relates to the average distance 
between cars, and it is thus reasonable to assume that cars 
travel slower when this distance gets smaller [28]. A com-

mon choice is   λ  a   (t, y) = 1 / (1 + y) ,  (t, y) ∈ [0, T]  × ℝ  [22]. At  

(t, x) ∈ (0, T) × (0, 1)  the term   ∫ b(x)  
d(x)  ρ  (t, s) ds  represents the 

average density of the flow between  b(x)  and  d(x)  with  b, d 
∈  C   1  ( [0, 1] ;  [0, 1] ) . However, more sophisticated velocity 
or flux functions can be used, but have to be calibrated by 
available data. For simplicity, sometimes it is assumed that  
b ≡ 0  and  d ≡ 1 , i.e., that the average is carried out over the 
entire domain. For  t = 0 , an initial density is prescribed for 
every  x ∈ (0, 1)  in (5).

The classical LWR PDE model used for the simulation of 
traffic flow has none of the above described nonlocal prop-
erties and is considered a “local” PDE. In the LWR model, 
the velocity of the conservation law at a given location only 
depends on the density at this specific point and not on some 
average over a given neighborhood, as opposed to a nonlocal 
PDE. One great advantage of the proposed nonlocal model over 
local models is that it enables us to define boundary conditions 

without shocks emerging and makes the well-posedness of 
the boundary conditions at nodes easy to resolve: flow is just 
passed to the outgoing roads. This does not necessarily work 
for local PDE models like the LWR model, since backwards 
propagating shocks might prohibit a prescription of boundary 
conditions upstream, making it necessary to resolve this issue 
by adding buffer or specific solvers at the junctions. Thus, the 
nonlocal model simplifies the modeling at junctions signifi-
cantly so that one can concentrate on the abstract principles 
of routing and not so much on mathematical technicalities.

Due to the assumptions on   λ  a   , the propagation speed 
over the entire network can never reach zero; in addition, 
the weak solution of the model is unique without any addi-
tional entropy condition [26] and thus further simplifies any 
mathematical analysis.

To illustrate the dynamics in detail, we present an 
example.

Example 1 (Nonlocal Conservation Law on One Link): 
The dynamics of the model are illustrated with nonzero 
initial density in the top two plots of Fig. 4 and with zero 
initial datum in the bottom two plots. Due to the nonlo-
cal behavior, the initial datum influences the propagation 
speed of the density. In the top plots, the density entering 
at  t ∈ [0, 2]  moves slower than the corresponding density 
for the lower plots. This is due to the fact that there is more 
average traffic on the road causing a lower speed than when 
the initial density is equal to zero. When there is no change 
in the density (as at  t ∈ [7, 8]  in the upper plots), the veloc-
ity is constant. The same can be observed for  t > 6  (in the 
lower plots). The numerical method used to compute the 
solution in this example is presented in the end of this 
section.

The following result states that for the nonlocal PDE we 
obtain a unique solution for given routing and inflow func-
tions. The solutions of the PDE are interpreted in a weak 
sense [38], making it possible to solve the system even for 
boundary data which are not differentiable or not even 
continuous. Given the novelty of the presented model, a 
well-posedness proof is necessary to justify the use of the 
model.

Proposition 1 (Existence and Uniqueness of a Solution 
on a Single Lane for Given Boundary and Initial Data): 
Let  T ∈  ℝ >0    and  p ∈ [1, ∞ ) be given and suppose that  b  and  d  
are continuously differentiable, i.e.,  b, d ∈  C   1  ( [0, 1] ;  [0, 1] ) ,  
and that boundary datum  u ∈  L   ∞  ((0, T))  and initial datum 
  ρ  0   ∈  L   ∞  ((0, 1))  are given. Suppose that in addition  λ ∈  
C   1  ( [0, T]  × ℝ;  ℝ >0  )  is strictly positive. Then, the initial 

     ∂ __ ∂ t   ρ  (t, x) +   ∂ ___ ∂ x   (λ (t,  ∫ 
b(x)

  
d(x)

  ρ  (t, y) dy) ρ(t, x))  = 0, (t, x) ∈ (0, T) × (0, 1) 

                    ρ(0, x) =  ρ  0   (x), x ∈ (0, 1)  

   λ (t,  ∫ 
b(0)

  
d(0)

  ρ  (t, y) dy) ρ(t, 0) = u(t), t ∈ (0, T)     
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boundary value problem, shown in the equation at the 
bottom of the previous page, admits a unique weak solu-
tion  ρ ∈ C( [0,  T 1   ];  L   p  ((0, 1)))  on a sufficiently small time 
horizon   T 1   ∈ (0, T]  and is essentially bounded, i.e.,  ρ ∈  L   ∞   
((0,  T 1  ) × (0, 1)) . With the used sets of functions   L   ∞  ,  L   p   we 
thereby mean the sets introduced in Definition 1.

Sketch of Proof: The proof is generalization of the proof in 
[24] for  b ≡ 0  and  d ≡ 1 . Recalling the solution formula for a 
linear conservation law with strictly positive and Lipschitz-
continuous velocity, i.e.,   λ ̃   ∈ C( [0, T] ;  C   1  ( [0, 1] )) , we obtain 
the explicit solution formula for  (t, x) ∈ (0, T) × (0, 1) , 
which is shown in (8) at the bottom of the page, with  ξ [t, x]  

Fig. 4. Nonlocal conservation law with two different initial conditions for the density  ρ  over a single link. In both cases,  b ≡ 0  and  d ≡ 1 . 
Different perspectives. (Top) Solution  ρ(t, x)  for  λ(W) = 1 / (1 + 5W)  with influx  u(t) = (t / 3) ⋅  𝟙 [0,2]   (t) + (1 / 2) ⋅  𝟙 [5,6]   (t)  and initial condition   
ρ  0   (x) = 4 ⋅  𝟙 [0.5,0.7]   (x) , where  𝟙  is the indicator function. The evolution of the initial datum is marked in red dashed line. (Bottom) 
Solution for the same  λ  and influx  u , but initial condition   ρ  0   (x) ≡ 0 . Due to a change of the average density, both examples are quite 
different even if they satisfy the same boundary datum. The evolution of the boundary datum emanating from  t ∈ [5, 6]  is marked in 
orange dotted line.

  ρ(t, x) =  

⎧
 

⎪

 ⎨ 
⎪

 
⎩

 
 ρ  0   (ξ [t, x] (0)) ⋅  ∂  2   ξ [t, x] (0),      x ≥ ξ [0, 0] (t)

     
  

u(ξ  [t, x]   −1  (0))
  ____________  

λ(ξ  [t, x]   −1  (0) , 0)
    ∂  2   ξ [ξ  [t, x]   −1  (0) , x] (t), x  ≤  ξ [0, 0] (t)

     (8)
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representing the characteristics emanating from  (t, x)  and 
satisfying the integral equation 

  ξ [t, x] (τ) = x +  ∫ 
t
  
τ

   λ ̃    (s, ξ [t, x] (s)) ds.  (9)

Due to the claimed Lipschitz continuity of   λ ̃    this integral 
equation admits a solution and due to the positivity of   λ ̃    the 
characteristics  ξ [t, x]  are invertible in time as long as  x ≤ 
ξ [0, 0] (t) , i.e.,  ξ  [t, x]   −1  :  [0, T]  → [0, 1]  exists.

The set   {(t, x) ∈ (0, T) × (0, 1) :  x ≤ ξ [0, 0] (t)}    
represents the area where the solution is explicitly only 
dependent on the boundary datum. This solution formula 
can now be used to actually present a solution formula  
for the nonlocal balance law involving a fixed-point 
problem.

Assuming the solution formula holds also for the nonlo-
cal balance law, we can compute the nonlocal impact for  
(t, x) ∈ (0, T) × (0, 1)  as shown in (10) at the bottom of the 
page. 

This defines now the actual nonlocal velocity since we 
obtain for  (t, x) ∈ (0, T) × (0, 1)  by the previous computation 

 λ 
(

t,   ∫ 
b(x)

  

a(x)

 ρ  (t, y) dy
)

  = λ(t, F [ξ] (t, x)). 

This formula can be plugged into the equations for the 
characteristics (9), to obtain for  (t, x) ∈ (0, T) × (0, 1) 

  ξ [t, x] (τ) = x +  ∫ 
t
  
τ

  λ  (s, F [ξ] (s, ξ [t, x] (s))) ds.  (11)

This is a fixed-point equation in  ξ [t, x]  dependent on  F [ξ] . 
The next step to prove the existence and uniqueness of a solu-
tion of the nonlocal conservation law is to show that the fixed-
point equation admits a unique solution in a proper Banach 
space. To do this, we must apply Banach’s fixed-point theo-
rem which requires us to show that the right-hand side in (11) 
is a self-mapping as a function of  ξ  and also a contraction. The 
contraction can only be achieved if we assume a sufficiently 
small time horizon. This is the reason why we only prove 
the existence of a weak solution on a sufficiently small time 
horizon. Using a typical time clustering argument and more 
restrictive assumptions on the framework, one can extend the 
existence result to any finite time horizon.

Remark 2 (Existence of a Solution on Every Finite  
Time Horizon): In case  b  and  d  are not explicitly space depend-
ent, we obtain the result of existence and uniqueness on any 
finite time horizon.

Theorem 1 (Existence and Uniqueness of a Solution on 
the Network): Assume that we have an acyclic network. 

For any time horizon  T ∈  ℝ >0   ,  p ∈ [1, ∞ ), initial data   
ρ  0,a   ∈  L   ∞  ((0, 1);  ℝ ≥0  ) ,   λ  a   ∈  C   1  ( [0, T]  × ℝ;  ℝ >0  ) ,  θ ∈ Θ ,  
source terms  s ∈ S , and fixed bounds  b, d ∈ [0, 1] , the model 
in (4)–(7) admits a unique weak solution   ρ  a   , a ∈ A  with 

  ρ  a   ∈ C([0, T];  L   p  ((0, 1))) ∩  L   ∞  ((0, T);   L   ∞  ((0, 1)))   ∀ a ∈ A. 

Sketch of Proof: First, we recall that for given initial and 
boundary data on a given link, the solution of the nonlocal 
PDE exists and is unique as shown in Proposition 1.

Since the network is acyclic, the next step is to use an 
induction argument: Suppose the solution is given on all 
incoming edges  a ∈  A in   (v)  of a node  v ∈ V . Due to the regu-
larity of the solution on those incoming edges, meaning  
  ρ  a   ∈ C([0, T] ;  L   p  ((0, 1))) , the density can be evaluated at  
 x = 1  and we obtain as outflux   y a   ≡ λ (⋅ ,  ∫ b  d   ρ  a    (⋅ , y))   ρ  a   (⋅ , 1) ∈  
L   p  ((0, T)) .

The routing functions   θ   a ̃    
v   are for   a ̃   ∈  A out   (v)  by the 

assumption on  Θ  essentially bounded and so is the source   
s   a ̃    

v    by the assumption on  S , so that the new boundary 
datum for the outgoing edges   a ̃   ∈  A out   (v)  satisfies on  
 t ∈ (0, T) , a.e.,

   u  a ̃     (t) =  s   a ̃    
v   (t) +  θ   a ̃    

v  (t) ⋅   ∑ 
a∈ A in  (v)

   y a    (t)  (12)

and by a simple Hölder estimate 

 ‖ u  a ̃     ‖  L   p ((0,T))   ≤ ‖ s   a ̃    
v   ‖  L   p ((0,T))   

            + ‖ θ   a ̃    
v  ‖  L   ∞ ((0,T))   ⋅   ∑ 

a∈ A in  (v)

  ‖  y a    ‖  L   p ((0,T))   

             ≤  T     
1 __ p    ‖  s   a ̃    

v    ‖  L   ∞ ((0,T))   +   ∑ 
a∈ A in  (v)

  ‖  y a    ‖  L   p ((0,T))   .   

The right-hand side is bounded (even for  p = ∞ ), so 
that we can conclude that the entering boundary datum   
y  a ̃      is an   L   p   function. Now, we again use the existence and 
uniqueness of the PDE for given boundary and initial data in 
Proposition 1. This procedure can be iterated until we have 
exhausted all links in the network.

The uniqueness of the solution on the network directly 
follows by the uniqueness of the solution on a given link. 
Thus, we obtain for any routing  θ ∈ Θ  and any source  s 
∈ S , the existence and uniqueness of the solution on the 
network.

Remark 3 (Networks With Cycles): One might wonder 
why the statement of the theorem is not necessarily true 
for networks with cycles, since the hyperbolic character 
of the solution should lead to a finite propagation speed of 

    ∫ 
b(x)

  

a(x)

 ρ  (t, y) dy =    ∫ 
ξ  [t,a(x)]   −1 (0)

   

ξ [t,max{a(x),min {ξ [0,0](t),b(x)]   −1 (0)}}

 u  (z) dz     +  ∫  
ξ [t,max{a(x),min {ξ  [0,0](t),b(x)]   −1 (0)}}

   

ξ [t,b(x)](0)

   ρ  0    (z) dz    =: F [ξ] (t, x).  (10)
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boundary and initial data so that for sufficiently small time 
one could decouple the entire network, meaning that exit-
ing boundary data would not be a function of the entering 
boundary data on every given link. This could be iterated 
so that one would obtain uniqueness on the entire network 
for every finite time horizon. Although the proposed non-
local dynamics make the right-hand side boundary data 
not explicitly dependent on the left-hand side boundary 
data for small time, due to the nonlocal term, the speed of 
propagation, which would also affect the exiting boundary 
data, is implicitly a function of the entering boundary data 
at every time.

The problems with cycles can be avoided by assuming 
that the lower boundary of the nonlocal term satisfies  b > 0 .  
Another solutions is to consider a fixed-point formulation in 
the boundary data of a given cycle. However, this requires some 
mathematical technicalities, which we do not detail here.

D. Integrated Information Patterns

In this section, we model traffic dynamics on networks 
while taking into account multiple destinations and the 
impact of the potential use of navigational applications and 
routing algorithms on decision processes. For this, we dis-
tinguish between different groups of drivers and use the fol-
lowing terminology: We call routed flow or routed users the 
category of drivers that has access to real-time traffic infor-
mation, for instance, provided by GPS-enabled devices or 
smartphone applications. By contrast, the category of driv-
ers who do not use these devices and mostly follow street 
signs, etc., to head to their destination are called nonrouted 
flow or nonrouted users [8]. These commodities will be 
denoted by a superindex  r  or  nr  and are defined as follows.

Definition 7 (Routed and Nonrouted Flows With  
Multiple Destinations): Consider a network and define its 
destinations as  D ⊆ V . We distinguish between routed and 
nonrouted users  {r, nr} . When we consider any commodity 
or class of drivers, we mean all pairs  k ∈ {r, nr} × D .

Since routed and nonrouted users might head to the 
same destination, it is reasonable to take as superindex  
k  to distinguish between them. In the following, we have 
to keep track of all these different flows, routed and non-
routed, with different destinations in the network over time, 
which requires the addition of dynamics for every pair  k ∈ 
{nr, r} × D  on every link.

Introducing routed and nonrouted traffic as well as mul-
tiple destinations requires a change in the traffic network 
notation outlined in Section II. We replace the source   s  a  v    by   
s  a  v,k   but still write  S  for the set of all sources, analogously 
to Definition 5. The splits   θ  a  v   are replaced by   θ  a  v,k   for  k ∈ 
{nr, r} × D  but we still write  Θ , as in Definition 1. The inflow   
u a    is replaced by   u  a  k   and the exiting flow by   y  a  k  . If a destina-
tion  k  cannot be reached through a link  a ∈  A out   (v)  for a 
given node  v , we set   θ  a  v,k  = 0 . Although this might seem dif-
ficult to determine, it only has to be done one time for the 
network to obtain all possible routes between all the given 
origin–destination pairs.

Remark 4 (Necessity of Defining Every Class on Every 
Link): On links where there is no actual route to the des-
tination, the dynamics for that class can be omitted. For a 
unified presentation, however, we keep them in the follow-
ing discussion.

The proper conditions on the splits  θ  will be imposed, 
restricting the set of admissible routes. However, these 
restrictions will not change the principle properties of  Θ .

In (13)–(17), shown at the bottom of the page, we pre-
sent the dynamics in the multidestination and routed and 
nonrouted framework.

The velocity function   λ  a   ∈  C   1  ( [0, T]  × ℝ;  ℝ >0  )  only 
depends on  a ∈ A  but not on commodity or routed/non-
routed flow, since all vehicles on a given road must have the 
same velocity, regardless of their destination or their use of 
navigation tools.

The velocity also depends on the summarized average flow 
as stated in (13), which is a reasonable assumption: the speed of 
the flow will be determined by the entire flow on a given link.

    ∑ 
k∈{nr,r}×D

   ρ  a  k   (t, x) =:  ρ  a   (t, x),   (t, x) ∈ (0, T) × (0, 1),  a ∈ A  (13)

    ∂ __ ∂ t    ρ  a  k  (t, x) +   ∂ ___ ∂ x   ( λ  a   (t,  ∫ 
b(x)

  
d(x)

   ρ  a    (t, y) dy)   ρ  a  k  (t, x))  = 0 ,  (t, x) ∈ (0, T) × (0, 1),  a ∈ A,  k ∈ {nr, r} × D  (14)

   ρ  a  k  (0, x) =  ρ  a,0  k   (x),   x ∈ (0, 1),  a ∈ A,  k ∈ {nr, r} × D  (15)

   λ  a   (t,  ∫ 
b(0)

  
d(0)

   ρ  a    (t, y) dy)   ρ  a  k  (t, 0) =  u  a  k  (t),    t ∈ (0, T),  a ∈ A,  k ∈ {nr, r} × D  (16)

   λ  a   (t,  ∫ 
b(1)

  
d(1)

   ρ  a    (t, y) dy)   ρ  a  k  (t, 1) =  y  a  k  (t) ,  t ∈ (0, T) ,  a ∈ A,  k ∈ {nr, r} × D.  (17)
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Remark 5 (Commodity-Dependent Velocities   λ  a   ): The  
model allows velocities to depend on the commodity  
 k ∈ {r, nr} × D  without changing any of the following 
results. It also allows different boundaries of the nonlocal 
terms. A straightforward interpretation of both is that dif-
ferent commodities might drive with different velocities. 
However, for multidestinations and routed and nonrouted 
users this does not make sense. For coordination of truck 
platoons and for being able to distinguish between trucks 
and regular cars (as discussed in Section IV), this is a rea-
sonable extension.

Taking into account multiple destinations and distin-
guishing routed and nonrouted flow, we obtain an analo-
gous result as that in Theorem 1 for a single commodity.

Theorem 2 (Existence and Uniqueness of the 
Solution for Routed and Nonrouted Classes and Multiple 
Destinations): Assume that we have an acyclic network. 
For any time horizon  T ∈  ℝ >0   ,  p ∈ [1, ∞ ), initial data   ρ  0,a  k   ∈  
L   ∞  ((0, 1);  ℝ ≥0  ) ,   λ  a   ∈  C   1  ( [0, T]  × ℝ;  ℝ >0  ) ,  θ ∈ Θ  and source 
terms  s ∈ S  and fixed bounds  b, d ∈ [0, 1] , the model as 
defined in (13)–(17) admits a unique weak solution   ρ  a  k  , a ∈ 
A  on the network so that 

  ρ  a  k  ∈ C([0, T];  L   p  ((0, 1))) ∩  L   ∞  ((0, T);  L   ∞  ((0, 1))) 

  ∀ a ∈ A, ∀ k ∈ {r, nr} × D. 

Sketch of Proof: The only difference to the proof of 
Theorem 1 is that we have to consider multicommodities 
and destinations. In the case the PDE is well-posed and 
admits a unique weak solution, the same reasoning as above 
will complete the proof. The result of existence for  b ≡ 0  and  
d ≡ 1  is provided in [25].

E. Numerical Realization of the Nonlocal Model

We present for a specific case a numerical realization 
of the nonlocal model. For simplicity, we now assume that  
 b ≡ 0  and  d ≡ 1 . Then, following [25] and also the sketch of the 
proof of Proposition 1 in the given framework, the solution can 
be presented in terms of characteristics. Define the integral 
equality for  k ∈ {r, nr} × D  on a given link  a ∈ A  for  t ∈ [0, T] 

  ξ  a  k  (t)   =  ∫ 
0
  
t
   λ  a     ( s,   ∑ 

k∈{r,nr}×D}
  

 

   ∫ 
0
  
s
      u  a  k  (y) dy+  ∫ 

0
  
1− ξ  a  k (s)

      ρ  a,0  k   (y) dy  )  ds.   

The solution of the integral equality which can be shown 
to be unique and continuously differentiable is the charac-
teristic (the major part of the proof of Theorem 2 consists of 
showing this), and with that characteristic it is possible to 
define the solution explicitly as 

   ρ  a  k  (t, x) =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  ρ  a,0  k   (x −  ξ  a  k  (t)),

  

 x ≥  ξ  a  k  (t)

     
  
 u  a  k  (  ( ξ  a  k )    

−1
  (  ξ  a  k  (t) − x)) 

  __________________  
  ξ  a  k    ′  (  ( ξ  a  k )    

−1
  ( ξ  a  k  (t) − x)) 

   ,
  

 x <  ξ  a  k  (t)
    (19)

for sufficiently small time  (t, x) ∈ (0, T) × (0, 1) . Therefore, 
one can solve (18) on a given time–space by a canonical 
fixed-point iteration, and then state the solution as given 
in (19). The procedure can now be iterated for sufficiently 
many time intervals to arrive at any finite time.

III .  ROU TING BEH AV IOR FOR 
DIFFER EN T INFOR M ATION PAT TER NS

Having presented and studied the dynamics on the network 
for a given routing policy, the next step is to define how that 

(18)

Fig. 5. Illustration of how routing services influence the traffic dynamics and the role of routed and nonrouted users. The block diagram 
corresponds to the lowest two layers of Fig. 2. Solid lines: Impact. Dashed lines: Information. Dotted lines: Actions.
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routing is actually determined and implemented. We pro-
vide a routing framework capable of integrating the status of 
the network on an abstract level.

A. Local Routing Choices

Since the process of choosing a path to one’s destination 
in the network will crucially depend on the information avail-
able to users, we will distinguish between routed traffic flow 
in Section III-B and nonrouted traffic flow in Section III-C. 
This is illustrated in Fig. 5, where the solid lines indicate phys-
ical coupling, the dashed lines information flow, and dotted 
lines actions. The status of the traffic network is influenced 
by routed and nonrouted traffic. However, while nonrouted 
users make routing decisions not based on the status of the 
entire network, routed users can use available information to 
get routed more efficiently. It is required on an abstract level 
to define how routing is made for routed flow but also how 
routing decisions of nonrouted traffic are made.

B. Routing Behavior for Routed Traffic Flow

The question of traffic assignment and routing naturally 
came with the development of the field of traffic engineer-
ing. In 1952, Wardrop formally defined two principles in [39] 
that any traffic assignment may satisfy in order to be optimal. 
Typically, Wardrop’s conditions are used to determine the 
routing in a given traffic network for a given demand and 
the corresponding origin–destination pairs [7]. However, 
those conditions were introduced for stationary traffic flow 
models and are not easily extended to a dynamic framework. 
Wardrop’s equilibrium can be formulated verbally as follows.

Definition 8 (Wardrop’s Principles—Stationary Case):

1)  The travel times on all the used paths in the network 
are equal. In addition, those are less than the travel 
time on any unused path which would be experi-
enced by a single vehicle changing its route.

2) The average journey time is a minimum.

Wardrop’s first principle can also be interpreted in some 
cases as a Nash equilibrium [7] and is sometimes referred 
to as user equilibrium. Users choose routes selfishly and do 
not cooperate.

As can be seen, for the definition of these principles, it is 
crucial to have a notion of travel time. In the time-depend-
ent case which we consider here, an extension of these prin-
ciples is necessary. We propose the following.

Definition 9 (Extension of Wardrop’s Principles Time—
Dependent Case):

1a)  At any time  t , for traffic conditions evaluated at  
time  t , Wardrop’s first principle is satisfied, in a sta-
tionary sense.

1b)  The travel times on all the used paths, taking 
into consideration the time evolution of traffic 

conditions, are equal. In addition, they are less than 
the travel time on any unused path which would be 
experienced by a single vehicle changing its route.

 2)   The average journey time is a minimum considering 
the entire time horizon.

This generalization from the stationary case to the time-
dependent case is not without problems. While 1a) only 
requires route choices to be based on the current state of 
traffic, i.e., instantaneous, 1b) needs to know what traffic 
will look like in the future. This requirement necessitates 
full information on the network at future times or, in a 
weaker interpretation, requires a proper forecast.

The second principle 2) can also be interpreted as a sys-
tem optimal solution or a so-called social optimum. It will 
be addressed in Section III-D as an optimal control problem.

All the introduced Wardrop’s conditions can be formu-
lated mathematically, as a set of equations to solve.

When it comes to incorporating routed and nonrouted 
flow, Wardrop’s conditions have to be modified, since it can be 
expected that routed users have more knowledge (and finally) 
perfect knowledge of the actual state of the traffic network.

In a more realistic setup, vehicles will actually not use 
Wardrop’s principle individually but rely on service provid-
ers, which collect this information and pass it to users in 
an adapted or conditioned form, not necessarily following 
1) in Definition 9. This is why we introduce another layer 
between Definition 9 and the routing choice.

Definition 10 (Routing Principles for Routed Traffic 
Flow): We define the following principles regarding how 
routed flow might make their decision:

•  full information: routed flow obtains full information 
to make the best choice, i.e., is able to follow 1) in 
Definition 9;

•  delayed information: routed flow obtains routing sug-
gestions based on the traffic scenario of the near past;

•  incentivized information: routed flow obtains routing 
suggestions where not necessarily travel time is mini-
mized but congestion, or pollution, or other objec-
tives, which are not necessarily known to the flow;

•  database driven information: routed flow obtains 
routing suggestions not based on the current status of 
the network but on a database with recorded informa-
tion and heuristics;

•  simplified forecast information: routed flow obtains 
routing suggestions, where the routing is actually 
based on a simplified forecast in time.

As can be seen, except for full information [which corre-
sponds indeed to 1a) in Definition 9] and simplified forecast 
[which might be interpreted as a weak form of 1b)], all the other 
routing suggestions are “suboptimal” in comparison with hav-
ing full information at every time. Note also that in Definition 
10, categories are not exclusive of each other, i.e., information 
can be full, but delayed, partial and incentivized, etc.
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C. Routing Behavior for Nonrouted Traffic Flow

A key question of interest is how nonrouted users make 
their routing decisions. In response to this question, several 
reasonable answers can be given, each leading to specific 
modeling approaches.

Definition 11 (Behavior of Nonrouted Traffic Flow): We 
define the following principles regarding how nonrouted 
flow might make their decisions.

•  Static: The nonrouted flow follows a predetermined, 
well-known path between the origin and the destina-
tion and does not change its routing. The routed flow 
allocation is then independent of the traffic condi-
tions on the network.

•  Exante: The nonrouted flow determines its routing 
based on the state of traffic at the time it enters the 
network. This routing is then independent of the evo-
lution of traffic conditions.

•  Local: The nonrouted flow considers local informa-
tion and changes its routing dependent on if there is 
congestion in a close neighborhood ahead of it.

•  Subnetwork: The nonrouted flow only considers a 
subnetwork for its routing choices, since it might not 
be aware of shortcuts, and tries to avoid arterial roads.

In reality, the routing process is a combination of a sub-
set of aforementioned strategies and also individual driver 
choices. Part of the difficulty in modeling this problem is 
precisely the heterogeneity of the populations, leading to 
significant differences in the information patterns used for 
routing. However, to understand dynamics better and to be 
able to identify specific phenomena and patterns, it seems 
crucial to keep the system as simple as possible.

Remark 6 (Wardrop’s Principles): From the viewpoint of 
Definitions 10 and 11, Wardrop’s principles might not seem 
to be reasonable anymore, since routed users are routed 
externally. Without an extensive data study there is no way 
of knowing if external routing really follows Wardrop’s prin-
ciples. Nonrouted users do not have enough information to 
follow Wardrop’s principles in case there are high fluctua-
tions in the traffic flow. Thus, the entire flow of routed and 
nonrouted users might instead follow these new principles.

Challenge 1 (Routed and Nonrouted Flow): We have now 
introduced several routing choice models. These models can 
capture many phenomena which we expect to see for routed 
and nonrouted traffic flow. However, the routing choice 
models and the corresponding traffic flow model have to be 
tested for validity and realism when it comes to the applica-
tion to more realistic traffic scenarios.

As the routing  θ ∈ Θ  was arbitrary in Theorem 2, we can 
now consider different realizations and thanks to the results 
above we always obtain a well-posed and unique solution on 
the network.

D. Global Route Choices and Time-Optimal Routing

An interesting application of the introduced routing 
behavior principles is the solution of the corresponding 
minimization problem that provides as a result a social opti-
mum. Thereby, we mean with a social optimum a solution 
which optimizes routing decisions (and, optionally, depar-
ture times) to the benefit of everyone over the entire time 
horizon and, therefore, taking into account the evolution of 
the network. This is a nonlinear infinite-dimensional opti-
mization problem. For larger networks, it is numerically 
almost intractable. However, for small networks, which 
could serve as a benchmark for the routing choices pre-
sented above, it can be computed. Dependent on the norm 
we choose to measure travel time or flux in the network, we 
will obtain different results. For reasons of simplicity we use 
the   L   2  -norm, but emphasize that the presented results do 
not require this specific setup. Moreover, since we are in 
an optimal control framework over time, we can also add as 
minimization variable the departure time of the flow.

Recalling that the flow entering the network is the time-
varying source  s , we assume this demand to be known and 
given over time by   d  a  v,l  ∈  ℝ ≥0    for  v ∈ V ,  a ∈  A out   (v)  and  l ∈ 
{r, nr} × D  and define all admissible inflows via the set 

          ~ S  : = S ∩  { s  a  v,k  ∈  L   ∞  ((0, T);  ℝ ≥0  ) :  ∫ 
0
  
T
   s  a  v,k   (t) dt  

    =  d  a  v,k    ∀ v ∈ V, a ∈  A out   (v) , k ∈ {r, nr} ≈ D}  .   

Equation   ∫ 0      T   s  a  v,k   (t) dt =  d  a  v,k   for  v ∈ V, a ∈  V out   (v)  allows 
the departure rate   s  a  v,k  (t)  to vary over time  t ∈ (0, T)  as long 
as it satisfies the demand   d  a  v,k   over the entire considered 
time horizon  (0, T) . In case only a small quantity of flow 
leaves first, later in time a higher quantity has to leave to 
satisfy the demand constraints.

We then have to define an appropriate functional  J  to 
formulate an optimal control problem

  min (θ, s)∈ Θ  ×   ~ S     J(θ, s) 

 s. t.  the dynamics in Section II-D and the network

 constraints in Section II are satisfied, 

 s ∈   ~ S  for the given   demand 

 d  a  v,k ,  v ∈ V, a ∈  A out   (v), k ∈ {r, nr} × D, 

  θ ∈ Θ with Θ defined in (1).  (21)

Remark 7 (Reduced Optimal Control Problem): If we 
do not impose control on the departure time  s  and assume 
that  S  is given over the entire time horizon, the optimal 
control problem with respect to  (θ, s)  becomes an optimal 
routing problem, where the best possible  θ  subject to the 
given objective function is determined. On the other hand, 
one can fix the time-dependent routing  θ  and only optimize 
with respect to the departure rate  s  as also done for a time 

(20)
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discrete model in Section IV-B. In both cases, Theorem 3 
still remains valid.

To obtain reasonable routing results, the choice of the 
objective function  J  is crucial. Often it should to some extent 
represent the travel time in the network. We use the follow-
ing functional: 

  J(θ, s)  : =   ∑ 
v∈D

    ∑ 
   k 1  ∈{r,nr}

   ∫ 
0
  
T
   ( ∫ 

0
  
t
    ∑ 
 v ̃  ∈V\{v}

     ∑ 
 a∈ A out  ( v ̃  )

   d  a   v ̃  ,( k 1  ,v)          

    −   ∑ 
a∈ A in  (v)

   y  a  ( k 1  ,v)   (s) ds
)

    
2
  dt 

where   y  a  k  ≡  ρ  a  k  (⋅ , x)  λ  a   (⋅ ,  ∫     ρ   k   (⋅ , s) ds)   | x=1   . The term  

  ∑  v ̃  ∈V \{v}             ∑ a∈ A out  ( v ̃  )  
      d  a   v ̃  ,( k 1  ,v)    represants the total flow of 

cars which have to arrive at their destination  v ∈ D  and   
∑ a∈ A in  (v)  

      y  a  ( k 1  ,v)  (t)   the time-dependent flow which finally 
arrives at destination  v ∈ V  at  t ∈ (0, T) .

Remark 8 (The Proposed Objective): The objective (22) is 
a so-called backlog functional which penalizes flow not yet 
arrived at the destination in the   L   2  -norm. It prohibits that vehi-
cles remain too long on the road network, since every delay in 
the arrival time is penalized by the backlog functional (22).

Note that  θ  and  s  are not explicit variables in (22), how-
ever, they are implicitly encoded due to the network coupling.

The set    ~ S   defines a convex set of the possible departure 
times. In addition, the set of routing functions  Θ  is a convex 
set. This allows us to show that this complex optimal control 
problem has at least one solution assuming sufficient regu-
larity on inflow and routing.

Theorem 3 (Existence of a Social Optimum): Suppose 
that for every  s ∈ S  and for every  v ∈ V  and  a ∈  A out   (v)  the 
split   s  a  k   is of bounded variation with a uniform bound. In 
addition, assume that the analog is true for any  θ ∈ Θ . Let 

the network be acyclic. Then, there exists a solution of the 
optimal control problem (21)–(22).

Sketch of Proof: Due to the objective function  J  being 
bounded from below, there exists a sequence   (  θ  l   ,  s l  ) l∈ℕ    con-
verging to the infimum of the objective. Due to the uniform 
bounded on the variation and the convexity, we obtain by 
means of a compactness argument a strongly convergent 
subsequence in   L   p   and due to the properties of the solu-
tion of the nonlocal PDE model, a weak convergent subse-
quence of the solution to the PDEs on the network. Since 
the product of a weakly convergent sequence and a strongly 
convergent sequence is again weakly convergent, we find a 
sequence of minimizers converging to the infimum of the 
objective function. Due to the convexity of the sets  S  and  Θ  
and their closedness, and thanks to the lower semicontinuity 
of the objective function, the infimum is actually achieved.

Remark 9 (Bounded Variation and More Regular Splits): 
The space of bounded variation does not allow arbitrarily 
many “big” jumps, which is thus a reasonable assumption 
for any routing and departure policy. Theorem 3 remains 
valid if we assume that our routing functions are uniformly 
Lipschitz continuous, which is a much stronger condition 
than the uniform bounded variation bound. In that case, the 
splits are not allowed to jump over time any more, in par-
ticular making the routing at the nodes continuous.

One might wonder if the computational effort to solve the 
introduced optimal control problem seems appropriate, since 
the computation of such a minimum is numerically hard. It 
is in particular not straightforward to apply first-order adjoint 
methods [40]. However, as a benchmark for Section III, it 
might be worthwhile to compute or at least approximate the 
solution to be able to compare the results with those obtained 
by other routing choices as provided in Definition 11, i.e., com-
paring a more social solution with a (purely) selfish one.

(22)

Fig. 6. Illustration of how a mobility service for cooperative freight transport can be implemented over the layered framework in Fig. 2. 
Solid lines: Impact. Dashed lines: Information. Dotted lines: Actions.
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I V.  A MOBILIT Y SERV ICE FOR 
COOPER ATI V E FR EIGHT 
TR A NSPORTATION

In this section, we utilize the modeling framework introduced 
above to present how a class of mobility services can be devel-
oped for cooperating fleets of trucks. Road freight transporta-
tion represents an essential part of traffic flow, sometimes up 
to 60% of traffic on some route like the I-710 in Los Angeles.

By extending the layered model for routing services in 
the previous section, we end up with the model and infor-
mation flow illustrated in Fig. 6. It represents an underly-
ing multicommodity traffic flow model with both light and 
heavy-duty vehicles. Thus, the example of freight illustrates 
the generality of the proposed framework, and links to the 
nonlocal model in Sections II-C and II-D.

In addition to the selfish routing of the information-dis-
abled and -enabled users, a cooperation layer is introduced 
for the joint decisions made by fleet owners and freight 
service providers. We subsequently illustrate the setup on 
a platooning service, where these decisions are made to 
maximize the opportunities for trucks to share part of their 
overall travel from source to destination with other trucks 
to form fuel-saving vehicle platoons. For such a system it 
is shown that if global traffic information is available and 
both routing and velocity decisions can be influenced, a 
global optimizer can be derived. It is also shown that the 
coordination can be done over discrete sets of assignments 
represented by road segments traveled over certain time 
intervals. The corresponding match making between trucks 
with potentially overlapping travel assignments can be effi-
ciently computed even in a distributed manner.

A. Optimal Control of Individual Traffic Flows

We consider a scenario where perfect traffic network 
information is available and both routing and velocity deci-
sions can be influenced. Such a scenario is already relevant 
today for truck platooning discussed in this section, and it 
will be even more relevant in the future with partial or full 
vehicle automation. For this setup, it is possible to form a 
control problem optimizing the decisions based on a suita-
ble cost function. Here we study a setup where we are inter-
ested in optimizing one specific commodity, namely, the 
flow of goods traffic. For truck fuel savings enabled by vehi-
cle platooning, it is shown that an optimal control problem 
can be solved over the flow model introduced previously.

We consider one commodity (representing trucks that 
can platoon with each other) and make its velocity function 
explicitly space and time dependent. To simplify the pres-
entation, we consider only a single road assumed to be suf-
ficiently long. The velocity of the trucks (or rather the truck 
flow) depends on position along the road and on time. On 
the given road, which is parametrized by  x ∈ X  with  X ⊂ ℝ  a 
given bounded interval, we assume that there is typical traffic 
modeled by a nonlocal conservation law as introduced before

   ∂ __ ∂ t   ρ(t, x) +   ∂ ___ ∂ x   (v (t,  ∫    ρ  (t, s) ds) ρ(t, x))  = 0 ,

   (t, x) ∈ (0, T) × X 

 ρ(0, x) =  ρ  0   (x),   x ∈ X  

 v (t,  ∫    ρ  (t, s) ds) ρ(t, x)  | x=0   =  u   1  (t),  t ∈ (0, T)  (23)

where the velocity  v ∈  C   1  ( [0, T]  × ℝ;  ℝ >0  )  is assumed to be 
strictly positive and depends on the average load of the road. 
Here,   ρ  0    is the given initial density on the road and   u   1   the 
flux entering the road over time. Proposition 1 guarantees 
the existence and uniqueness of a solution.

It is sometimes reasonable to suppose that the number 
of trucks is relatively small; thus, we assume that the over-
all traffic is not influenced by the truck dynamics, but the 
overall traffic influences the trucks. This influence is speci-
fied by a nonlocal term   ∫    ρ  (t, s) ds . Making the truck velocity 
function explicitly space and time dependent, the dynamics 
of the truck density  q : (0, T) × X→ ℝ ≥ 0    follows the following 
balance equations for given boundaries  b, d ∈  C   1  (X; X) :

   ∂ __ ∂ t   q(t, x) +   ∂ ___ ∂ x   (λ (t, x,  ∫ 
b(x)

  
d(x)

  ρ  (t, s) ds) q(t, x))  = 0, 

  (t, x) ∈ (0, T) × X 

 q(0, x) =  q 0   (x), x ∈ X  

 λ (t, 0,  ∫ 
b(0)

  
d(0)

  ρ  (t, s) ds) q(t, 0) =  u   2  (t),   t ∈ (0, T).  (24)

Here, as pointed out, the velocity  λ  is also space depend-
ent and depends nonlocally on the nonlocal term of the 
model. The quantity   q 0    represents the initial density of 
trucks on the road, and   u   2   the entering flux of trucks.

Now, our aim is to control the velocity function  λ  in a 
given feasible set in such a way that the density  q  becomes 
more and more localized. This can be interpreted as the con-
tinuous analog to truck platooning, as the density of trucks 
is concentrated over time.

We assume trucks only change their speed between 
speed limits   λ  min   ∈  ℝ >0    and   λ  max   ∈  ℝ >0    with   λ  min   ≤  λ  max    
and that they will not change speed too fast in space and 
time (which can be interpreted as a Lipschitz bound on the 
space dependency of the velocity function). Then, the set of 
admissible speeds (the control set) can be denoted by 

 Λ  : = {λ ∈ C( [0, T] × X ×  ℝ ≥0   ; ℝ) :  λ  min   ≤ λ(t, x, y) ≤  λ  max   , 

  |λ(t, x, y) − λ      (     t ̃  ,  x  ̃  ,ỹ) |  ≤ L (|x  −   x ̃  | + |y  −   y ̃  | + |t −   t ̃  |)   

  ∀ t,   t ̃   ∈ [0, T] ,   ∀ x,  x  ̃   ∈ X,   ∀ y,  y  ̃   ∈  ℝ >0   }  (25)

with  L ∈  ℝ ≥0    given.

Remark 10 (The Set  Λ ): The set  Λ  can be simplified to 
functions that are only space dependent and where there is 
explicit dependency on time or a nonlocal term.
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Theorem 4 (Well-Posedness of the PDE System): For 
every function  λ ∈ Λ  and initial and boundary data of  
  L   ∞  -regularity ( p ∈ [1, ∞) ) the system of initial boundary 
value problems (23)–(24) admits a unique weak solution  
ρ, q ∈ C([0, T];  L   p  (X)) , which is essentially bounded over 
space and time.

Sketch of Proof: Since there is only a unidirectional cou-
pling between the PDEs, we know by Proposition 1 that the 
equation in  ρ  admits a unique, weak solution.

Since initial and boundary data are essentially bounded, 
so is  ρ . Thus, the velocity of the equation in  q  (the equa-
tion for the trucks) is uniformly Lipschitz continuous. This 
is obvious for the first two components by the assumptions 

on  Λ , for the third component, i.e.,   ∫ b(x)  
d(x)  ρ  (t, s) ds , we can 

propose a Lipschitz constant by   (‖ b ′   ‖  L   ∞ (X)   + ‖ d ′    ‖  L   ∞ (X)  )  

‖ρ  ‖  L   ∞ ((0,T) × X)   . We obtain that the velocity function  (t, x)↦λ 

(t, x,  ∫ b(x)  
d(x)  ρ  (t, s) ds)   is uniformly Lipschitz continuous by the 

definition of  Λ  in (25).
This enables us to use the method of characteristics. 

Define for  (t, x) ∈ (0, T) × X  the integral equation 

  ξ [t, x] (τ) =  x  +   ∫ 
t
  
τ

  λ   ( t, ξ [t, x] (s),  ∫ 
b(ξ[t,x](s))

  
d(ξ[t,x](s))

  ρ  (t, y) dy )   ds,        

 

  

 
  τ ∈ [0, T] .

   

As pointed out, the function  ξ [t, x] (⋅)  defines the charac-
teristic for every given  (t, x) ∈ (0, T) × X . It admits for every  
(t, x) ∈ [0, T]  × X  a unique solution which is Lipschitz con-
tinuous in all components. Due to the assumption on  Λ  being 
nonnegative, we can also define for sufficiently small time   T 1   
∈ (0, T]  the inverse with respect to time, i.e.,  ξ  [t, x]   −1  : X → 
[0,  T 1   ]  and can state the solution of the PDE in  q  as 

  
q(t, x) =

  
 

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 q 0   (ξ [t, x] (0)) ⋅  ∂  2   ξ [t, x] (0),  x ≥ ξ [0, 0] (t)

       
u(ξ  [t, x]   −1  (0))

  ____________  
λ(ξ  [t, x]   −1  (0) , 0)

   ⋅  ∂  2   ξ [ξ  [t, x]   −1  (0) , x] (t),    

  x < ξ [0, 0] (t) ,

   
     

 

  

                                           t ∈ [0,  T 1   ]

   

where   ∂  2    denotes the partial derivative of a function with 
respect to the second component. This expression can be 
shown to satisfy all required properties to be the unique 
weak solution of the PDE on a sufficiently small time hori-
zon. Given new initial datum and the shifted boundary 
datum at  t =  T 1   , we can reiterate the procedure. Since the 
characteristics do not explicitly depend on    q , we can thus 
exhaust every finite time horizon.

Using the developed framework for optimal platooning, 
for  i ∈ {1, 2}   we consider the optimal control problem 

   min  
λ ∈ Λ

       J i   (q, ρ)  (28)

 s.t. (23)  and (24) 

where the objective is given by 

   J 1   (q)  :=  ∫ 
0
  
T
   ∫ 
X
    x   2    q(t, x) dx −   ( ∫ 

X
   x  q(t, x) dx)    

2
  dt 

or 

  J 2   (q, ρ)  :=  ∫ 
0
  
T
   ∫ 
X
    x   2    q(t, x) (1 + ρ(t, x)) dx 

                −   ( ∫ 
X
   x  q(t, x) (1 + ρ(t, x)) dx)    

2
  dt.   

The objective   J 1   (q)  can be interpreted as a measurement 
for the variance of the truck flow while   J 2   (q, ρ)  represents a 
weighted variance where the weight is inducted by the over-
all density of traffic on the road. In both cases, we aim to 
minimize the variance, which can be interpreted as continu-
ous platoon formation.

As pointed out, the solution in  ρ  is always predetermined 
and thus acts only as a “parameter” for the optimal control 
problem. Given the well-posedness in Theorem 4 of the PDE 
system, another question when it comes to infinite-dimen-
sional optimization is the existence of a minimizer of the 
introduced optimal control problem (24).

Theorem 5 (Existence of an Optimizer): Under the 
assumptions of Theorem 4 and given  Λ  in (25), the optimal 
control problem (28) admits a solution.

Sketch of Proof: By Theorem 4 we have the well-posedness 
of a solution for every velocity  λ ∈ Λ . Since the objective 
function is bounded from below, we can find a minimizing 
sequence   (  λ  l  ) l∈ℕ   ⊂ Λ . The set  Λ  admits a uniform Lipschitz 
constant and thus, there exists a subsequence   ( λ   l k    ) k∈ℕ    strongly 
converging in   L   p  ((0, T))  to a limit   λ  *   ∈ Λ . By Gröwall’s lemma, 
we can show that the corresponding characteristics as given 
in (26) converge uniformly. Using the explicit solution for-
mula in (27) one can use the uniform convergence of the 
sequence of characteristics to obtain the weak convergence 
of the solution. By the lower semicontinuity of the objective 
function, we obtain as minimizer indeed   λ  *   .

Theorem 5 only guarantees the existence of a mini-
mizer, while, depending on initial and boundary data, 
there might be several local optima. With a canonical opti-
mization framework we can thus improve the situation 
although there is no guarantee on ending up with a global 
optimizer. The significance of the optimal control problem 
(28) and the theorem is considerable. It enables the com-
bined use of flow models with different populations and a 
framework for cooperation. To illustrate the modeling, we 
present an example.

Example 2 (Optimal Platooning on a Single Road): For 
the named optimal control problem, take as objective func-
tion   J 1    and as velocity  λ(t, x, y) ≡  λ ̃  (t, x)  for  (t, x) ∈ (0, T) × X  
and  y ∈ ℝ . Then, we do not have to solve for  ρ  but only for  
q . The numerics presented in Fig. 7 are achieved by using 
an explicit formula of the solution  q  for given  λ  in terms 

(26)

(27)
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of characteristics, as presented in the sketch of the proof of 
Theorem 4.

As one can see in Fig. 7, we start with initial data  
  q 0   (x) = (2. 6 − x) (x − 1)  𝟙 [1,2.6]   (x) . In the simulations for 
the upper plots, we have applied a constant velocity  λ ≡ 0. 75  
(see top right plot). The evolution of the initial condition 
moves with constant speed to the right (see the top left and 
middle plots).

In the bottom plots, we apply an optimization algorithm 
over space and time on the same initial data with a Lipschitz 
condition on the velocity of  L = 0. 1  and upper and lower 
bounds   λ  min   = 0. 5  and   λ  max   = 1 , respectively. The flow now 

becomes more concentrated in space over time compared 
to the upper plots, as desirable. This results from the 
optimized velocity  λ , which speeds up on the left-hand 
side of the peak and slows down on the right-hand side 
over time.

B. Coordinating the Formation of Truck Platoons

The previous section described how to continuously 
steer trucks to form platoons if they are close in time and 
space. In this section, we discuss how to coordinate truck 
departure times, routes, and velocities to maximize the 

Fig. 7. The left two pictures show the evolution of flow over space and time  (t, x) ∈ (0, 2) × (0, 5) . The right two pictures represent velocity. 
The bottom plots are for initial data   q 0   (x) = (2. 6 − x) ⋅ (x − 1) ⋅  1 [1,2.6]   (x) ,   λ  min   = 0. 5,  λ  max   = 1 ,  L = 0. 1 , and boundary data equal zero. Note 
that the flow concentrates the more time passes. The top plots are with constant velocity  λ ≡ 0 . 75 . The evolution of the initial datum 
for constant velocity is shown in red dashed line, and the evolution for the optimized velocity is shown in orange dotted line: Density is 
concentrated over time.

Fig. 8. (a) An example of a Swedish freight transportation network. (b) The travel plan of vehicles going from Kiruna to Stockholm with 
sampling time 5 min.
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opportunity for such continuous steering to be enabled. 
We illustrate the problem by considering the Swedish road 
network shown in Fig. 8(a). It will be shown that it is pos-
sible to slightly adjust the velocity of the trucks a long time 
in advance to improve the chances of platooning on shared 
links. It can be viewed as possibly changing the departure 
times of the vehicles so that they can meet over the shared 
links in various paths at similar times. In this section, we 
use the new notation  G = (𝕍, 𝔼)  to denote the directed 
graph modeling the freight transport network, where 𝕍 is 
the set of vertices, such as transportation hubs and large 
metropolitan areas, and  𝔼 ⊆ 𝕍 × 𝕍  is the directed edges, 
such as the highway networks spanning across a country 
or continent. Fig. 8(a) illustrates a freight transportation 
network among some major cities in Sweden. This freight 
network is subsequently used to demonstrate the defini-
tions and the results.

We consider the planning horizon  T ∈ ℕ , where  ℕ  
denotes the set of natural numbers. Each vehicle  i ∈ 𝕀 := 
{1, …, I} , with  I ∈ ℕ  denoting the number of the vehicles, 
has a transportation assignment over the horizon  𝕋 := 
{1, …, T} . The transportation assignment is modeled by 
the time series   e i   : 𝕋→ 𝔼 , such that the ordered set   ( e i   [t] ) t∈𝕋    
defines a walk over the graph G connecting the source of 
vehicle  i  to its destination. Note that a vehicle can be on 
an edge for more than one time step depending on the 
length of the road corresponding to that edge. Vehicle  
i  can decide to postpone its travel assignment by   τ  i   ∈ 
{    τ ̲   i   , …,    τ  ̅   i   } ⊆ 𝕋 ; however, this comes at the cost of   h i   ( τ  i  ) . 
The cost could be caused by contract fees, driver salaries, 
or lost opportunities. Note that this postponement could 
be an actual delay in the assignment or it could model 
the case where the vehicle drives slightly slower for the 
catchup to be possible in the future.

The underlying goal of ensuring that the vehicles use the 
same road at similar times can be achieved by solving the 
optimization problem for  α ∈  ℝ >0    

  min  ( τ  i  ) i∈𝕀        ∑ 
i∈𝕀

    h i    ( τ  i  ) − α   ∑ 
t∈𝕋

    ∑ 
  e∈𝔼

   w e     f( |  {i |  e i   (t −  τ  i  ) = e} | )  (29a)

  s.t   τ  i   ∈ {    τ ̲   i   , …,    τ ̅   i   }, ∀ i ∈ 𝕀  (29b)

where  f(⋅)  is a mapping that grows faster than a linear func-
tion, e.g., quadratic or exponential, to ensure that the cost 
function rapidly decreases upon increasing the number of 
the vehicles on an edge. Furthermore, the constant   w e   > 0  
denotes the weight attached to the desire for improving 
platooning possibility on edge  e , e.g., it is desirable to form 
platoons on long freeways.

The optimization problem (29) can be transformed into 
a nonlinear integer program by setting   τ  i   =  ∑ j∈𝕋      j  z ij    , where   
z ij   ∈ {0, 1}  for all  j ∈ 𝕋  and   ∑ j∈𝕋       z ij   = 1  . We define vector   ξ  ije   ∈  
{0, 1}   |𝕋|   such that  ℓ -th entry of   ξ  ije   , denoted by   ξ  ije,ℓ   , is equal 
to one if   e i   (ℓ − j) = e  and zero otherwise. It can be shown 
that  | {i |  e i   (t − τ) = e} |  =  ∑ j∈𝕋       ∑ i∈𝕀  

     ξ  ije,t      z ij   , and, as a result

  ∑ 
i∈𝕀

    h i    ( τ  i  ) − α   ∑ 
t∈𝕋

    ∑ 
  e∈𝔼

  f   ( |  {i |  e i   (t −  τ  i  ) = e} | ) 

   =  ∑ 
j∈𝕋

     ∑ 
  i∈𝕀

   h i     (j)  z ij   − α   ∑ 
t∈𝕋

    ∑ 
  e∈𝔼

  f   
(

 ∑ 
j∈𝕋

     ∑ 
  i∈𝕀

   ξ  ije,t      z ij  )
 .  

Thus, the optimization problem in (29) can be trans-
formed into the nonlinear integer program 

  min  ( τ  i  ) i∈𝕀        ∑ 
j∈𝕋

     ∑ 
  i∈𝕀

   h i     (j)  z ij   − α   ∑ 
t∈𝕋

    ∑ 
  e∈𝔼

  f   
(

 ∑ 
j∈𝕋

     ∑ 
  i∈𝕀

   ξ  ije,t      z ij  )
 , 

 s. t   z ij   ∈ {0, 1}, ∀ i ∈ 𝕀,  j ∈ 𝕋 

    ∑ 
j∈𝕋

    z ij    = 1, ∀ i ∈ 𝕀 

   z ij   = 0, (1 ≤ j ≤    τ ̲   i  ) ∧ (    τ ̅   i   ≤ j ≤ T) , ∀ i ∈ 𝕀. 

This problem is NP-hard in general [41]. In fact, the 
computational complexity of solving this problem might 
grow exponentially in the number of the considered trucks 
and their flexibility     τ  ̅   i   −    τ ̲   i    for all  i .

Remark 11 (Decomposition of the Scheduling Problem): 
For the case where the flexibility in scheduling is lim-
ited     τ  ̅   i   ≪ T  (which is highly likely in practice because 
long delays might result in undesirable outcomes), the 
large integer program in (29) can be decomposed into 
smaller problems featuring only subsets of vehicles. This 
is because even if some of the vehicles delay their depar-
ture times by the largest possible amount, they cannot 
meet the vehicles that depart long after them or might 
arrive at their common links much later than them (due 
to long travel times across the country). Therefore, with 
little loss of generality, the scheduling problem in (29) 
can be solved for fewer vehicles for which there exists a 
possibility to cooperate.

The optimization problem in (29) can be solved in a dis-
tributed manner among all the vehicles. Define  g :  𝕋   |𝕀| → ℝ , 
with  ℝ  denoting the set of real numbers, such that  g( τ  1   , …, 
 τ  I  ) = − α  ∑ t∈𝕋       ∑ e∈𝔼      f   ( |  {i |  e i   (t −  τ  i  ) = e} | ) . This way, the cost 
function of (29) becomes   ∑ i∈𝕀       h i    ( τ  i  ) + g( τ  1   , …,  τ  I  ) . Note that  
g(⋅,  τ  −i  ) ,  ∀ i , can be interpreted as a pricing (or signalling) 
mechanism employed by the coordinator to nudge vehicle  i  
toward departure times with higher chances of vehicle pla-
tooning. Now, consider the following algorithm. Consider 
the case where each vehicle plans to minimize the cost  
  U i   ( τ  i   ,  τ  −i  ) =  h i   ( τ  i  ) + g( τ  i   ,  τ  −i  ) , and the conflict of interest 
results in a strategic game among all the vehicles. Now, a 
learning algorithm, such as the log-linear learning dynam-
ics [42], can be utilized to find equilibria of the game. For 
instance, at iteration  β ∈ {0, 1, …} , a vehicle from the set  
𝕀  is selected randomly with uniform distribution. The log-
linear learning dynamics dictates that vehicle  i  updates its 
decision, the delay in its transportation assignment, ran-
domly such that the probability of selecting action   τ  ′    is 
given by 
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 P{ τ  i   [β]  =  τ  ′  } =   
exp (− [ h i   ( τ  ′  ) + g( τ   ′  ,  τ  −i   [β − 1] ) ]  / )

   ___________________________   

  ∑ 
 τ  ″  =   τ ̲   i  

  
   τ  ̅   i  

  exp  (− [ h i   ( τ  ″  ) + g( τ   ″  ,  τ  −i   [β − 1] ) ]  / )

    (30)

where   > 0  is a constant and   τ  −i   :=  ( τ  j  ) 
j∈𝕀\{i}

   . The rest of the 

vehicles follow the update rule that   τ  j   [β]  =  τ  j   [β − 1]  for all  
j ≠ i . Fig. 9(a) demonstrates the communication structure 
required for implementing this algorithm. The coordina-
tor (i.e., the cloud computing freight transport service) 
requires to know the path that each vehicle takes and the 
delay   τ  j   [β − 1] ,  ∀ j , to calculate function  τ ↦ g(τ,  τ  −i   [β − 1] )  
and return it to vehicle  i  for following update (30). It can 
be proved that the stationary distribution of the action pro-
file of the vehicles, irrespective of the initialization of the 
algorithm, follows (31), shown at the bottom of the page.

The proof follows the following line of reasoning. It  
can be shown that  Φ( τ  1   , …,  τ  I  ) =  ∑ i∈𝕀  

     h i    ( τ  i  ) + g( τ  1   , …,  τ  I  )  is a 
potential function for the game, i.e.,  Φ( τ  i   ,  τ  −i  ) − Φ(  τ ′   i   ,  τ  −i  )  
=  U i   ( τ  i   ,  τ  −i  ) −  U i   (  τ  ′   i   ,  τ  −i  ) . Therefore, the log-linear learning 
dynamics in (30) can be used to extract an equilibrium of the 
game corresponding to the global minimizer of the potential 
function [42], [43]. The proof is similar to the scheduling 
problem considered in [44].

The stationary distribution of the action profile of the 
vehicles in (31) shows that, upon selecting a small enough   ,  
the stationary distribution of the scheduling concentrates 
on the global solution of (29), i.e., they infinitely visit the 
neighborhood (in terms of the cost) of the global solu-
tion of (29) often. This is interesting as it makes it possi-
ble for the vehicles to coordinate their actions using their 
mobile devices. However, it is also important to note the 
effect of    on the numerical stability of the algorithm. That 
is, if    is selected too small, numerical issues might arise 

as exponential of large numbers might be required to be 
calculated.

Example 3: We consider 40 vehicles poised to travel over 
the Kiruna–Stockholm path in Sweden; see Fig. 8(a). 
The sampling time is selected to be 5 min. The number 
of instants that a vehicle stays on an edge of the graph 
in Fig. 8(a) is chosen to be proportional to its physical 
length. Fig. 8(b) shows the sequence of the edges used by 
the vehicles traveling from Kiruna to Stockholm. Their 
departure time is spread equally between midnight and  
2 A.m. In addition, it is assumed that 40 vehicles are going 
to travel over the Östersund–Malmö path (going through 
Stockholm–Helsingborg connection).

A similar plan to Fig. 8(b) can also be devised for these 
vehicles. The departure time of these vehicles is spread uni-
formly between 7:00 A.m. and 9:00 A.m. Each vehicle can be 
delayed by at most 15 min. Note that many more vehicles 
might travel between Östersund–Malmö during the day, 
however, only the ones that depart between 7:00 A.m. and 
9:00 A.m. have a chance to platoon with the vehicles depart 
from Kiruna between midnight and 2 A.m. (due to the short 
delay constraint and the fact that it takes roughly 10:30 h 
to travel over Kiruna–Sundsvall and 2:30 h to travel over 
Östersund–Sundsvall). Let   h i   ( τ  i  ) = 0  for all  i  since 15 min is 
a relatively short delay (in comparison to the travel time of 
the paths). Pick  α = 1 ,  f(z) =  z   2  ,   = 100 . The weight   w e    is 
also selected to be proportional to the length of the edge  e  in 
reality. The distributed algorithm converges relatively fast 
within roughly 500 iterations (recall that in each iteration 
the decision of only one of the vehicles can be updated). A 
pair of vehicles is considered to have distance  d ∈ ℕ ∪ {0}  
from each other on edge  e ∈ 𝔼  if they arrive at that edge 

Fig. 9. The communication structure among the coordinator and the vehicles in the distributed setting (a) without and (b) with 
homomorphic encryption.

    lim  
β→ ∞

    P {τ [β] =  (  τ   ′   i  )  i=1  
m  } =   

exp 
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−  
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 ∑ 
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within  d  time steps of each other. Evidently, two vehicles 
that arrive at the same time step have a distance of zero from 
each other.

Fig. 10 illustrates the ratio of the number of the pairs 
of vehicles with a given distance for the optimal schedule 
(extracted from the convergence point of the suggested 
algorithm) and the case without any delay (i.e., no schedul-
ing) as a function of the distance. If the ratio is greater than 
one for a given distance, the number of the pairs of vehicles 
that have that distance is higher for the optimal schedule. 
The optimal schedule significantly increases the number of 
the vehicles with distance zero (noting that the ratio for dis-
tance zero is almost two for most of the edges). This greatly 
improves the chances of platooning as the vehicles with 
distance zero are only  ± 5 min away from each other and 
can easily form platoons. In fact, the relative increase in the 
amount of the average fuel saving facilitated by the increases 
in the platooning opportunities (assuming a linear increase) 
under the optimal scheduling in comparison to no schedul-
ing is 68%. Note that this improvement is achievable with 
only 15-min delays (or correspondingly small change in 
velocity). By doubling the maximum amount of allowable 
delay to 30 min, the relative increase in amount of the aver-
age fuel saving can be pushed to 269%, which means that 
the scheduling service would generate two to three times 
more platooning than the nominal case without the service.

A factor, which might keep fleet owners from coor-
dinating their platooning, is that they might be unwilling 
to share their private business data on vehicle routes and 
travel times. Such information could reveal their customer 
base and other competitive information. To alleviate these 
privacy concerns, a private match-making platform can 
be developed so that the fleet owners can evaluate  g( τ   ′  ,   
τ  −i   [β − 1] )  [see (30)]. For instance, the use of homomor-
phic encryption (see, e.g., [45]) enables the fleet owners to 
perform the function evaluation only using the encrypted 
information from the others and thus not infringing on their 
privacy. A similar technique was recently used in [46].

V. INCEN TI V ES CR E ATED BY COR DON 
PR ICING

One possibility to enforce cooperation according to the 
framework introduced in Fig. 2 is to create user incen-
tives through congestion or cordon pricing. It has been 
implemented in three major cities: Singapore, London, and 
Stockholm. It is designed to reduce vehicle presence in a 
central and typically congested area of a city, by imposing 
charges on vehicles entering or exiting a designated area 
(cordon). The first city to introduce cordon pricing was 
Singapore in 1975 as daily charges for entering the city 
center; fully automated electronic charging system was com-
pleted in 1998, in particular relying on the pioneering ERP 
system of Singapore. London introduced automated cordon 
pricing in 2003, whereas such a system was completed and 
made permanent for Stockholm in 2006. A comprehensive 
assessment of the ten-year impact of cordon pricing on the 
mobility patterns in Stockholm was recently completed 
[47]. The system is essential for Stockholm to succeed in 
becoming a completely fossil-free city by 2040 [48].

The cordon in the city of Stockholm is shown in 
Fig. 11 where the control points are the numbered red symbols 
[49]. These consist of gantries on which vehicle identification 
cameras and other hardware are installed. Most of the vehi-
cles entering or leaving the cordon are charged by a fee that 
is dependent on the time of day. Charges are implemented 
on working days only with a maximum charge of about 3.25€ 
for the morning and afternoon peak hours. The system is fully 
automated and identifies vehicles by registration plates. The 
time evolution vehicle passages are shown in Fig. 11 for four 
selected months distributed over a ten-year period [50]. The 
initial value (January 2006) corresponds to the monthly aver-
age before cordon pricing was implemented. As can be seen in 
Fig. 11, there are systematic differences between, for instance, 
January and June, with June being the month with the highest 
number of passages. Although the initial reduction of vehicle 
passages was substantial (around 20%), the number of passages 

Fig. 10. The ratio of the number of the pairs of vehicles with a given distance for the optimal schedule scaled over the case without any 
delay (i.e., no scheduling) as a function of the distance.
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has remained relatively steady since, showing a slight increase 
during 2016 in spite of the fact that the charge was increased 
from January 2016. Thorough analysis of the ten-year data on 
the effect of cordon pricing versus costs using a variety of meas-
ures indicates that an expansion of the cordon in Stockholm, 
increase in the charge, or introduction of the system to other 
Swedish cities would not be justified [47]. Data show that in 
spite of a higher charge, passage during peak hours is little 
affected by cordon pricing, while the low-charge off-peak hours 
are being more affected. The impact of the cordon pricing 
could perhaps be enhanced if the charge level was continu-
ously adjusted depending on traffic flow conditions at different 
parts of the city or cordon, similar to the “dynamic charging” 
in Singapore; no such development of the Stockholm system is 
currently being planned.

The experience of Stockholm [47] as well as of London 
[51] shows the limitation of a noninteractive, gantry-based 
cordon pricing system as a city-level instrument for achieving 
better shared use of the road infrastructure. The Singapore 
system is currently being transformed into a new gantry-
free and highly interactive system [52]. The new system is 
based on positioning from the Global Navigation Satellite 
System and is expected to be operational from 2020. An 
onboard unit with a SIM-card will enable personalized por-
tals for each driver or vehicle. All motorized vehicles will 
effectively be tracked with full anonymity guaranteed. The 
system will be capable of monitoring driving speeds, provid-
ing the basis for parking charges, distance-based charging, 
charging based on real-time congestion, dynamic pricing, as 
well as combining distance and congestion charging. It is 
also expected to facilitate the development of diverse apps, 
creating an added-value, rich ecosystem of transportation-
related services to both drivers and the transportation plan-
ning authority. Intelligent transportation with congestion 
pricing is likely to evolve from novel combinations of top–
down strategies with bottom–up choices by participating 
users. Physical constraints for traffic as flow on networks 

where drivers have comparatively few choices due to lim-
ited information [28], [53] need to be combined with appli-
cation-based systems where individual drivers have signifi-
cantly broader choices based on real-time processing of vast 
amounts of information on traffic conditions, congestion 
pricing, minimal transportation times, etc. To incorporate 
such choices in a predictive manner, the behavior of driv-
ers as human-social agents who do not necessarily make 
rational choices becomes increasingly important [54].

V I.  CONCLUSION

We have presented a novel framework to model and ana-
lyze how mobility management services influence traffic 
patterns. We reasoned about how specific information 
structures imposed by these services can have a profound 
impact on the traffic behavior. Nonlocal PDE models 
were introduced to illustrate the generality of the frame-
work, and in particular its ability to integrate models 
with nontrivial mathematical features. It was shown how 
the approach can be used to handle time-dependent traf-
fic flows over complex networks and how they allow the 
integration of available routing information as splits at the 
nodes. Based on the models, traffic behaviors for routed 
and nonrouted users were discussed in detail and some 
basic principles for how the users act were discussed. 
The framework proposed in the paper can adjust easily 
to more complex models, and in particular the problems 
of networked LWR PDEs will be of interest, as it presents 
open issues with complexity going beyond this specific 
paper (in particular incorporating weak boundary condi-
tions). As an illustration for how parts of the introduced 
framework can already be used, we presented a coopera-
tive freight platooning service, where freight flows follow 
similar principles as routed users but with the objective of 
maximizing fuel-saving platooning, instead of minimizing 
travel time. As part of this freight service, we showed how 

Fig. 11. The cordon boundary for the city of Stockholm (left) with numbered red dots marking the locations at which vehicles are being 
charged [49]. The dynamics of vehicle passage for four selected months (right) shown for ten years of cordon pricing operation [50]. The 
values for 2006 are averages for respective month before the cordon pricing system was in operation.
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the continuous traffic flow models introduced in this paper 
can be used to study the formation of platoons on a single 
road by controlling the truck flow velocity over that road. 
Over a large freight transport network, we have shown how 
the continuous model can be linked to a discrete model 
to optimize the coordination of trucks and their average 
velocities or departure times. Finally, we presented the 
cordon pricing system of Stockholm and related that to the 
social planning layer of our framework.

For future work, some main directions can be identified. 
The framework for the analysis and design of mobility ser-
vices outlined in this paper does not yet contain all details 
of the underlying mathematical models or synthesis tools 
for the development of actual services. We believe that our 
proposal is a first step in a major future research thrust. For 
example, additional theoretical well-posedness results are 
needed for the introduced traffic flow models when built on 

arbitrary networks. Proofs of existence and uniqueness of 
solutions to the nonlocal PDEs have to be detailed for such 
cases, resulting in a better understanding of the properties 
of the model and how to implement and calibrate it appro-
priately. The general framework we have presented can also 
be used with other underlying traffic flow models, such as 
the Merchant–Nemhauser model based on ordinary differ-
ential equations or the link-delay model. It would be inter-
esting to make a comparison study about the strengths and 
weaknesses of these models and our PDE models when used 
for the mobility service framework. In addition to simplified 
illustration of a freight mobility service, it would be interest-
ing to study a case with real data and perhaps even a practi-
cal implementation and evaluation. Such experiments will 
allow us to determine which of the introduced principles for 
routed and nonrouted traffic flows is more prominent and 
how these routing principles evolve over time. 
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