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Abstract

We consider repeated routing games with piecewise-
constant congestion taxing in which a central planner
sets and announces the congestion taxes for fixed win-
dows of time in advance. Specifically, congestion taxes
are calculated using marginal congestion pricing based
on the flow of the vehicles on each road prior to the be-
ginning of the taxing window. The piecewise-constant
taxing policy in motivated by that users or drivers may
dislike fast-changing prices and that they also prefer
prior knowledge of the prices. We prove that the mul-
tiplicative update rule converges to a socially optimal
flow when using vanishing step sizes. Considering that
the algorithm cannot adapt itself to a changing environ-
ment when using vanishing step sizes, we propose using
constant step sizes in this case. Then, however, we can
only prove the convergence of the dynamics to a neigh-
borhood of the socially optimal flow (with its size being
of the order of the selected step size).

1 Introduction

Urban traffic congestion is the source of many prob-
lems in large metropolitan areas, such as increased
travel times and fuel consumption, air pollution, and
dampened economic growth [1, 13, 14]. To circumvent
some of these problems, local governments in several
cities, such as Stockholm, London, San Francisco, and
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Figure 1: An illustrative example of the piecewise-
constant congestion taxing policy.

Singapore, have introduced various congestion taxing1

schemes [5, 11,17,25]. However, there are several issues
that should be addressed in congestion taxing systems.
For example, the charges need to be adapted because
of the traffic flow increases due to external factors, pri-
marily increasing population in the county [5]. More
importantly, the implemented fixed tolls do not react to
temporary traffic changes and are designed based on the
average behaviour of the travellers [27]. To avoid this
problem, dynamic congestion pricing techniques have
been employed [9]. However, imposing dynamic taxes
is certainly controversial or, to say the least, cumber-
some to understand for the drivers as they need to cal-
culate and respond to time-varying congestion taxes at
the same time as driving. Therefore, it is desirable to
devise a slowly-varying or piecewise-constant congestion
charges for the roads (that are announced well in ad-
vance so that the drivers can respond to them properly).

In this paper, we propose a piecewise-constant
congestion tax policy for repeated routing games in
which groups of drivers use the transportation network
on a daily basis. We specifically use the multiplicative
update rule [15] for updating the flows on various paths.
We assume that the central planner sets the congestion
taxes for wide windows of iterations in advance and
announce the taxes publicly for those days. This would
amount to piecewise-constant congestion taxes as the

1We use the terms “toll”, “congestion tax”, “congestion price”,
and “congestion charge” interchangeably throughout the paper.



tolls stay constant for a number of days (e.g., a week,
a month). Figure 1 shows an illustrative example
of such piecewise-constant congestion taxes when the
congestion taxes gets updated on a weekly basis. Our
interest in this scheme is motivated by the facts that
the drivers dislike fast-changing prices and want prior
knowledge of the prices. The proposed congestion
taxes are calculated using marginal congestion prices
based on the flow of the vehicles on each road prior to
the beginning of the taxing window. We prove that,
for the proposed piecewise-constant congestion taxes,
the multiplicative update rule converges to a socially
optimal decision if its step sizes is set to be of the order
of 1/k for iteration k. Unfortunately, the shrinking step
size renders the algorithms impractical for the cases
where the parameters of the routing game (e.g., the
demands) vary over time since the proposed dynamics
cannot adapt fast enough, especially, after a long time,
because the step size becomes very small. Following
this observation, we propose using a constant step size.
Doing so, we realize that we can only converge to a
neighborhood of the socially optimal flow, with its size
being proportional to the selected step size. This is an
interesting trade-off because so long as the step size is
large the algorithm can adapt rapidly to the changes in
the routing game; however, the solution can potentially
be far from the socially optimal flow.

Repeated routing games have attracted attention
recently [3, 4, 16]. For instance, in [3], the authors
studied no-regret learning (i.e., the difference between
the average latency caused by the online decisions
and the average latency for the best fixed decision
in hindsight grows very slowly). They also proved
the convergence of a subsequence of the flows to a
neighbourhood of the equilibrium. The convergence
result was further strengthened to the whole sequence
of flows in [16]. Repeated routing games are in close
connection with evolutionary game theory [12,23,24,28],
in which users adopt simple update rules motivated by
biological systems and evolutionary observations, e.g.,
the users meet with a given probability with other users
and replicate their behaviour if it results in a better
utility. To the best of our knowledge, none of these
studies propose a piecewise constant scheme for setting
congestion taxes in repeated routing games to achieve a
socially optimal flow.

The rest of the paper is organized as follows. In
Section 2, we introduce our notations for routing game
and review some results in this area. We present
our results in the repeated routing game in Section 3.
Numerical examples are presented in Section 4. Finally,
we finish the paper with the conclusions and avenues for
future research in Section 5.

2 Routing Games

In what follows, we use R and N to denote the sets
of real and integer numbers, respectively. We also
define R≥(>)a = {x ∈ R|x ≥ (>)a} for any a ∈ R.
Furthermore, let JKK = {1, . . . ,K} for any K ∈ N.

We model the transportation network with a di-
rected graph G = (V, E) in which V denotes the nodes
in the network (e.g., intersections) and E ⊆ V × V de-
notes the edges in the network (e.g., roads). We as-
sume that the graph can admit parallel edges. We are
also provided with a set of source–destination nodes
{(sk, dk)}k∈JKK, K ∈ N, where each pair (sk, dk), k ∈
JKK, should transfer a total flow of Fk ∈ R>0. The as-
sumption that Fk 6= 0 is without loss of generality as,
otherwise, we can remove the source–destination nodes
with zero flow from the problem without changing the
problem. Let Pk denote the set of all directed paths
that connect the source sk to destination dk for any
k ∈ JKK, where a directed path from node sk to node
dk is an ordered sequence of edges ((ij , ij+1))n−1j=1 ∈ En
such that i1 = sk and in = dk. Moreover, let us define
the set of all paths as P = ∪k∈JKKPk.

We use fp ∈ R≥0 to denote the flow of vehicles on
a path p ∈ P. In addition, we define the aggregate
flow vector f = (fp)p∈P ∈ R|P|. A flow vector is called
feasible if

∑
p∈Pk fp = Fk for all k ∈ JKK. Let us denote

the set of all such feasible flows with F((Fk)k∈JKK).
When the source–destination flows (Fk)k∈JKK can be
deduced from the context or are irrelevant to the
discussion, with slight abuse of notation, we shorten the
notation to F . For any aggregate vector of path flows
(fp)p∈P , we can define edge flows2 φe =

∑
p∈P:e∈p fp ∈

R≥0 for all e ∈ E . We make the following standing
assumption.

Assumption 1. F((Fk)k∈JKK) 6= ∅.

A necessary and sufficient condition for satisfying
Assumption 1 is to ensure that Pk 6= ∅ for all k ∈ JKK.

A vehicle that travels along the edge e ∈ E observes
a cost (e.g., latency) of ˜̀

e(φe) with a given mapping
˜̀
e : R≥0 → R≥0. Hence, a vehicle that uses the path

p ∈ P observes a total cost of `p(f) =
∑
e∈p

˜̀
e(φe).

Note that we use ˜̀
e and `p to, respectively, denote the

cost of using edge e ∈ E and path p ∈ P.
In this formulation, each player is an infinitesimal

amount of flow that minimizes its cost by selecting its
path. Now, we define the equilibrium for the introduced
routing game.

2We use the aggregate vector of edge flows φ = (φ)e∈E and

the aggregate vector of path flows f = (fp)p∈P interchangeably
as there is a one-to-one correspondence between them.



Definition 1. (Wardrop Equilibrium): A flow
vector f = (fp)p∈P is a Wardrop equilibrium for the
routing game if, for all k ∈ JKK, fp > 0 for a path
p ∈ Pk implies that `p(f) ≤ `p′(f) for all p′ ∈ Pk.

This definition implies that for each source–
destination pair (sk, dk), k ∈ JKK, all the paths with a
nonzero flow (i.e., the utilized paths) have equal laten-
cies and the rest (i.e., the paths with a zero flow) have
a larger (or equal) latency. Throughout this paper, we
make the following assumption.

Assumption 2. For all e ∈ E, ˜̀
e(·) is (i) twice continu-

ously differentiable, (ii) convex, and (iii) nondecreasing.

This assumption guarantees that the problem of
finding a Nash equilibrium boils down to solving a
convex optimization.

We can now define the social cost function

C(f) =
∑
p∈P

fp`p(f) =
∑
e∈E

φe ˜̀
e(φe),

where the second equality can be proved following
simple algebraic manipulations [21].

Definition 2. (Socially Optimal Flow): A flow
vector f = (fp)p∈P is a socially optimal flow for the
routing game if f ∈ arg minf ′∈F C(f ′).

The Wardrop equilibria can be inefficient (i.e., the
social cost of the Wardrop equilibrium is larger than
the social cost of a socially optimal flow) [22]. In the
remainder of this section, we discuss imposing tolls on
the edges of the graph G to reduce this inefficiency.

Let us assume that a driver must pay a toll τ̃e(φe),
with τ̃e : R≥0 → R≥0, for using the edge e ∈ E , where
(as stated earlier) φe =

∑
p∈P:e∈p fp is the flow on

edge e ∈ E . Therefore, a vehicle that is using path
p ∈ Pk endures a total cost of `p(f) + τp(f), where
τp(f) is total amount of money that this vehicle must
pay for using path p and can be calculated as τp(f) =∑
e∈p τ̃e(φe). Hence, the definition of the equilibrium

should be slightly modified.

Definition 3. (Wardrop Equilibrium with
Tolls): A flow vector f = (fp)p∈P is a Wardrop
equilibrium for the routing game with tolls if, for all
k ∈ JKK, fp > 0 for a path p ∈ Pk implies that
`p(f) + τp(f) ≤ `p′(f) + τp′(f) for all p′ ∈ Pk.

In [19], Pigou suggested marginal cost taxes
τ̃e(φe) = φe(d˜̀

e(φe)/dφe) as a way for reducing the in-
herent inefficiency of the equilibria in routing games.
Later, it was proved that with using these tolls, the

socially optimal flow becomes a Wardrop equilibria
of the routing game with tolls [2]. These tolls are
called marginal cost taxes since they correspond to the
marginal increase in cost caused by adding one user to
the edge d˜̀

e(φe)/dφe multiplied by the amount of the
traffic that suffers from this increase φe. Although ex-
tremely effective, it is difficult to implement these taxes
since they are flow dependent (i.e., the drivers do not
know the actual value of tolls prior to using the road
and, hence, they might not be able to make an informed
decision). Hence, it is advantageous to devise an online
method for setting the tolls adaptively to recover a so-
cially optimal flow; however, we would like an scheme
that results in piecewise-constant taxes over relatively
large periods of time. This way, we can guarantee that
the drivers have enough time to (re)calculate their pre-
ferred routes and make informed decisions.

3 Repeated Routing Game

Here, we assume that the routing game is played re-
peatedly on each day n ∈ N for an infinite horizon.
On each day, the vehicles select their preferred path,
which generate flows f [n] = (fp[n])p∈P . Then, they ob-
serve the cost associated with each path, i.e., the actual
travel cost and the imposed tolls, and use this informa-
tion, accompanied with their (finite) memory, to select
their path on the subsequent day(s). We consider the
multiplicative update rule, which is a no-regret learn-
ing strategy (see [15] for more information on no-regret
strategies) [10, 18]. In this strategy, the agents select
their actions with a probability distribution inversely
proportional to the exponential of the average cost that
they have observed so far. Considering that there is a
continuum of players in a repeated routing game, this
amounts to dividing the players into various paths with
portions inversely proportional to the exponential of the
average cost of the paths. This results in Algorithm 1.
Notice that, in the multiplicative update rule in Algo-
rithm 1, for each driver to calculate the evolution of
the weights (wp[n])p∈P , she needs to have access the
measurements of the costs (not necessarily the actual
cost functions) at each iteration over all the available
paths. Evidently, the driver can directly measure the
cost of the path that she has chosen in that iteration.
We assume the drivers can measure the costs of the al-
ternative paths as well. This can be achieved by broad-
casting the measurements from a central node (e.g., a
traffic forecast unit in a radio station). In support of
this assumption, experimental studies show that players
sometimes notice and consider the costs and payoffs of
the actions that they have not selected [7], even if they
are not directly fed the information. An alternative ap-
proach could be to assume that drivers only update the



average cost of the paths that they have travelled. This
may, however, result in asymmetric update rules that
are more difficult to analyze and slower to converge.

Throughout the rest of the paper, we make the fol-
lowing assumption regarding the parameters of Algo-
rithm 1.

Assumption 3. Parameters ρ1, ρ2 ∈ R>0 are selected
so that `p(f [n]) ≤ ρ1 and τp[n] ≤ ρ2 for all p ∈ P and
all n ∈ N.

In the reminder of this section, we prove that the
multiplicative update rule in Algorithm 1 converges to
a socially optimal flow. To do so, first, we prove the
following lemma.

Lemma 3.1. For Algorithm 1, we have

fp[n+ 1] =fp[n] +
ε[n]

ρ1 + ρ2
fp[n]

×
[( ∑

p′∈Pk

fp′ [n]

Fk
(`p′(f [n]) + τp′ [n])

)

− (`p(f [n]) + τp[n])

]
+O(ε[n]2).

Proof. Due to space limitations, the proof is omitted.
See [8] for the details. �

To present the rest of the results, let us, for each
p ∈ P, define the mapping

ηp :R|P|≥0 → R

f 7→
∑
e∈p

[
φe

d˜̀
e(φe)

dφe

]
φe=

∑
p′∈P:e∈p′ fp′

.

Evidently, the imposed piecewise-constant congestion
taxes in Algorithm 1 can now be calculated as τp[n] =
ηp(f [n−Dn]), where Dn = n−Dbn/Dc.

Lemma 3.2. Let us select step sizes {ε[n]}n∈N either as

• ε[n] = α/(n+ β) for some α, β ∈ R>0,

• ε[n] = ε ∈ R>0,

for all n ∈ N. Then, for Algorithm 1, we have

fp[n+ 1] =fp[n] +
ε[n]

ρ1 + ρ2
fp[n]

×
[( ∑

p′∈Pk

fp′ [n]

Fk
(`p′(f [n]) + ηp′(f [n]))

)

− (`p(f [n]) + ηp(f [n]))

]
+O(ε[n]2).

Proof. Due to space limitations, the proof is omitted.
See [8] for the details. �

This lemma shows that the time-varying delay for
setting the tolls is not important so long as it is
bounded (i.e., the delay does not change the update
rule significantly).

Theorem 3.1. Let us select ε[n] = α/(n + β) for
some α, β ∈ R>0 and for all n ∈ N, and define
S = arg minf∈F C(f). Then, for Algorithm 1, we get
limn→∞ dist(S, (fp[n])p∈P) = 0.

Proof. Let us define the sequence {t[n]}n∈N such that
t[0] = 0 and t[n + 1]− t[n] = ε[n] for all n ∈ N. For all
t ∈ R≥0, we may define

f̄p(t) = fp[n] + (fp[n+ 1]− fp[n])
t− t[n]

t[n+ 1]− t[n]
.

This is a first-order interpolation of the discrete-time
flow sequence (fp[n])n∈N for all p ∈ P. Moreover, for all

t ∈ R≥τ , we may define f̃τp (t) as the unique solution
of the ordinary differential equation in (3.1), where
f̃τ (t) = (f̃τp (t))p∈P and f̄(t) = (f̄p(t))p∈P . We can
prove that the mapping on the right-hand side of (3.1)
is Lipschitz continuous (see [8] for the details). Now,
combining the results of Lemma 3.2 in this paper and
Lemma 1 in [6, Ch. 2, p. 12], specifically, from the third
extension introduced in Section 2.2 of [6, Ch. 2, p. 17],
we can see that limτ→∞ limt∈[τ,τ+T ] ‖f̃τ (t) − f̄(t)‖ =
0,∀T ∈ R>0. Evidently, the set of socially optimal
solutions S is an invariant set of the ordinary differential
equations in (3.1). This holds because if f̃τp (t) ∈ S,
∀p ∈ P, we get

`p(f̃
τ (t)) + ηp(f̃

τ (t))

=
∑
p′∈Pk

f̃τp′(t)

Fk

(
`p′(f̃

τ (t)) + ηp′(f̃
τ (t))

)
.

To show the next step, first, we should prove that
f̃τp (t)/Fk ≥ 0 and

∑
p∈Pk f̃

τ
p (t)/Fk = 1 for all k ∈ JKK

and p ∈ Pk. The first property that f̃τp (t)/Fk ≥ 0
follows directly from the ordinary differential equation
in (3.1). For the second property note that by definition
of the initial point, we have

∑
p∈Pk f̃

τ
p (τ)/Fk = 1; see

Algorithms 1 in conjunction with the definition of the
interpolation for constructing f̄(t). Now, we have

d

dt

∑
p∈Pk

1

Fk
f̃τp (t)

 =
∑
p∈Pk

1

Fk

d

dt
f̃τp (t) = 0, ∀t ∈ R≥τ ,

and, as a result,
∑
p∈Pk f̃

τ
p (t)/Fk =

∑
p∈Pk f̃

τ
p (τ)/Fk =

1 for all t ∈ R≥τ . Using this property of flows,



Algorithm 1 Multiplicative update rule with piecewise-constant congestion taxing policy.

Input: {ε[n]}n∈N and ρ1, ρ2 ∈ R>0

1: Initialize wp[1] = 1,∀p ∈ Pk,∀k ∈ JKK
2: Initialize τ̃e[n

′] = 0,∀e ∈ E ,∀n′ ∈ JDK
3: for n = 1, 2, · · · do
4: Calculate the flows fp[n] = Fkwp[n]/(

∑
p′∈Pk wp′ [n]),∀p ∈ Pk,∀k ∈ JKK

5: Update the weights wp[n+ 1] = wp[n] exp(−ε[n]/(ρ1 + ρ2)
∑
e∈p(

˜̀
e(f [n]) + τ̃e[n]))

6: if n ≡ 0 (modD) then

7: Set the tolls for the next D days τ̃e[n
′] =

[
φe

d˜̀e(φe)
dφe

]
φe=

∑
p∈P:e∈p fp[n]

, ∀e ∈ E ,∀n′ ∈ N : n′ − n ∈ JDK

8: end if
9: end for

(3.1)

d

dt
f̃τp (t) =

1

ρ1 + ρ2
f̃τp (t)

 ∑
p′∈Pk

f̃τp′(t)

Fk

(
`p′(f̃

τ (t)) + ηp′(f̃
τ (t))

)−(`p(f̃τ (t)) + ηp(f̃
τ (t))

), f̃τ (τ) = f̄(τ),

d

dt
C(f̃τp (t)) =

∑
p∈P

∂C(f)

∂fp

∣∣∣∣
f=(f̃τp (t))p∈P

d

dt
f̃τp (t)

=
1

ρ1 + ρ2

∑
k∈JKK

∑
p∈Pk

(
`p(f̃

τ (t)) + ηp(f̃
τ (t))

)
f̃τp (t)

×

 ∑
p′∈Pk

f̃τp′(t)

Fk

(
`p′(f̃

τ (t)) + ηp′(f̃
τ (t))

)− (`p(f̃τ (t)) + ηp(f̃
τ (t))

)
=

1

ρ1 + ρ2

∑
k∈JKK

Fk

[( ∑
p′∈Pk

f̃τp′(t)

Fk

(
`p′(f̃

τ (t)) + ηp′(f̃
τ (t))

))2

−
∑
p∈P

f̃τp (t)

Fk

(
`p(f̃

τ (t)) + ηp(f̃
τ (t))

)2 ]
≤ 0,(3.2)

we can prove (3.2), where the last inequality follows
from Jensen’s inequality (when using the fact that the
mapping x 7→ x2 is a convex function). Because
the mapping x 7→ x2 is strictly convex, the equality
in (3.2) holds if and only if `p′′(f̃

τ (t)) + ηp′′(f̃
τ (t)) =

`p′(f̃
τ (t)) + ηp′(f̃

τ (t)) for any two p′, p′′ ∈ P such that

f̃τp′(t), f̃
τ
p′′(t) 6= 0. This is the definition of S. Therefore,

the equality in (3.2) holds if and only if f̃τ (t) ∈ S.
By defining the Lyapunov function in Corollary 3 in [6,
Ch. 2, p. 15] as V (f) = C(f)−minf∈F C(f), we can see
that {(fp[n])p∈P}n∈N converges to an internally chain
transitive invariant set contained in S. �

Unfortunately, the shrinking step sizes in Theo-
rem 3.1 renders the algorithms impractical for the cases
where the parameters of the routing game (e.g., the de-
mands over the source–destination nodes) are time vary-
ing since the algorithm cannot adapt itself fast enough
(especially after many steps because the step size is very

small). This observation motivates using a constant step
size, however, the price for such a selection is that we
can only converge to a neighborhood of the socially op-
timal flow.

Theorem 3.2. Let us select ε[n] = ε ∈ R>0 for all
n ∈ N and define S = arg minf∈F C(f). Then, for
Algorithm 1, we get limn→∞ dist(S, (fp[n])p∈P) = O(ε).

Proof. The proof follows the same line of reasoning as in
the proof of Theorem 3.1; however, it builds upon using
Lemma 1 and Theorem 3 of [6, Ch. 9, pp. 103–114].

So long as the step size ε is large enough the
algorithm can adapt rapidly to the changes in the
parameters of the routing game; however, the solution
can potentially be far from the socially optimal flow. By
reducing the step size, we can achieve a better solution
(in terms of the social cost function) but the algorithm,
in such case, would respond slower to the changes.
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Figure 2: An example of a transportation network.

10
0

10
1

10
2

10
3

50

100

150

200

250

Iteration (n)

C
(f
[n
])

Figure 3: The social cost C(f [n]) versus the iteration
number n for the example with constant demand.
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Figure 4: The congestion taxes (τ̃e[n])e∈E versus the
iteration number n for the example with constant
demand.

4 Numerical Example

Consider the transportation network portrayed by the
directed graph G = (V, E) in Figure 2. We as-
sume that there are K = 3 source–destination nodes
(s1, t1) = (0, 1), (s2, t2) = (7, 3), and (s3, t3) = (0, 8).
In Figure 2, each source–destination pair and its corre-
sponding paths are portrayed in a separate color. We

adopt a widely used model for the edge cost functions,
namely, the Bureau of Public Roads model for the de-
lay [26], which is given by ˜̀

e(φe) = (de/v
max
e )[1 +

0.15 (φe/ce)
4
],∀e ∈ E , where de ∈ R≥0 is the length

of the road, vmax
e ∈ R>0 is the speed limit, and ce is the

capacity of the road (e.g., approximately 2000 vehicle/h
multiplied by the number of lanes [20]). In this cost
function, for all e ∈ E , we set the speed limit as
vmax
e = 70 km/h and set the capacity of the road
ce = 2000 vehicle/h (as recommended for single lane
roads). Tthe length of each road de, e ∈ E , is presented
in Table 1.

4.1 Fixed Demand First, we consider the case
where the total flows that need to pass through
source–destination nodes are constant and equal to
F1 = 8000 vehicle/h, F2 = 3000 vehicle/h, and F3 =
4000 vehicle/h. We set D = 30, which means that the
congestion taxes get updated monthly. Finally, let us
use vanishing step sizes ε[n] = 1/n for all n ∈ N. Fig-
ure 3 illustrates the social cost of the flows extracted
from Algorithm 1 as a function of the iteration num-
bers (solid blue curve) as well as the cost of the socially
optimal flow (solid black curve). As we expect, the so-
cial cost of the extracted flows approaches the cost of
the socially optimal flow. Figure 4 illustrates the con-
gestion charges for various edges in the transportation
network τ̃e[n], e ∈ E , versus the iteration number n. As
we expect, the drivers on highly congested roads, e.g.,
(0, 1), should pay much more to be persuaded to use
less-congested alternatives (that are perhaps longer or
less convenient for them). Figure 5 (left) portrays the
delays over the roads in the transportation network at
the Wardrop equilibrium of the routing game in the ab-
sence of congestion taxes. In contrast, Figure 5 (right)
illustrates the delays over the roads at the Wardrop
equilibrium of the routing game in the presence of con-
gestion taxes. As we expect, with imposing taxes, a
portion of the flow (i.e., some of the vehicles) switch
from highly congested roads, e.g., (0, 1) ∈ E , to slightly
less congested roads, e.g., (0, 4) ∈ E , at the expense
of taking a longer path which is now desirable because
of the high level of congestion taxes over the shorter
path. This behaviour improves the social cost function
by 4.6% in this example.

4.2 Time-Varying Demand Now, consider the
case where the total flows for various source–destination
nodes vary with time as in Figure 6. In this case, we use
Algorithm 1 with a constant step size ε[n] = 5 × 10−2

for all n ∈ N. Figure 7 illustrates the congestion taxes
versus the iterations of the algorithm. Clearly, the algo-
rithm updates these congestion taxes in response to the



Table 1: Length of roads in the transportation network employed for the numerical example in Section 4.
e (3, 8) (0, 1) (0, 4) (5, 1) (4, 5) (6, 1) (5, 3) (4, 6) (6, 3) (2, 4) (2, 3) (7, 2) (1, 3)

de(km) 40.81 17.22 17.68 52.77 55.15 29.16 12.19 45.14 26.16 25.13 46.47 22.1 25.22
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Figure 5: The delays over the roads in the transportation network at the Wardrop equilibrium of the routing
game in the absence of congestion taxes (left) and in the presence of congestion taxes (right).
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Figure 6: Time-varying demand.

changes in the demand. Now, allow us to define f∗[n]
to be the socially optimal flow for demands (Fk[n])3k=1

in Figure 6. Figure 8 illustrates C(f [k])/C(f∗[n]) − 1
as a function of the iteration numbers. Evidently, the
smaller C(f [k])/C(f∗[n])−1 is, the closer the social cost
of the generated flow is to the cost of the socially op-
timal flow. This figure clearly show that the algorithm
closely follows the socially optimal flow.

5 Conclusions

We studied repeated routing game with piecewise-
constant congestion taxing policy. We used the mul-
tiplicative update rule with both vanishing and con-
stant step sizes. For vanishing step sizes, we proved the
convergence to the set of socially optimal flows; how-
ever, using constant step sizes, we could only prove the
convergence to a neighbourhood of the socially optimal
flows. Future research can focus on devising piecewise-
constant congestion charges policies for only a subset of

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

Iteration (n)

τ̃ e
[n
]
∀e

∈
E

 

 

(3, 8)
(0, 1)
(0, 4)
(5, 1)
(4, 5)
(6, 1)
(5, 3)
(4, 6)
(6, 3)
(2, 4)
(2, 3)
(7, 2)
(1, 3)

Figure 7: The congestion taxes for the numerical exam-
ple with time-varying demand.
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Figure 8: A measure of the efficiency of the extracted
flows f [n] versus the iteration number n for the numer-
ical example with time-varying demand.



the edges in the transportation network. We can also fo-
cus on the multi-class traffic to understand the influence
of the drivers’ value-of-time.
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[22] T. Roughgarden and É. Tardos, How bad is selfish
routing?, Journal of the ACM, 49:2 (2002), pp. 236–
259.

[23] W. H. Sandholm, Potential games with continuous
player sets, Journal of Economic Theory, 97:1 (2001),
pp. 81–108.

[24] W. H. Sandholm, Evolutionary game theory, in Com-
putational Complexity, R.A. Meyers (editor), Springer
New York (2012), pp. 1000–1029.

[25] G. Santos, Urban congestion charging: A comparison
between London and Singapore, Transport Reviews,
25:5 (2005), pp. 511–534.

[26] R. Singh and R Dowling, Improved speed-flow relation-
ships: Application to transportation planning models,
in Proceedings of the 7th TRB Conference on the Ap-
plication of Transportation Planning Methods (2002),
pp. 340–349.

[27] W. S Vickrey, Pricing and resource allocation in trans-
portation and public utilities: Pricing in urban and
suburban transport, American Economic Review, 53:2
(1963), pp. 452–465.

[28] J.W. Weibull, Evolutionary Game Theory, MIT Press
(1997).


