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A B S T R A C T

Connected and Autonomous Vehicles is a technology that will be disruptive for all layers
of traffic control. The Lagrangian, in-the-flow nature of their operation offers untapped new
potentials for sensing and actuation, but also presents new fundamental challenges. In order to
use these vehicles for traffic state reconstruction and control, we need suitable traffic models,
which should be computationally efficient and able to represent complex traffic phenomena. To
this end, we propose the Front-tracking Transition System Model, a cell-free modelling approach
that can incorporate Lagrangian measurements, and has a structure that yields itself to on-line
model learning and control. The model is formulated as a transition system, and based on the
front-tracking method for finding entropy solutions to the Lighthill–Whitham–Richards model.
We characterize the solution of this model and show that it corresponds to the solution of the
underlying PDE traffic model. Algorithms for traffic state reconstruction and model learning
are proposed, exploiting the model structure. The model is then used to design a prediction-
based control law for stop-and-go wave dissipation using randomly arriving Connected and
Autonomous Vehicles. The proposed control framework is able to estimate the traffic state and
model, adapt to changes in the traffic dynamics, and achieve a reduction in vehicles’ Total Time
Spent.

. Introduction

The introduction of Connected and Autonomous Vehicles (CAVs) into highway traffic strike a delicate balance between the
enefits and detriments that they bring. While long-term, we may expect significant throughput and capacity increases once CAVs
each a high market penetration rate (Shladover et al., 2012; Talebpour and Mahmassani, 2016), the low-to-mid-term effects are
ikely to be adverse, due to increased demand and overly conservative autonomous driving behaviour (Alonso Raposo et al., 2017).
uckily, the presence of even a small number of directly controllable CAVs on the road gives us new potentials for traffic sensing
nd control, with unprecedented level of detail, which we might use to improve the traffic flow and offset their negative effects.

Stop-and-go wave dissipation is one problem that yields itself to CAV-based traffic control. In this work, we define stop-and-
o waves (also known as phantom jams, wide moving jams, traffic waves, etc.) as zones of congestion propagating upstream,
ith the traffic flow discharging from them lower than the capacity of the road (Yuan et al., 2017). While methods for dealing
ith this problem based on variable speed limits also exist (Hegyi et al., 2008), their implementation may suffer from the lack of
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required signal equipment wherever a stop-and-go wave might arise. In contrast, CAV-based control relies on communicating with
a small subset of vehicles, which may be done via the ubiquitous mobile phone network, and has been shown to work both in
simulations (Simoni and Claudel, 2017; Piacentini et al., 2018; Čičić and Henrik Johansson, 2019), and experiment (Stern et al.,
2018). In particular, using CAVs acting as moving bottlenecks to actuate the control actions, as the referenced works did, has some
crucial advantages, i.e., it requires a relatively low number of directly controlled vehicles, and does not rely on complex behavioural
models to capture the interaction between the CAVs and the rest of the traffic.

These new approaches to traffic control necessitate new approaches to traffic modelling, which accurately predict stop-and-go
aves’ evolution and the influence of individual CAVs on the rest of the traffic, while still being numerically tractable. In order

o accurately model the discharging flow (which may be lower than the road capacity) and propagation of stop-and-go waves, we
eed to either use a microscopic traffic model (Laval and Leclercq, 2010), a second-order PDE model (Flynn et al., 2009), or an
xtended first-order model (Han et al., 2016). The first two options result in complex models that are hard to use for CAV-based
raffic control design, and the third, while simpler, is ill-suited due to its cell-based nature. Namely, in order for cell-based models
o represent moving features, such as stop-and-go waves and individual controlled CAVs, they need to have small cell lengths
verywhere where these features are present. This greatly increases the number of states and necessitates use of lower time step,
eading to numerical intractability when calculating predictions over a long horizon. Efficient Lax–Hopf based grid-free solution
lgorithms for the Lighthill–Whitham–Richards (LWR) model (Mazaré et al., 2011; Simoni and Claudel, 2017) are a good alternative,
ut while they can model the CAVs as moving bottlenecks (Monache and Goatin., 2014), they do not provide a straightforward
ay of implementing stop-and-go waves with discharging flow lower than the capacity of the road, or other similar phenomena.
urthermore, these approaches assume the traffic model and state to be known.

Another difficulty in applying CAV-based traffic control is the need for model calibration and traffic state reconstruction wherever
he control is needed. This difficulty is even more prominent here than in case of classical traffic control methods (e.g., ramp
etering and variable speed limits (Hou et al., 2008; Smaragdis et al., 2004; Hosein Ghods et al., 2009)), because the locations

f the actuators and regions of interest might be unknown a-priori. Therefore adequate traffic sensor coverage might be lacking,
reventing the use of some established traffic state estimation algorithms (e.g. Wang and Papageorgiou, 2005, see Seo et al., 2017
or a survey). Algorithms using Lagrangian sensing, where the measurements come from probe vehicles immersed in the traffic flow,
o reconstruct the traffic density profile, have been gaining more traction in recent time (Herrera et al., 2010; Mehran et al., 2012;
eo and Kusakabe, 2015; Bekiaris-Liberis et al., 2016; Laura Delle Monache et al., 2019; Čičić et al., 2020a).

In addition to providing information about the traffic state, these local measurements may be used to learn the models governing
he behaviour of the background traffic and the influence of the CAVs. Traffic model learning is most commonly done by choosing

model structure, and then calibrating the model parameters using stationary sensor measurements (Spiliopoulou et al., 2017)
r probe vehicle trajectories (Seo et al., 2019). In order to be able to adapt to model variations in time, e.g., due to changing
eather conditions (Billot et al., 2009), online model calibration methods have also been proposed (Antoniou et al., 2005), as well
s extensions to traffic state estimation approaches with model adaptation (Wang et al., 2009).

The main contribution of this work is a cell-free event-based modelling approach that can handle stop-and-go waves, captures
he influence of CAVs, can incorporate Lagrangian measurements, and has a structure that yields itself to on-line model learning,
raffic state reconstruction and control. This model is the Front-tracking Transition System Model (FTSM), formulated as a transition
ystem, which mirrors the procedure of finding the front-tracking solution to an extended LWR model with a space-dependent flux
unction and wave-speed bounds. In this work, we assume that the considered road segment is homogeneous, that stop-and-go waves
ave constant propagation speeds (as is empirically observed by Schönhof and Helbing, 2007), and that the CAVs can be modelled
s moving bottlenecks. The FTSM allows regions with potentially moving boundaries to be described by different flux functions,
y including their piecewise linear definitions as one of the model states. This makes it particularly convenient for use in complex
raffic environments, e.g., where some individual vehicles greatly affect the overall behaviour of the traffic in their vicinity acting
s moving bottlenecks or similar phenomena. By assuming constant stop-and-go wave propagation speeds, we are able to model
heir discharging flow as lower than the capacity of the road, by defining a new type of weak solution, the wave-speed-bounded
olution, which violates the entropy condition at the stop-and-go wave boundary. A preliminary version of the model was presented
n Čičić et al. (2020b).

Front-tracking has long been used as a method for finding entropy solutions to PDE traffic models (Lu et al., 2009; Monache and
oatin., 2014; Holden and Henrik Risebro, 2015), and is known to yield exact solutions given a piecewise linear flux function and
iecewise constant initial conditions. A comparison of front-tracking and other prominent methods for solving the LWR equations
Lax–Hopf algorithm, variational method, and Godunov scheme) is summarized in Mazaré et al. (2011). The hybrid nature of the
olution obtained by front-tracking inspired us to formulate the FTSM as a transition system (see Tabuada, 2009 for an introduction
o the concept). While the well-posedness of the LWR model with modifications such as the proposed ones, e.g. discontinuous flux
unction (Adimurthi et al., 2011), is still an open question for the general case, in the specific case that this paper deals with,
he solutions exist and are unique, allowing us to define FTSM as a nonblocking deterministic transition system without Zeno
ehaviour. This model formulation enables straightforward extensions which can be made by redefining some model components
e.g. transitions), without substantial changes to the remainder of the model. For example, in this work, stop-and-go waves were
mplemented by modifying one of the transitions. As a model based on transition systems, the FTSM bears a resemblance in spirit to
he SHIFT framework (Deshpande et al., 1996) and other hybrid system approaches explored within the California PATH program.

Next, we leverage the specific form of the model to reconstruct the traffic state and learn different aspects of the model. Since
he FTSM provides a cell-free description of the traffic situation, we are able to accurately represent the local traffic data,coupling
213

he traffic state measurements with the position of the CAVs that acquired them. Local traffic density measurements are used to
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Table 1
Overview of most important notation.

Symbol Meaning Symbol Meaning

𝑥 Position 𝑛 Number of active fronts in the FTSM
𝑡, 𝜏 Time (absolute 𝑡, duration 𝜏) 𝑧 Front position
𝜌 Traffic density 𝜉 Flux function and CAV identifier
𝑞 Traffic flow 𝐹 Forced density in the FTSM
𝑄 Flux function, fundamental diagram 𝑢𝜉 Reference speed for CAV 𝜉
𝜎, 𝛴 Flux function breakpoint densities 𝜔𝜉 Overtaking flow of CAV 𝜉
𝑉 Flux function slopes 𝜓 Stop-and-go wave identifier
𝜆 Front propagation speed 𝒇 Set of 𝑓
𝛬 Flux function boundary propagation speed 𝑓 Measurement of quantity 𝑓
𝑊 Front speed bounds 𝑓 Estimate or prediction of quantity 𝑓
𝑋 State of the FTSM 𝐵𝑓 Bound on 𝑓 in the algorithms

Fig. 1. An illustration of the motivating example. Flux function 𝑄0 describes the behaviour of the background traffic, while flux function 𝑄𝜉 describes the traffic
flowing past a slow-moving CAV (from 𝑥𝑄1 (𝑡) = 𝑧2(𝑡) to 𝑥𝑄2 (𝑡) = 𝑧3(𝑡), �̇�2(𝑡) = �̇�3(𝑡) = 𝛬±

𝜉 ). The downstream end of a stop-and-go wave 𝑧6(𝑡) propagates upstream at
constant speed “𝑊−. See Fig. 2 for a more detailed explanation of the example, showing its evolution in time.

reconstruct the traffic state, as well as to learn the flux functions and other model components, along with measurements of traffic
speed or flow. As opposed to e.g. Seo et al. (2019), where a triangular flux function was estimated from similar CAV data, we only
adopt the broad assumption that the flux functions can be approximated as a piecewise linear function, as in Trafikverket (2014).
We propose simple stream processing event-triggered methods for on-line learning of the flux function of the background traffic,
moving bottleneck flux function, and front speed bounds which model stop-and-go waves.

Finally, we use the proposed model to design and implement an adaptive prediction-based traffic control law. We utilize CAVs
as moving bottlenecks to dissipate stop-and-go waves, simultaneously with traffic state reconstruction and model learning based on
the measurements provided by the same CAVs. This control problem is characterized by a significant delay from the time we apply
some control action using a CAV to the time when this control action has an effect on the stop-and-go wave. Therefore, in order
to efficiently dissipate stop-and-go waves, we need to be able to predict the evolution of the traffic over a long horizon, until the
time all of the control actions have an effect on them. Since the FTSM is characterized by a diminishing increases in computational
burden as the prediction horizon increases, it is a good candidate for use as a prediction model for the proposed control law.

The remainder of this article is organized as follows. First, in Section 2 we motivate the introduction of the FTSM through
an illustrative example, describe the model, including how the influence of CAVs is captured, and give some of model properties.
Discussing the front-tracking solutions of the LWR model, including the wave-speed-bounded solution and the solution to Riemann
problems at the interface between zones with two different flux functions, is deferred to the Appendix, together with theorem proofs.
Next, in Section 3, we present the traffic control architecture and control laws for stop-and-go wave dissipation, using CAVs as the
only sensors and actuators, based on the reconstructed traffic state, and using a traffic model learned from the local measurements.
Simple algorithms for traffic state reconstruction and learning different parts of the model (background traffic flux function, moving
bottleneck diagram, and front speed bounds) are proposed. This control law is then tested in simulations in Section 4 and compared
with control laws that have access to the full traffic state and know the model. Finally, in Section 5, we conclude.

2. Front-tracking transition system model

In this section we introduce the FTSM. The use of the model is first motivated through an illustrative example, followed by a
description of the FTSM and its properties. An overview of the most important notation is given in Table 1. For succinctness, the
background about the front-tracking method, upon which the model is based, is given in Appendix A, and the full definition and
implementation of the FTSM is given in Appendix B, together with proofs of the theorems given in this section in Appendix C.

2.1. Motivating example

Consider an example consisting of a homogeneous stretch of road, with no on- and off-ramps, and with a single CAV upstream
of a single stop-and-go wave, as illustrated in Fig. 1. We are interested in modelling the evolution of the traffic state, assuming the
CAV moves at piecewise constant speed (i.e., acceleration and deceleration happens instantly) not faster than the rest of the traffic
around it, and the stop-and-go wave propagates upstream at a constant speed. This situation can be described using the LWR model
with a space-dependent flux function and a bound on the upstream propagation speed of the rarefaction wave.
214
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The LWR model (James Lighthill and Beresford Whitham, 1955; Richards, 1956) is a first-order scalar hyperbolic conservation
aw given by the partial differential equation

𝜕𝜌(𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑞(𝑥, 𝑡)
𝜕𝑥

= 0, (1)

where 𝑡 is the time, 𝑥 the position, the conserved quantity 𝜌(𝑥, 𝑡) is the traffic density, and 𝑞(𝑥, 𝑡) is the traffic flow. The traffic flow
𝑞(𝑥, 𝑡) is given according to the flux function, or fundamental diagram,

𝑞(𝑥, 𝑡) = 𝑄(𝜌(𝑥, 𝑡), 𝑥, 𝑡),

epending on the traffic density, but also possibly on 𝑥 and 𝑡, differently from the standard LWR formulation. We assume that the
initial condition 𝜌(𝑥, 0) is piecewise constant,

𝜌(𝑥, 0) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌1, 𝑥 < 𝑥𝜌1
⋮

𝜌𝑖, 𝑥𝜌𝑖−1 < 𝑥 < 𝑥
𝜌
𝑖

⋮

𝜌𝑁𝜌+1, 𝑥 > 𝑥𝜌𝑁𝜌

(2)

and the space-dependent flux function 𝑄(𝜌, 𝑥, 𝑡) is given piecewise, by

𝑄(𝜌, 𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑄1(𝜌), 𝑥 < 𝑥𝑄1 (𝑡),
⋮

𝑄𝑗 (𝜌), 𝑥𝑄𝑗−1(𝑡) < 𝑥 < 𝑥
𝑄
𝑗 (𝑡),

⋮

𝑄𝑁𝑄+1(𝜌), 𝑥 > 𝑥𝑄
𝑁𝑄 (𝑡).

(3)

Here 𝑥𝑄𝑗 (𝑡) are piecewise linear and continuous functions, �̇�𝑄𝑗 (𝑡) = 𝛬𝑄𝑗 (𝑡), with piecewise constant 𝛬𝑄𝑗 (𝑡), and 𝑥𝑄𝑗 (𝑡) ≤ 𝑥𝑄𝑗+1(𝑡).
ffectively, the space is divided into zones [𝑥𝑄𝑗−1(𝑡), 𝑥

𝑄
𝑗 (𝑡)] where the dynamics of the traffic are described by different flux functions

= 𝑄𝑗 (𝜌(𝑥, 𝑡)), e.g., zones where the road has different numbers of lanes. We assume each flux function 𝑄𝑗 (𝜌), 𝑗 = 1,… , 𝑁𝑄, is a
iecewise linear continuous function of the form

𝑄𝑗 (𝜌) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑉𝑗,1𝜌, 0 ≤ 𝜌 ≤ 𝜎𝑗,1,
𝑄𝑗 (𝜎𝑗,1) + 𝑉𝑗,2(𝜌 − 𝜎𝑗,1), 𝜎𝑗,1 < 𝜌 ≤ 𝜎𝑗,2,

⋮

𝑄𝑗 (𝜎𝑗,𝑖−1) + 𝑉𝑗,𝑖(𝜌 − 𝜎𝑗,𝑖−1), 𝜎𝑗,𝑖−1 < 𝜌 ≤ 𝜎𝑗,𝑖,
⋮

𝑄𝑗 (𝜎𝑗,𝑚𝑗 ) + 𝑉𝑗,𝑚𝑗 (𝜌 − 𝜎𝑗,𝑚𝑗 ), 𝜎𝑗,𝑚𝑗 < 𝜌 ≤ 𝜎𝑗,𝑚𝑗+1,

0, 𝜌 > 𝜎𝑗,𝑚𝑗+1,

(4)

ith 𝑄𝑗 (𝜎𝑗,𝑚𝑗 ) + 𝑉𝑗,𝑚𝑗 (𝜎𝑗,𝑚𝑗+1 − 𝜎𝑗,𝑚𝑗 ) = 0. We denote values of 𝑄𝑗 at the breakpoints 𝑞𝜎𝑗,𝑖 = 𝑄𝑗 (𝜎𝑗,𝑖), the set of breakpoints

𝜮𝑄𝑗 =
{

𝜎𝑗,1,… , 𝜎𝑗,𝑚𝑗+1
}

,

nd the set of slopes between the breakpoints as

𝑽 𝑄𝑗 =
{

𝑉𝑗,1,… , 𝑉𝑗,𝑚𝑗
}

.

he minimum and maximum slopes are 𝑉 min
𝑄𝑗

= min
{

𝑽 𝑄𝑗

}

and 𝑉 max
𝑄𝑗

= max
{

𝑽 𝑄𝑗

}

, respectively. Note that the maximum traffic
peed 𝑣max

𝑄𝑗
need not be the same as the maximum slope, 𝑣max

𝑄𝑗
= max𝑖 𝑞𝜎𝑗,𝑖∕𝜎𝑗,𝑖 ≤ 𝑉 max

𝑄𝑗
, although in practice, most flux functions are

oncave for 𝜌 ∈ [0, 𝜎max
𝑄𝑗

], where 𝜎max
𝑄𝑗

= argmax𝜌𝑄𝑗 (𝜌). The set of all functions 𝑄𝑗 that satisfy these requirements is denoted .
Assuming this form of flux functions allows us to handle simple flux functions, such as the popular triangular flux function, but also
to approximately handle generic smooth flux functions, such as Greenshields’ flux function. In the example depicted in Fig. 1, the
background traffic would be described by some flux function 𝑄0(𝜌), and the traffic flowing past the slow-moving CAV with position
𝜉 (𝑡) and length 𝑙𝜉 can, e.g., be described by a scaled-down version of the flux function 𝑄𝜉 (𝜌) =

1
2𝑄0(2𝜌), yielding 𝑄(𝜌, 𝑥, 𝑡) = 𝑄𝜉 (𝜌)

for 𝑥𝜉 (𝑡) − 𝑙𝜉 < 𝑥 < 𝑥𝜉 (𝑡), and 𝑄(𝜌, 𝑥, 𝑡) = 𝑄0(𝜌) elsewhere. The simplest (triangular) form of flux functions 𝑄0(𝜌) and 𝑄𝜉 (𝜌) are
shown in Fig. 2 on the left. Note that the triangular flux function was used here for its simplicity, and a more generic continuous
piecewise-linear flux function will be used later.

Depending on the shape of the flux function, the solution defined by this model may contain parts that do not reflect
the real-world traffic behaviour and phenomena, e.g., stop-and-go waves, caused by the difference between deceleration when
215

entering congestion, and acceleration when leaving it. Since the stop-and-go wave propagation speed is empirically observed to be
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Fig. 2. An example of the evolution of 𝜌(𝑥, 𝑡) (centre), its hybrid representation (right) for the motivating example illustrated in Fig. 1, and the flux functions
used therein (left). The evolution of the traffic density profile is colour-coded, with higher density corresponding to warmer colours. There is a slow-moving CAV
restricting the traffic flow, represented by flux function 𝑄𝜉 and its downstream end is shown in red. At 𝑡 = 0, the initial condition is given by 𝜌0. Immediately at
𝑡 = 0+, there is a jump, a zone of congestion 𝜌c starts forming upstream of the platoon, a zone of lower traffic density 𝜎𝑄𝜉

starts forming downstream of it, and
the discharging flow of the stop-and-go wave causes a zone of density 𝜌d to form. Note that the propagation speed of the stop-and-go wave “𝑊− is lower than
the slope of the congested part of flux function 𝑄0, as shown on the left, meaning that 𝜌d will depend on its traffic density 𝜌𝜓 , and 𝑞d𝜓 < 𝑞

𝜎
𝑄0

. Two more jumps
occur at 𝑡 = 𝑡′ and 𝑡 = 𝑡′′, when two fronts collide, and 𝜌𝑡 is updated accordingly. After the stop-and-go dissipates at 𝑡 = 𝑡′′, CAV 𝜉 accelerates and starts moving
at the speed of the traffic around it. Between the jumps, the fronts move at constant speeds. The moment illustrated in Fig. 1 approximately corresponds to the
traffic state at 𝑡 = 𝑡f ig, with 𝜌1 = 𝜌7 = 𝜌d, 𝜌2 = 𝜌c, 𝜌3 = 𝜌4 = 𝜎𝜉1 , 𝜌5 = 𝜌b, and 𝜌6 = 𝜌𝜓 . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

approximately constant (Schönhof and Helbing, 2007), we can model them by enforcing a bound on how quickly the downstream
end of the stop-and-go wave can propagate. This is achieved by specifying the upstream propagation speed bound for rarefaction,
denoted “𝑊−, which is set to the empirically observed propagation speed of stop-and-go waves.

The front-tracking method for numerically finding solutions to PDEs, upon which the proposed model is based, is described in
Appendix A. This method corresponds to starting with piecewise constant initial conditions 𝜌(𝑥, 0), assuming piecewise linear flux
functions, and then solving a sequence of Riemann problems which describe the behaviour of 𝜌(𝑥, 𝑡) around its discontinuities and
discontinuities in 𝑄(𝜌, 𝑥, 𝑡). These discontinuities in 𝜌(𝑥, 𝑡) and 𝑄(𝜌, 𝑥, 𝑡) are known as fronts, and the resulting solution 𝜌(𝑥, 𝑡) will be
piecewise constant for each 𝑡, consisting of periods when the fronts move at constant speeds. The number and speed of these fronts
only changes when two of the fronts collide, or if there is an exogenous change in the system. An example of the solutions thus
obtained is shown in Fig. 2 in the middle.

Note that since 𝜌(𝑥, 𝑡) is piecewise constant for all 𝑡, it is unequivocally defined by a vector of front positions 𝑧𝑡 and a vector
of traffic densities between them 𝜌𝑡. These vectors exhibit distinctly hybrid behaviour, with flow dynamics corresponding to fronts
propagating on the road, i.e., changing all elements of 𝑧𝑡 at constant rates, and jump dynamics corresponding to changes in 𝜌𝑡 and
𝑧𝑡 due to front collisions or exogenous changes to the system. An example of the jump dynamics of 𝜌𝑡 is shown in Fig. 2 on the
right.

2.2. Model description

Here we present the general structure and properties of the FTSM, with the details about the implementation of the model
deferred to Appendix B. We follow the transition system formulation given in Tabuada (2009), and define the FTSM as the execution
of the transition system given by the quadruple ( ,0, ,→), which describes the evolution of the front-tracking solution to the
considered problem. The model described herein is geared towards the traffic scenario exemplified in the previous subsection.
Namely, in the remainder of this work, we assume that the road segment under consideration is homogeneous and without on- and
off-ramps, that the CAVs affect the rest of the traffic by acting as moving bottlenecks, and that the downstream front of stop-and-go
waves propagates upstream at constant speed. Extensions of the FTSM that allow it to capture some more general traffic conditions
will be discussed in future work.

The set of states  = (𝑛, 𝑡, �̄�, �̄�, �̄�,𝑊 ) is composed of:

• Number of active fronts: 𝑛 ∈ N, 𝑛 ≤ 𝑛max
• Time: 𝑡 ∈ R≥0
• Front positions: �̄� ∈ R𝑛max , 𝑧𝑖 ≤ 𝑧𝑖+1 for 𝑖 = 1,… , 𝑛
• Traffic densities: �̄� ∈ R𝑛max+1

≥0
• Flux functions: �̄� ∈ 𝑛max+1, where  is a set of flux functions
• Front speed bounds: 𝑊 ∈ R4.

The four front speed bounds are written together as 𝑊 =
(

�̆�−, �̆�+, “𝑊−, “𝑊+
)

, with �̆�− < �̆�+, and “𝑊− < “𝑊+. Each flux function can
be described by a quintuple 𝑞 = (𝑉 ,𝛴,𝛬±, 𝜉, 𝐹 ), consisting of:

• Slopes and breakpoints: (𝑉 ,𝛴) ∈ 
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• Boundary speeds: 𝛬± ∈ R2

• Identifier: 𝜉 ∈ Z
• Forced density: 𝐹 ∈ R ∪ {⊘},

here the set of feasible slopes and breakpoints is

=
{

𝑉 ∈R𝑚, 𝛴∈R𝑚+1>0 ∶ 𝜎1<𝜎2<…<𝜎𝑚+1,… , 𝑞𝜎𝑄,𝑖 ≥ 0, 𝑖 = 1,… , 𝑚, 𝑞𝜎𝑄,𝑚+1 = 0
}

,

𝑞𝜎𝑄,1=𝑉1𝜎1, 𝑞𝜎𝑄,𝑖=𝑞
𝜎
𝑄,𝑖−1+𝑉𝑖(𝜎𝑖 − 𝜎𝑖−1), 𝑖=2,… , 𝑚+1,

ithout any further constraints on the shape of the flux function. As the number of breakpoints of flux functions increases, we are
ble to more closely approximate any generic (possibly even non-concave) flux function, at the cost of increased computational
omplexity, but preserving the general form of the model. Note that in spite of its generality, the model does not sacrifice
omputational efficiency when dealing with simple flux functions, such as the triangular one. The states of the FTSM are exemplified
n Fig. 1.

We denote the traffic flow, given traffic density 𝜌, as 𝑞 = 𝑄∗(𝜌) and calculate it as like 𝑄𝑗 (𝜌) in (4), with 𝑉𝑗,𝑖 and 𝜎𝑗,𝑖 given in 𝑉
and 𝛴, respectively. Boundary speeds 𝛬± =

(

𝛬−, 𝛬+) represent the propagation speed of the upstream and downstream boundary
f the region of 𝑄∗. The identifier 𝜉 differentiates flux functions, and is unique for each flux function. We also use it to define the
recedence when determining the propagation speed of the boundary between regions with different flux functions. Namely, at a
oundary between flux functions 𝑄𝑖 ≠ 𝑄𝑖+1, the propagation speed is given by

𝜆𝑖 =

{

𝛬+
𝑖 , 𝜉𝑖 > 𝜉𝑖+1,

𝛬−
𝑖+1, 𝜉𝑖 < 𝜉𝑖+1.

We define the active fronts and densities

𝑧 =
[

𝑧1 … 𝑧𝑛
]⊤ =

[

𝐼𝑛 0𝑛×𝑛max−𝑛
]

�̄�

𝜌 =
[

𝜌1 … 𝜌𝑛+1
]⊤ =

[

𝐼𝑛+1 0𝑛+1×𝑛max−𝑛
]

�̄�,

o be all the states required to reconstruct the full traffic density profile 𝜌(𝑥, 𝑡). The maximum number of fronts 𝑛max can be taken large
enough so that the number of active fronts never exceeds it, but effectively, the dimension of active states will vary as a part of the
model dynamics. Furthermore, only the active fronts and densities, along with flux functions
𝑄 =

[

𝑄1 … 𝑄𝑛+1
]⊤ =

[

𝐼𝑛+1 0𝑛+1×𝑁−𝑛
]

�̄�, will influence the behaviour of the system, so when describing the transitions, we
only define their updates, and the inactive states may take arbitrary values.

Given the current state 𝑋 ∈  of the transition system, the density function 𝜌(𝑥, 𝑡) describing the current state of the system can
be reconstructed based on 𝑧1,… , 𝑧𝑛 and 𝜌1,… , 𝜌𝑛+1:

𝜌(𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌1, 𝑥 < 𝑧1,
⋮

𝜌𝑖, 𝑧𝑖−1 < 𝑥 < 𝑧𝑖,
⋮

𝜌𝑛+1, 𝑥 > 𝑧𝑛.

Note the abuse of notation as we use 𝜌(𝑥, 𝑡) for the reconstructed function, and 𝜌=
[

𝜌1 … 𝜌𝑛+1
]⊤for the vector of traffic densities.

The set of initial states 0 can be the same as the set of all states. Inputs to the system  describe the passage of time and
exogenous transitions. The evolution of the system state is described by defining the various transitions that arise in the process of
calculating the solution. Here we only give a short description of what each of the transitions does, and the full definition is deferred
to Appendix B. The transitions are listed in order of increasing priority, i.e., we first present the transitions that can only be taken
if no other transition can be taken, and end with transitions which do not depend on the state of the system, only on exogenous
inputs. The required transitions are: passage of time 𝜏(𝑡end), front interaction −𝑖, internal Riemann transition ∼𝑖, boundary Riemann
transition ∕𝑖, state forcing !𝑖, state insertion ∨(𝜌∨, 𝑥∨)𝑖, and flux function transition (𝑞, 𝑖, 𝑗). All these transitions are illustrated in
Fig. 3, as well as shown in the example in Fig. 2.

The first transition, passage of time, describes the propagation of fronts,

(𝑡, 𝑧)
𝜏(𝑡end)
←←←←←←←←←←←←←←←←←←←←←←←←→

(

𝑡′, 𝑧′
)

,

between their interactions, or until the externally provided goal time 𝑡end. Traffic densities 𝜌, number of active states 𝑛 and flux
functions 𝑄 do not change in these transitions, and only the front positions of active states (𝑖 = 1,… , 𝑛) are changed.

The front interaction transition describes what happens when two fronts collide, i.e., if the positions of these two fronts becomes
equal, 𝑧𝑖 = 𝑧𝑖+1 while their distance is decreasing, 𝜆𝑖 > 𝜆𝑖+1,

(𝑛, 𝑧, 𝜌,𝑄)
−𝑖
←←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′) .

′
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Fig. 3. Illustration of the transitions used in the FTSM. Traffic density profiles are shown colour-coded, and the transition system path (only 𝜌 and 𝑡) and
transitions are shown to the right of them.

Internal Riemann transition results from solutions to Riemann problem with the same flux function on both sides of the
discontinuity, and can be described by

(𝑛, 𝑧, 𝜌,𝑄)
∼𝑖
←←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′)

Depending on 𝜌𝑖 and 𝜌𝑖+1, the number of active states can decrease (if 𝜌𝑖 = 𝜌𝑖+1), increase, or stay the same. Note that the solution
to the basic LWR model can entirely be modelled by the three hitherto described transitions.

Next, the boundary Riemann transition can occur at interfaces between zones with different flux functions, and is given by

(𝑛, 𝑧, 𝜌,𝑄)
∕𝑖
←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′) .

Here, densities 𝜌′− = 𝜌′−(𝜌𝑖, 𝜌𝑖+1, 𝑄𝑖, 𝑄𝑖+1) and 𝜌′+ = 𝜌′+(𝜌𝑖, 𝜌𝑖+1, 𝑄𝑖, 𝑄𝑖+1) are obtained by maximizing the flow over the flux functions
boundary, subject to entropy conditions in the interiors on both sides of the discontinuity.

We use the forced density 𝐹 and the state forcing transition to potentially enforce internal boundary constraints, with 𝐹𝑖 ≠ ⊘
signifying that the traffic density in the zones described by 𝑄𝑖 must be 𝜌𝑖 = 𝐹𝑖, and 𝐹𝑖 = ⊘ signifying that the traffic density in said
zone is not forced, and can evolve according to the other hitherto described transitions. The transition is given by

(𝜌)
!𝑖
←←←←←←←→

(

𝜌′
)

.

The two exogenous transitions can be taken for any 𝑋 ∈  given the appropriate external input, are state insertion and the flux
function transition. State insertion consists of adding two fronts at position 𝑥∨ downstream of front 𝑖, with 𝑧𝑖 ≤ 𝑥∨ ≤ 𝑧𝑖+1,

(𝑛, 𝑧, 𝜌,𝑄)
∨(𝑥∨)𝑖
←←←←←←←←←←←←←←←←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′) ,

whereas flux function transition covers changes in flux functions in specific areas,

(𝑄)
(𝑄 ,𝑖,𝑗)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

(

𝑄′) .

The potential for using CAVs as both traffic sensors and actuators makes them important for future traffic control systems. We
describe how both these roles of CAVs can be modelled in the FTSM framework. We represent adding a CAV to the model, with
identifier 𝜉 at position 𝑥𝜉 and moving at speed 𝑢𝜉 , by first taking a transition ∨(𝑥𝜉 )𝑖− , which creates two fronts downstream of front
𝑖−, 𝑧𝑖− ≤ 𝑥𝜉 ≤ 𝑧𝑖−+1, followed by taking a transition (𝑄𝜉 , 𝑖− + 1, 𝑖− + 2), with 𝑄𝜉 =

(

𝑉𝜉 , 𝛴𝜉 ,
(

𝑢𝜉 , 𝑢𝜉
)

, 𝜉, 𝐹𝜉
)

. The choice of 𝑉𝜉 , 𝛴𝜉 and 𝐹𝜉
depends on the role that the CAV has. The identifier corresponding to each CAV is greater than the identifier of the flux function
describing the background traffic.

A CAV 𝜉 acting as a sensor communicates its local measurements of traffic density �̌�𝜉 , and traffic speed �̌�𝜉 , from which we get
𝑞𝜉 = �̌�𝜉 �̌�𝜉 . In case CAV 𝜉 is moving slower than the surrounding traffic, 𝑢𝜉 < 𝑣𝜉+, we measure the overtaking flow �̌�𝜉 . In general,
the values that are directly related to measurements are denoted by caron ( ̌ ). We model CAV 𝜉 acting as an actuator by setting
its reference speed 𝑢𝜉 , which determines their actual speed 𝛬±

𝜉 together with the speed of the traffic immediately downstream of it
𝑣𝜉+,

𝛬±
𝜉 = min

{

𝑢𝜉 , 𝑣𝜉+
}

, (5)

𝑣𝜉+ = 𝑄𝑖𝜉+(𝜌𝑖𝜉+)∕𝜌𝑖𝜉+ , (6)

𝑖𝜉+ = min 𝑖, s.t. 𝑧𝑖 ≥ 𝑥𝜉 , 𝑄𝑖 ≠ 𝑄𝜉 . (7)

Note that both its reference speed 𝑢𝜉 and the speed of traffic downstream of it 𝑣𝜉+ are piecewise constant, i.e., CAV 𝜉 instantly
adjusts its speed in response to a change in reference speed or traffic conditions according to (5). A vehicle moving slower than the
218
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Fig. 4. Closed-loop system structure. Local traffic measurements are collected by the CAVs and sent to the infrastructure, where traffic state reconstruction and
model learning is implemented. Based on the current state estimate, control actions for the CAVs are calculated using the learned predictions model.

rest of the traffic acts as a moving bottleneck, limiting the overtaking flow, which we may use for traffic control. We model the
effect a CAV acting as a moving bottleneck has on the rest of the traffic by using 𝑉𝜉 and 𝛴𝜉 in the shape of a bottleneck diagram.

Finally, we study the properties of the solutions to the FTSM, and how they correspond to the wave-speed-bounded solutions
of the LWR with piecewise linear flux functions and piecewise constant initial conditions. The results are stated in the following
theorems, with proofs given in Appendix C.

Theorem 1. Let 𝑋0 be the initial state of the FTSM with 𝑡 = 0. Consider the zone between two flux function boundaries [𝑧∗−(𝑡), 𝑧∗+(𝑡)],
described by flux function 𝑄∗, and assume that for 0 < 𝑡 < 𝑇 , 𝑇 > 0: 𝑧∗−(𝑡) < 𝑧∗+(𝑡), boundary conditions 𝜌𝑖∗−(𝑡) and 𝜌𝑖∗+(𝑡)+1 are constant, and
fronts from outside of [𝑧∗−(𝑡), 𝑧∗+(𝑡)] do not collide with 𝑧∗−(𝑡) or 𝑧∗+(𝑡). Then 𝜌(𝑥, 𝑡′), 𝑥 ∈ [𝑧∗−(𝑡

′), 𝑧∗+(𝑡
′)], given by 𝑋′ with 𝑡 = 𝑡′ is the unique

wave-speed-bounded solution of the corresponding LWR model with initial conditions 𝜌(𝑥, 0), 𝑥 ∈ [𝑧∗−(0), 𝑧
∗
+(0)], given by 𝑋0, for 0 < 𝑡′ < 𝑇 ,

𝑇 > 0, and its Total Variation T.V.(𝜌(⋅, 𝑡′)) and number of active fronts is nonincreasing in 𝑡′.

This theorem establishes correspondence between the solutions of the FTSM and the appropriate LWR model within zones where
the flux functions are homogeneous. It also holds if all flux functions 𝑄𝑖 are identical, in which case [𝑧∗−(𝑡), 𝑧

∗
+(𝑡)] corresponds to the

entire space. In case the wave-speed bounds are such that the entropy solution is identical to the wave-speed-bounded solution, this
theorem corresponds to Corollary 2.8 in Holden and Henrik Risebro (2015), for constant boundary conditions and inside a zone
where the flux function is homogeneous. Furthermore, since the number of active fronts is nonincreasing in time, the numerical
complexity of evaluating the FTSM is also nonincreasing with time, which results in diminishing increases in computational burden
as the prediction horizon increases in case the model is used to predict the evolution of the traffic.

Finally, the solution of the FTSM is shown to exist and be well-defined, in particular, to be devoid of Zeno behaviour, ensuring
that the execution of the FTSM indeed proceeds until the desired time. We define Zeno behaviour as the existence of a solution with
an infinite series of transitions that are not passage of time 𝑋

𝜏(𝑡end)
←←←←←←←←←←←←←←←←←←←←←←→𝑋′, with 𝑡 < 𝑡end, 𝑡 < 𝑡′.

Theorem 2. There exists a unique, non-Zeno solution to the FTSM, with initial state 𝑋0 and a finite number of exogenous transitions, that
defines a unique wave-speed-bounded solution of the LWR (1), 𝜌(𝑥, 𝑡), with corresponding: piecewise constant initial conditions (2), piecewise
defined spacetime-dependent flux function (3) with each spatiotemporal zone defined by a continuous piecewise linear flux functions (4) and
boundaries between zones described by different flux functions (4) propagating at constant speeds, and exogenous transitions.

Note that here we only state the quantities of the FTSM, whereas the rigorous discussion of the nature of wave-speed-bounded
solutions of the considered form of the LWR model is left to future work. As discussed in Appendix A, in the case studied in this
paper, the wave-speed-bounded solutions and flux function boundary solutions exist and are unique. These solutions may cause an
increase in the total variation of 𝜌(𝑥, 𝑡), but assuming a finite number of exogenous transitions, this increase is bounded.

In summary, the FTSM consists of a transition system which describes the process of finding solutions to the LWR model with
space-dependent flux functions and front speed bounds. It can handle any piecewise linear flux function, and yields exact wave-
speed-bounded solutions, as defined in Appendix A. As outlined in Mazaré et al. (2011), due to the event-based nature of the
front-tracking method, the computation time will strongly depend on the particular traffic situation. In case there is a large number
of fronts, and flux functions have a large number of breakpoints, the computation time for the exact solution can be high. Since we
typically rely on noisy measurements, uncertain flux functions, and simplifications of more complex underlying models, calculating
an exact solution is fruitless in practice. Therefore it is advantageous to introduce some level of approximation in order to lower
the computational burden, without sacrificing too much performance.

3. Reconstruction-based stop-and-go wave dissipation control

With increasing numbers of CAVs entering the roads, traffic control with CAVs used as both sensors and actuators, as outlined in
Fig. 4, is becoming feasible. We assume that CAVs can collect and communicate local traffic measurements, and that their reference
speed can be used as control inputs and set from the infrastructure. These measurements of traffic density, speed, and overtaking
219
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Fig. 5. Data flows for reconstruction-based control for stop-and-go wave dissipation, using the FTSM with learned model components for traffic state reconstruction
and prediction. The control actions are calculated based on the predicted evolution of the traffic.

flow could be acquired using on-board sensors required for CAV situation awareness, or possibly estimated based on the speed of
the CAV in case it is acting as a floating car, and we use them to reconstruct the traffic state, as well as to identify the flux function,
moving bottleneck diagram, and stop-and-go wave speed. The traffic model thus learned is used to predict the evolution of the
traffic state based on the chosen control actions for all CAVs, and based on these predictions, we are able to calculate the control
actions. We use the CAVs acting as controlled moving bottlenecks to dissipate stop-and-go waves in order to minimize the Total
Time Spent of all vehicles.

We adopt the same assumptions as in Section 2, i.e., that the considered stretch of road is homogeneous and can be described
by a single flux function 𝑄0. The FTSM used for traffic state reconstruction and prediction is initialized at some start time 𝑡0 = 0 to

0=
(

𝑛0, 𝑡0, 𝑧0, 𝜌0, 𝑄0,𝑊 0)=
(

0, 0, ∅, 𝜌avg, 𝑄0,𝑊 0),

𝑄0=𝑄0=
(

𝑉 0, 𝛴0, 𝛬±,0, 𝜉0, 𝐹 0)=
(

[0] ,
[

𝜌max] , (0, 0), 0, ∅
)

,

with constant initial traffic density 𝜌0 using the overall average density known from historical data, wave-speed bounds 𝑊 0 such
that all wave-speeds are allowed, and 𝜌max chosen large enough so that the traffic density will never exceed it. The flux functions,
including front speed bounds, and traffic state reconstruction are updated as new measurements become available, according to the
algorithms described in what follows.

We first propose algorithms that can be used to identify each aspect of the traffic model (flux function of the road 𝑄0, flux
function of the CAVs acting as moving bottlenecks 𝑄𝜉 , and wave speed bound “𝑊− used to model stop-and-go waves), using only
local measurements of traffic density �̌�𝜉 , traffic flow 𝑞𝜉 , and overtaking flow �̌�𝜉 provided by the CAVs 𝜉. The proposed algorithms
exploit the continuous piecewise linear structure of the flux functions to simplify calculations and avoid making assumptions about
their shape. Indeed the only assumption made is that the dynamics of the traffic can, at least approximately, be described as a
first-order conservation law, ignoring the dynamics of the traffic speed. Then, assuming that all flux functions and other parameters
of the traffic model are known, we describe how local traffic density measurements �̌�𝜉 can be used to reconstruct the traffic state,
which will later be used to calculate control actions. Finally, we present a control law that uses the FTSM as the prediction model,
along with the proposed traffic state reconstruction and model learning algorithms, as well as some simplified control laws which
use more information and are used as benchmarks. The general flow of data, from CAV trajectories 𝑥𝜉 (𝑡), current CAV speed 𝛬±

𝜉 (𝑡),
and current measurements �̌�𝜉 (𝑡), 𝑞𝜉 (𝑡), and �̌�𝜉 (𝑡), to control action updates 𝑢𝜉 (𝑡+), is shown in Fig. 5, and the remainder of this section
broadly reflects its structure.

3.1. Learning the traffic flux function 𝑄0

Consider a CAV 𝜉 travelling through a road segment described by flux function 𝑄0, and let its reference speed be 𝑢𝜉 ≥ 𝑣max
𝑄0

.
Then the actual speed of the CAV depends only on the speed of the traffic immediately downstream of it, and does not influence
the surrounding traffic, so 𝛬±

𝜉 = �̌�𝜉 , where �̌�𝜉 denotes the local measurement of the traffic speed collected by CAV 𝜉. Since the CAV
is following the flow of the traffic, we have the measured overtaking flow �̌�𝜉 = 0, and the measurement of the traffic flow 𝑞𝜉 should
be consistent with the flux function, 𝑄0(�̌�𝜉 ) ≈ 𝑞𝜉 .

We propose a stream processing event-triggered method for on-line flux function update, summarized in Algorithm 1, where
operator avg denotes finding the average value, and operator # the number of elements of some set. Let 𝛯𝑄0

be the set of CAVs
collecting measurements about the flux function 𝑄0. If, for any CAV 𝜉, the deviation of the measured traffic flow 𝑞𝜉 from the
modelled traffic flow based on the measured traffic density 𝑄0(�̌�𝜉 ) is greater than some margin 𝐵𝑞 , we update the flux function
based on the measurement. Choosing higher 𝐵𝑞 reduces the update frequency and sensitivity to measurement noise, at the cost of
higher model error. Instead of using all the collected data, the set of measurements which we use for flux function fitting

(

�̌�𝑄0 , �̌�𝑄0
)

consists only of the measurements that trigger a flux function update.
First, we add the

(

�̌�𝜉 , 𝑞𝜉
)

for which |

|

|

𝑄0(�̌�𝜉 ) − 𝑞𝜉
|

|

|

> 𝐵𝑞 to
(

�̌�𝑄0 , �̌�𝑄0
)

. Next, if the flux function already has any breakpoints close
to the measurement, ||

|

𝜎𝑖 − �̌�𝜉
|

|

|

< 𝐵𝜎 , they will be replaced by a new breakpoint; otherwise a new breakpoint is added without moving
any of the other breakpoints. Choosing higher 𝐵𝜎 decreases the number of breakpoints in flux function 𝑄0, at the cost of potentially
increasing the frequency of updates and higher model error. The new breakpoint 𝜎′ and its flux 𝑄0(𝜎′) are taken as the average
values of all measurements from

(

�̌�𝑄0 , �̌�𝑄0
)

that are close to the new measurement,
(

�̌�𝑄0 ,𝐵𝜎, �̌�𝑄0 ,𝐵𝜎
)

=
{

(𝜌, 𝑞)∈
(

�̌�𝑄0, �̌�𝑄0
)

∶ ||𝜌−�̌� |

|<𝐵
}

.
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We therefore add the new breakpoint 𝜎′ to 𝜮𝑄0
and recalculate 𝑉𝑄0

so that we have 𝑄′
0(𝜎

′) = 𝑞′, where 𝜎′ is the average of �̌�𝑄0 ,𝐵𝜎
𝜉

nd 𝑞′ the average of �̌�𝑄0 ,𝐵𝜎
𝜉 . The updated 𝛴𝑄′

0
and 𝑉𝑄′

0
are given by

𝛴𝑄′
0
=
[

𝜎1 … 𝜎𝑖𝜉− 𝜎′ 𝜎𝑖𝜉− … 𝜎𝑚
]⊤
,

𝑉𝑄′
0
=
[

𝑉1 … 𝑉𝑖𝜉− 𝑉 ′
− 𝑉 ′

+ 𝑉𝑖𝜉−+1 … 𝑉𝑚
]⊤
,

𝑖𝜉− =

{

max 𝑖 s.t. 𝜎𝑖 ∈ 𝜮𝑄0
, 𝜎𝑖 < �̌�𝜉 − 𝐵𝜎 , 𝜎1 ≥ �̌�𝜉 − 𝐵𝜎 ,

0, 𝜎1 < �̌�𝜉 − 𝐵𝜎 ,

𝑖𝜉+=min 𝑖 s.t. 𝜎𝑖 ∈ 𝜮𝑄0
, 𝜎𝑖 > �̌�𝜉 + 𝐵𝜎 ,

𝑉 ′
− =

𝑞′ −𝑄0(𝜎𝑖𝜉− )

𝜎′ − 𝜎𝑖𝜉−
, 𝑉 ′

+=
𝑄0(𝜎𝑖𝜉+ ) − 𝑞

′

𝜎𝑖𝜉+ − 𝜎′
,

where the first blocks of 𝛴𝑄′
0

and 𝑉𝑄′
0

are empty if 𝑖𝜉− = 0, and the third block of 𝑉𝑄′
0

is empty if 𝑖𝜉+ = 𝑚. We also need to ensure
y suitable selection of initial 𝑄0 that 𝜎𝑚 > �̌�max − 𝐵𝜎 , i.e., the final breakpoint of 𝑄0 is never moved.

Finally, in order to accelerate the adaptation of 𝑄0 to potentially new condition on the road, we may choose to always calculate
the breakpoint densities and flows using at most the 𝐵�̌� most relevant measurements. Then, if after adding the new measurement to
(

�̌�𝑄0 , �̌�𝑄0
)

we have #�̌�𝑄0 ,𝐵𝜎
𝜉 > 𝐵�̌� , i.e., the number of measurements close to �̌�𝜉 is higher than 𝐵�̌� , we may remove the measurement

hat differs from the new measurement
(

�̌�𝜉 , 𝑞𝜉
)

the most.

.2. Learning the moving bottleneck flux function 𝑄𝜉

Consider again a CAV 𝜉 travelling through a road segment described by flux function 𝑄0, with reference speed that is lower than
he measured speed of the surrounding traffic, 𝑢𝜉 < �̌�𝜉 . Then the CAV follows its reference speed, 𝛬±

𝜉 = 𝑢𝜉 , the measured overtaking
low is �̌�𝜉 > 0, and the presence of the slow moving vehicle affects the behaviour of the surrounding traffic. We aim to model this
nfluence by using a different flux function 𝑄𝜉 at the position of the CAV, with 𝛬±

𝜉 = 𝑢𝜉 . We need the measurement to satisfy

(∀𝜌 ≥ 0) 𝑄𝜉 (𝜌) ≤ �̌�𝜉 + 𝜌𝛬
±
𝜉 ,

(∃𝜌 ≥ 0) 𝑄𝜉 (𝜌) = �̌�𝜉 + 𝜌𝛬
±
𝜉 ,

(8)

.e., the line �̌�𝜉 + 𝛬±
𝜉 𝜌 should be tangent to 𝑄𝜉 (𝜌).

If the conditions (8) are violated by more than some margin 𝐵𝜔, we update flux function 𝑄𝜉 according to the proposed Algorithm
so that (8) holds. Choosing a higher 𝐵𝜔 decreases the frequency of updates of 𝑄𝜉 and sensitivity to measurement noise, but increases

he model error. We first calculate the maximum overtaking flow 𝜔max
𝜉 that 𝑄𝜉 allows in case the boundary speed is 𝛬±

𝜉 , which is
chieved for traffic density 𝜎𝑖𝜔𝜉 , 𝜔max

𝜉 = 𝑄𝜉 (𝜎𝑖𝜔𝜉 ) − 𝛬
±
𝜉 𝜎𝑖𝜔𝜉 . Since 𝑄𝜉 is piecewise linear, we only need to search for 𝜎𝜔𝜉 within the set

f its breakpoints 𝜮𝑄𝜉 . Then, if 𝜔max
𝜉 > �̌�𝜉 + 𝐵𝜔, the current flux function 𝑄𝜉 admits a higher overtaking flow than the measured

Algorithm 1: Learning the traffic flux function 𝑄0 using measurements from CAVs travelling with the flow

input : Flux function 𝑄0 defined by 𝑉𝑄0
and 𝛴𝑄0

, set of used measurements
(

�̌�𝑄0 , 𝒒𝑄0
)

, new measurements
(

�̌�𝜉 , 𝑞𝜉
)

output: Updated flux function 𝑄0 defined by updated 𝑉𝑄0
and 𝛴𝑄0

, updated set of used measurements
(

�̌�𝑄0 , 𝒒𝑄0
)

for 𝜉 ∈ 𝛯𝑄0
do

if ||
|

𝑄0(�̌�𝜉 ) − 𝑞𝜉
|

|

|

> 𝐵𝑞 then
Add

(

�̌�𝜉 , 𝑞𝜉
)

to
(

�̌�𝑄0 , 𝒒𝑄0
)

;
Remove from 𝜮𝑄0

all
{

𝜎∈𝜮𝑄0
∶ |

|

|

𝜎 − �̌�𝜉
|

|

|

<𝐵𝜎
}

;

Find
(

�̌�𝑄0 ,𝐵𝜎
𝜉 , 𝒒𝑄0 ,𝐵𝜎

𝜉

)

=
{

(𝜌, 𝑞)∈
(

�̌�𝑄0, 𝒒𝑄0
)

∶ ||
|

𝜌−�̌�𝜉
|

|

|

<𝐵𝜎
}

;

Add 𝜎′ = avg�̌�𝑄0 ,𝐵𝜎
𝜉 to 𝜮𝑄0

;
Recalculate 𝑉𝑄0

, so that 𝑄0
′(𝜎′)=avg𝒒𝑄0,𝐵𝜎

𝜉 ;
if #�̌�𝑄0 ,𝐵𝜎

𝜉 > 𝐵�̌� then

Remove from
(

�̌�𝑄0 , 𝒒𝑄0
)

measurements (𝜌,𝑞)=arg max
(𝜌,𝑞)∈

(

�̌�𝑄0 ,𝐵𝜎𝜉 ,𝒒𝑄0 ,𝐵𝜎𝜉

)

(

𝜌
�̌�𝜉
−1

)2
+
(

𝑞
𝑞𝜉
−1

)2

end
end

end
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one, so we proceed to update it with

𝛴𝑄′
𝜉
=
[

𝜎1 … 𝜎𝑖𝜉− 𝜎− 𝜎+ 𝜎𝑖𝜉− … 𝜎𝑚
]⊤
,

𝑉𝑄′
𝜉
=
[

𝑉1 … 𝑉𝑖𝜉−+1 𝛬±
𝜉 𝑉𝑖𝜉+ … 𝑉𝑚

]⊤
,

𝜎− = min 𝜌 ≥ 0 s.t. 𝑄𝜉 (𝜌) = 𝛬±
𝜉 𝜌 + �̌�𝜉

𝜎+ = max 𝜌 ≥ 0 s.t. 𝑄𝜉 (𝜌) = 𝛬±
𝜉 𝜌 + �̌�𝜉

𝑖𝜉− =

{

max 𝑖 s.t. 𝜎𝑖 ∈ 𝛴𝑄𝜉 , 𝜎𝑖 < 𝜎−, 𝜎1 ≥ 𝜎−,

0, 𝜎1 < 𝜎−,

𝑖𝜉+ = min 𝑖 s.t. 𝜎𝑖 ∈ 𝛴𝑄𝜉 , 𝜎𝑖 > 𝜎+,

where the first block of 𝛴𝑄′
𝜉

is empty if 𝑖𝜉− = 0. Otherwise, if 𝜔max
𝜉 < �̌�𝜉 −𝐵𝜔, the current flux function 𝑄𝜉 admits a lower overtaking

flow than the measured one, so we proceed to update it with

𝑉𝑄′
𝜉
=
[

𝑉1 … 𝑉𝑖𝜔𝜉 −1 𝑉 ′
− 𝑉 ′

+ 𝑉𝑖𝜔𝜉 +2 … 𝑉𝑚
]⊤
,

𝑉 ′
− =

�̌�𝜉+𝛬
±
𝜉 𝜎𝑖𝜔𝜉 −𝑄𝜉 (𝜎𝑖𝜔𝜉−1)

𝜎𝑖𝜔𝜉 − 𝜎𝑖𝜔𝜉 −1
, 𝑉 ′

+=
𝑄𝜉 (𝜎𝑖𝜔𝜉+1)−�̌�𝜉−𝛬

±
𝜉 𝜎𝑖𝜔𝜉

𝜎𝑖𝜔𝜉+1 − 𝜎𝑖𝜔𝜉
,

here if 𝑖𝜔𝜉 = 1, we take 𝜎𝑖𝜔𝜉 −1 = 0, and the first block of 𝑉𝑄′
𝜉

is empty.

Algorithm 2: Learning the moving bottleneck flux function 𝑄𝜉 using measurements of overtaking flow

input : Flux function 𝑄𝜉 defined by 𝑉𝑄𝜉 and 𝛴𝑄𝜉 , CAV speed 𝛬±
𝜉 , overtaking flow measurement �̌�𝜉

output: Updated flux function 𝑄𝜉 defined by updated 𝑉𝑄𝜉 and 𝛴𝑄𝜉
Find 𝜔max

𝜉 = max𝜎∈𝜮𝑄𝜉
𝑄𝜉 (𝜎) − 𝛬

±
𝜉 𝜎 = 𝑄𝜉 (𝜎𝑖𝜔𝜉 ) − 𝛬

±
𝜉 𝜎𝑖𝜔𝜉 ;

if 𝜔max
𝜉 > �̌�𝜉 + 𝐵𝜔 then
Find 𝜎− = min 𝜌 ≥ 0 s.t. 𝑄𝜉 (𝜌) = 𝛬±

𝜉 𝜌 + �̌�𝜉 , and 𝜎+ = max 𝜌 ≥ 0 s.t. 𝑄𝜉 (𝜌) = 𝛬±
𝜉 𝜌 + �̌�𝜉 ;

Remove from 𝜮𝑄𝜉 all
{

𝜎 ∈ 𝜮𝑄𝜉 ∶ 𝜎− ≤ 𝜎 ≤ 𝜎+
}

;
Add {𝜎−, 𝜎+} to 𝜮𝑄𝜉 ;
Recalculate 𝑉𝑄𝜉 , so that 𝑄′

𝜉 (𝜌) = �̌�𝜉 + 𝛬
±
𝜉 𝜌, 𝜎− ≤ 𝜌 ≤ 𝜎+;

else if 𝜔max
𝜉 < �̌�𝜉 − 𝐵𝜔 then

Recalculate 𝑉𝑄𝜉 , so that 𝑄′
𝜉 (𝜎𝑖𝜔𝜉 ) = �̌�𝜉 + 𝛬

±
𝜉 𝜎𝑖𝜔𝜉 ;

end

Algorithm 3: Learning the front speed bounds 𝑊 using traffic density and flow measurements

input : Front speed bounds 𝑊 , sets of used front speed measurements �̌��̃�± , previous measurements (�̌�𝜉 , 𝑞𝜉 ), new
measurements (�̌�′𝜉 , 𝑞

′
𝜉 )

output: Updated front speed bounds 𝑊 , updated sets of used front speed measurements �̌��̃�±

for 𝜉 ∈ 𝛯 do

if |�̌�′𝜉 − �̌�𝜉 | > 𝐵𝜌, 𝑢𝜉 >
𝑞𝜉
�̌�𝜉
, 𝑢𝜉 >

𝑞′𝜉
�̌�′𝜉
, �̃�
�̌�𝜉 �̌�′𝜉

𝑄0
≠
[

�̌�𝜉 �̌�′𝜉
]⊤

then

Find �̌�𝜉 =
𝑞′𝜉−𝑞𝜉
�̌�′𝜉−�̌�𝜉

;

Add �̌�𝜉 to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̌� “𝑊− , if �̌�𝜉 > �̌�′𝜉 , �̌�𝜉 > 𝑉
�̌�𝜉 �̌�′𝜉

𝑄0 ,1

�̌� “𝑊+ , if �̌�𝜉 > �̌�′𝜉 , �̌�𝜉 < 𝑉
�̌�𝜉 �̌�′𝜉

𝑄0 ,1

�̌��̆�− , if �̌�𝜉 < �̌�′𝜉 , �̌�𝜉 > 𝑉
�̌�𝜉 �̌�′𝜉

𝑄0 ,1

�̌��̆�+ , if �̌�𝜉 < �̌�′𝜉 , �̌�𝜉 < 𝑉
�̌�𝜉 �̌�′𝜉

𝑄0 ,1

;

Recalculate all 𝑊 for which �̌��̃�± ≠ ∅ so that �̃�± = avg�̌��̃�± ;
end

end
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3.3. Learning the front speed bounds 𝑊

Finally, we use the traffic density and speed measurements of the CAVs to learn the front speed bounds 𝑊 . We detect the
nfluence of front speed bounds upon a change in the measurements of some CAV 𝜉 as it enters a zone of different traffic density,
hen |�̌�′𝜉 − �̌�𝜉 | > 𝐵𝜌, where �̌�𝜉 is the old traffic density measurement, and �̌�′𝜉 the new one. If the CAV 𝜉 is travelling with the traffic

low without affecting it (𝑢𝜉 > �̌�𝜉 and 𝑢𝜉 > �̌�′𝜉), then according to the flux function that describes the traffic flow 𝑄0, the solution to

he Riemann problem between these two traffic densities should include zones of traffic density �̌�𝜉 �̃�
�̌�′𝜉
𝑄0

, i.e., the transition from �̌�𝜉
o �̌�′𝜉 should happen along an upper concave envelope of 𝑄0 if �̌�𝜉 > �̌�′𝜉 , or over a lower convex envelope of 𝑄0 if �̌�𝜉 < �̌�′𝜉 (discussed

in the Appendix in Appendix A.1). Therefore, if �̌�𝜉 �̃�
�̌�′𝜉
𝑄0

≠ [�̌�𝜉 �̌�′𝜉 ]
⊤, we infer that the reason for this discrepancy is the limit on front

speeds, which we use to estimate 𝑊 =
(

�̆�−, �̆�+, “𝑊−, “𝑊+
)

, as outlined in Algorithm 3.

We denote the front speed based on these measurements �̌�𝜉 =
𝑞′𝜉−𝑞𝜉
�̌�′𝜉−�̌�𝜉

. If �̌�𝜉 �̃�
�̌�′𝜉
𝑄0

≠ [�̌�𝜉 �̌�′𝜉 ]
⊤, this front speed offers information

about one front speed bound: �̆�± or “𝑊± depending on whether �̌�𝜉 < �̌�′𝜉 or �̌�𝜉 > �̌�′𝜉 , respectively, and �̃�− or �̃�+ depending on

whether �̌�𝜉 > �̌�𝜉𝑉
�̌�′𝜉
𝑄0 ,1

or �̌�𝜉 < �̌�𝜉𝑉
�̌�′𝜉
𝑄0 ,1

, respectively. Finally, we calculate those front speed bounds for which we have at least one
uch measurement as the average over the whole set, �̃�± = avg�̌��̃�± .

3.4. Traffic state reconstruction

Finally, we use the local measurements of traffic density �̌�𝜉 , 𝜉 ∈ 𝛯, where 𝜉 denotes the CAV that collected the measurement, to
reconstruct the traffic state. We force the reconstructed traffic density in the FTSM to be equal to the measured one at the position
of the CAV 𝜉, by setting 𝐹𝜉 = �̌�𝜉 . If the flux functions of all road segments are known, the influence of these measurements spreads
to the rest of the space over time.

We update the traffic state in an event-based manner at some time 𝑡′ when

1. a new CAV enters the road,
2. the difference between the current traffic density measurement of some CAV �̌�′𝜉∗ , and the previous forced traffic density 𝐹𝜉∗ ,

exceeds some bound, |�̌�′𝜉∗ − 𝐹𝜉∗ | > 𝐵𝜌, or
3. before predicting the traffic state evolution.

If the state  was last updated at time 𝑡, we may calculate the current state  ′ at time 𝑡′ by chaining transitions until the current
time becomes 𝑡′. During this update, the CAVs are described by their forced densities 𝐹𝜉 , and boundary speeds 𝛬±

𝜉 = 𝑥𝜉 (𝑡′)−𝑥𝜉 (𝑡)
𝑡′−𝑡 , which

nsure that the positions of the CAVs in  ′ correspond to their real positions on the road 𝑥𝜉 (𝑡′). If the state update was caused by
he entry of a new CAV, we assign a new unique identifier 𝜉∗ > max𝛯 to it, where 𝛯 is the set of identifiers of all CAVs that were
n the road before the new arrival. The newly arrived CAV 𝜉∗ is then added to set 𝛯′ = 𝛯 ∪{𝜉∗}, and added to the model at position
𝜉∗ (𝑡′), with forced traffic density set to 𝐹 ′

𝜉∗ = �̌�′𝜉∗ . Otherwise, if the state update was caused by a large deviation of the currently
easured traffic density �̌�′𝜉∗ from 𝐹𝜉∗ , we update its forced traffic density to 𝐹 ′

𝜉∗ = �̌�′𝜉∗ once the state reaches  ′. The process then
epeats at the next update time 𝑡′′. We can influence the frequency of updates by choosing a higher 𝐵𝜌, which also decreases the
ensitivity to measurement noise, but may yield a higher state reconstruction error.

.5. Stop-and-go wave dissipation control

We use the proposed model and learning algorithms for traffic state reconstruction and model learning to tackle the control
roblem of stop-and-go wave dissipation. At every time instant 𝑡, we consider some number of present CAVs 𝜉 ∈ 𝛯(𝑡) and stop-
nd-go waves 𝜓 ∈ 𝛹 (𝑡), and these numbers will change over time as new CAVs leave the road segment and new ones enter it, and
s stop-and-go waves get dissipated and new ones appear. The control action of CAV 𝜉 is its reference speed, 𝑢𝜉 (𝑡) ∈

[

𝑢min, 𝑢max].
n practice, the only restriction on the reference speed is the minimum speed 𝑢𝜉 (𝑡) ≥ 𝑢min, as the maximum speed of the CAV
ill be dictated by the speed of the surrounding traffic, 𝛬±

𝜉 ≤ 𝑣𝜉+. The proposed control laws follow the idea used in Čičić et al.
(2020a). Once the presence of stop-and-go waves is detected, we use the CAVs as moving bottlenecks to restrict the inflow to them,
accelerating their dissipation. All control laws use a prediction model to calculate the maximum speed at which the CAVs can drive
while still avoiding entering any stop-and-go waves. The predictions and reference speeds of all CAVs are calculated at every time
instant and applied as control actions if they satisfy the speed restrictions. Four cases of reconstruction-based control are considered:

(1) (FI) control with full access to the information about both the traffic state and traffic model,
(2) (EM) control using the actual traffic state but without considering the variation in the traffic model,
(3) (RS) control using the actual traffic model and reconstructed traffic density, and
(4) (FT) prediction-based control using the FTSM for traffic state reconstruction, model learning, and prediction.

The first three cases are used as benchmarks for comparison, using additional information about the traffic dynamics, the current
traffic state, or both.
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3.5.1. Full-information control (FI)
The number of vehicles in the zone of interest, between the CAV 𝜉 and the stop-and-go wave it is dissipating 𝜓𝜉 , evolves according

to

�̇�𝜉 (𝑡) = 𝜔𝜉 (𝑡) − 𝜔𝜓𝜉 (𝑡),

𝜔𝜉 (𝑡) = 𝑄0(𝜌d
𝜉
(𝑡)) − 𝑢𝜉 (𝑡)𝜌d

𝜉
(𝑡),

𝜔𝜓𝜉 (𝑡) = 𝑄0(𝜌d
𝜓𝜉
) − “𝑊−𝜌

d
𝜓𝜉
,

where 𝜔𝜉 (𝑡) is the traffic flow overtaking the moving bottleneck, 𝜌d
𝜉
(𝑡) is the traffic density of the overtaking flow dependent on

𝜉 (𝑡), and 𝜔𝜓𝜉 (𝑡) is the discharging flow from the stop-and-go wave. Since “𝑊− < 0 is assumed to be constant, the discharging traffic
density is also constant 𝜌d

𝜓𝜉
depending only on the traffic density of the stop-and-go wave 𝜌c

𝜓𝜉
. Likewise, assuming 𝑢𝜉 (𝑡) ≤ 𝑣𝜉+(𝑡), the

istance between these two borders of the zone follows

�̇�𝜉 (𝑡) = “𝑊− − 𝑢𝜉 (𝑡).

Given the initial number of vehicles 𝑁𝜉 (𝑡) and distance 𝑑𝜉 (𝑡), we readily get the times after which the number of vehicles in the
one and the distance become zero,

𝜏𝑁𝜉 (𝑡) =
𝑁𝜉 (𝑡)

𝑄0(𝜌d
𝜉
(𝑡)) − 𝑢𝜉 (𝑡)𝜌d

𝜉
(𝑡) −𝑄0(𝜌d

𝜓𝜉
) + “𝑊−𝜌d

𝜓𝜉

, (9)

𝜏𝑑𝜉 (𝑡) =
𝑑𝜉 (𝑡)

“𝑊− − 𝑢𝜉 (𝑡)
. (10)

In order for the stop-and-go wave 𝜓𝜉 to be dissipated before CAV 𝜉 reaches it, we need to ensure that 𝑁𝜉 (𝑡𝜉 ) = 0, 𝑑𝜉 (𝑡𝜉 ) ≥ 0 at some
time 𝑡𝜉 ≥ 𝑡, i.e., 𝜏𝑛𝜉 (𝑡) ≤ 𝜏𝑑𝜉 (𝑡), which is achieved with minimum disruption to the rest of the traffic if 𝜏𝑁𝜉 (𝑡) = 𝜏𝑑𝜉 (𝑡). We simplify the
alculation of 𝑢𝜉 (𝑡) by approximating 𝜌d

𝜉
(𝑡) ≈ 𝜌d

max
, where 𝜌d

max
is 𝜌d

𝜉
(𝑡) in case 𝑢𝜉 (𝑡) = 𝑢min, so substituting (9)–(10) into 𝜏𝑁𝜉 (𝑡) = 𝜏𝑑𝜉 (𝑡)

ields

𝑢𝜉 (𝑡) =
𝑄0(𝜌d

max
) −𝑄0(𝜌d

𝜓𝜉
) + “𝑊−

(

𝜌d
𝜓𝜉

− 𝜌avg
𝜉 (𝑡)

)

𝜌d
max

− 𝜌avg
𝜉 (𝑡)

, (11)

where 𝜌avg
𝜉 (𝑡) = 𝑁𝜉 (𝑡)∕𝑑𝜉 (𝑡) is the average traffic density in the considered zone. If thus calculated 𝑢𝜉 (𝑡) < 𝑢min, we infer that CAV

𝜉 will not be able to dissipate stop-and-go wave 𝜓𝜉 , and instead apply 𝑢𝜉 (𝑡) = 𝑢min and use the next CAV upstream to dissipate the
same stop-and-go wave.

3.5.2. Estimated-model control (EM)
In the full-information case, we assumed that both the model and the current traffic density profile are fully known. In reality,

the parameters of the traffic model can change due to varying weather or other conditions, and the traffic density profile has to
be reconstructed using available measurements. If the true model is not known, we calculate the control action using its current
estimates �̂�0, �̂�𝜉 , and “̂𝑊−, based on which we calculate �̂�d

max
and �̂�d

𝜓𝜉
,

𝑢𝜉 (𝑡) =
�̂�0(�̂�

d
max

) − �̂�0(�̂�
d
𝜓𝜉
) + “̂𝑊−

(

�̂�d
𝜓𝜉

− 𝜌avg
𝜉 (𝑡)

)

�̂�d
max

− 𝜌avg
𝜉 (𝑡)

. (12)

When the actual model changes, or if it deviates from the estimated one, the calculated control action can become overly
conservative, leading to superfluous traffic disruption, or overly optimistic, leading to failure to dissipate stop-and-go waves.

3.5.3. Reconstructed-state control (RS)
Conversely, if the traffic density profile is not known, we use the estimated average density �̂�avg

𝜉
(𝑡) instead,

𝑢𝜉 (𝑡) =
𝑄0(𝜌d

max
) −𝑄0(𝜌d

𝜓𝜉
) + “𝑊−

(

𝜌d
𝜓𝜉

− �̂�avg
𝜉

(𝑡)
)

𝜌d
max

− �̂�avg
𝜉

(𝑡)
, (13)

We use the simple traffic state reconstruction algorithm given in Čičić et al. (2020a),

�̂�𝑖(𝑡) =

{

𝜌𝑖(𝑡), 𝑖 = 𝑖ℎ𝜉 (𝑡) ∨ 𝑖 = 𝑖ℎ𝜉 (𝑡) + 1, 𝜉 ∈ 𝛯(𝑡),

�̂�𝑖(𝑡 − 1) + 𝑇
𝐿

(

𝑞𝑖−1(𝑡 − 1) − 𝑞𝑖(𝑡 − 1)
)

, elsewhere,

where 𝛯(𝑡) is the set of all CAVs that are currently present on the road, and calculate �̂�avg
𝜉

(𝑡) based on the reconstructed traffic density
rofile �̂�𝑖(𝑡). Note that since here we assume we can only measure the traffic density at the position of the CAV and immediately
ownstream, in this case, we have no information about the congestion that builds up upstream of the CAV, which can lead to
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3.5.4. FTSM-based control (FT)
Finally, we employ the proposed FTSM as a prediction model to calculate control actions for all CAVs. Employing the traffic state

econstruction and model learning algorithms, we acquire the current FTSM state (𝑡), which includes both the traffic density and
odel information. The control actions 𝑢𝜉 (𝑡), 𝜉 ∈ 𝛯(𝑡), are based on the predicted state ̂(𝑡+𝜃) with 𝜃 ranging from 0 to the prediction
orizon 𝛩, taken long enough that all CAVs are guaranteed to either dissipate or run into stop-and-go waves, 𝛩 = 𝑁cell𝐿∕(𝑢min− “𝑊−),

where 𝑁cell𝐿 is the length of the considered road segment. During the process of finding ̂(𝑡 + 𝜃), all traffic densities are unforced
̂𝜉 = ⊘, and the boundary speeds of all CAVs are set to

�̂�±
𝜉 =

{

𝑢min, �̂�𝜉+ > 𝑢min ∧ (∃𝑖 ≥ 𝑖𝜉+)𝜌𝑖 ≥ �̂�∗

�̂�𝜉+, otherwise,

here �̂�𝜉+ is given by (6), 𝑖𝜉+ by (7), and �̂�∗ is the minimum traffic density considered as a stop-and-go wave,

�̂�∗ =

⎧

⎪

⎨

⎪

⎩

𝜎max
�̂�0

, (∄𝑖)𝑉𝑖 < “̂𝑊−,

max
{

𝜎max
�̂�0

, 𝜎
“𝑊−
�̂�0

}

, (∃𝑖)𝑉𝑖 < “̂𝑊−,

𝜎
“𝑊−
�̂�0

= �̂�𝑖, 𝑖 = max 𝑗 s.t. 𝑉𝑘 > “̂𝑊−, 𝑘 = 1,… , 𝑗.

Essentially, the CAVs are driven at minimum speed, applying maximum control action, until they run into congestion or there is no
congestion downstream of their location.

Next, for each CAV 𝜉, we identify the position and prediction time (�̂�∗𝜉 , 𝜏
∗
𝜉 ) at which the final zone 𝑖 where �̂�𝑖 > �̂�∗ is dissipated,

i.e., the congestion is dissipated and the CAV no longer needs to apply control action. The prediction time is given in relative
coordinates, compared to the initial time 𝑡 at which the prediction is calculated. This congestion includes the stop-and-go waves
initially present in the system, as well as potential congestion created in the wake of CAVs downstream of the considered one. If the
CAV 𝜉 fails to dissipate all congestion, and instead enters congested traffic, �̂�𝜉+ < 𝑢min, we instead set (�̂�∗𝜉 , 𝜏

∗
𝜉 ) to the point at which

this happened, and if there was no congestion downstream of CAV 𝜉 at the beginning of the prediction, we set (�̂�∗𝜉 , 𝜏
∗
𝜉 ) = (𝑥𝜉 (𝑡), 0)

Then, the reference speed 𝑢𝜉 (𝑡) is set to

𝑢𝜉 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑢max, 𝜏∗𝜉 = 0,

max

{

𝑢min,min

{

𝑢max,
�̂�∗𝜉+�̂�𝜉−�̂�𝜉 (𝑡)+𝑢

min𝜏∗
𝜉

𝜏∗𝜉

}}

, 𝜏∗𝜉 > 0,
(14)

here 𝜉 denotes the first CAV downstream of CAV 𝜉. The control action is therefore calculated by first predicting the evolution of
he system under maximum control effort, and then reducing the control effort where possible, based on the prediction.

. Numerical evaluations

Finally, we put the control laws described in the previous section to the test in simulations. First we give the simulation model,
ollowed by presenting the parameters of the simulation setup, and then discuss the simulation results.

.1. Simulation model

The simulation model used to test the proposed algorithms and control is a variant of Godunov-discretized LWR (1),

𝜌𝑖(𝑡 + 1) = 𝜌𝑖(𝑡) +
𝑇
𝐿

(

𝑞𝑖−1(𝑡) − 𝑞𝑖(𝑡)
)

,

𝑞𝑖(𝑡) = min
{

𝐷𝑖(𝑡), 𝑆𝑖+1(𝑡)
}

𝐷𝑖(𝑡) = min
{

𝜌𝑖(𝑡), 𝜎max
𝑄0

}

min
{

𝑈𝑖(𝑡),max
{

0,
(

min
{

𝜌𝑖(𝑡), 𝜎max
𝑄0

}

)

+ 𝛿𝑖(𝑡)
}}

,

𝑆𝑖(𝑡) = max
{

𝜌𝑖(𝑡), 𝜎max
𝑄0

}

min
{

max
{

0,
(

max
{

𝜌𝑖(𝑡), 𝜎max
𝑄0

}

)

+ 𝛿𝑖−1(𝑡)
}}

,

here 𝜌𝑖(𝑡) is the traffic density in cell 𝑖 = 1,… , 𝑁cell at time 𝑡, 𝑞𝑖(𝑡) the traffic flow which depends on the demand of cell 𝑖, 𝐷𝑖(𝑡),
nd supply of cell 𝑖 + 1, 𝑆𝑖+1(𝑡). The average speed of each cell is given by the speed–density relation

(𝜌) = 𝑉 max
𝑄0

exp

(

− 1
𝛼

(

𝜌
𝜎max
𝑄0

)𝛼)

, (15)

with an added normally distributed noise term 𝛿𝑖(𝑡) ∼  (0, 𝛥) that models the stochastic nature of human driving. The flux function
fundamental diagram) is therefore given by 𝑄0(𝜌) = 𝜌(𝜌). The inflow to the first cell 𝑞0(𝑡) is given as an external input, and can

be delayed if the conditions in cell 1 are such that they cannot admit such flow, and the outflow from the final cell 𝑞 (𝑡) will be
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limited by extraneously setting 𝑆𝑁cell+1(𝑡) in order to generate stop-and-go waves entering the road segment from downstream. We
se reference speed 𝑈𝑖(𝑡), to model the influence of moving bottlenecks and stop-and-go waves, as in Čičić et al. (2020a),

𝑈𝑖(𝑡) = 𝑉 max
𝑄0

min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1,max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0,
𝜌∗𝑖+1(𝑡) −

𝑉 max
𝑄0

−𝑈𝑖+1(𝑡)

𝑉 max
𝑄0

𝜌𝑖+1(𝑡)

𝜌𝑖(𝑡)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where 𝑈𝑁cell+1 = 𝑉 max
𝑄0

and 𝜌∗𝑖 (𝑡) is the reference density.
The reference density 𝜌∗𝑖 (𝑡) is set to an arbitrary value higher than the maximum traffic density in the simulation that ensures

𝑈𝑖(𝑡) = 𝑉 max
𝑄0

everywhere except in the vicinity of moving bottlenecks and stop-and-go waves. There, we use the reference density
of the form

𝜌∗𝑖 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌c
𝑘
, 𝑖 = 𝑖𝑡𝑘(𝑡),… , 𝑖ℎ𝑘(𝑡),

𝜌d
𝑘
+
(

𝜌c
𝑘
− 𝜌d

𝑘

) 𝑧𝑘(𝑡)−𝑖ℎ𝑘 (𝑡)𝐿
𝐿 , 𝑖 = 𝑖ℎ𝑘(𝑡),

𝜌d
𝑘
, 𝑖 = 𝑖ℎ𝑘(𝑡) + 1,

to model their influence on the rest of the traffic.
We model the influence a moving bottleneck 𝜉, whose position is 𝑧𝜉 (𝑡) and velocity 𝑢𝜉 (𝑡), by setting 𝑖ℎ𝜉 (𝑡) =

⌊

𝑧𝜉 (𝑡)∕𝐿
⌋

+ 1 (𝑖ℎ𝜉 (𝑡)
s the cell where the moving bottleneck is), 𝑖𝑡𝜉 (𝑡) = 𝑖ℎ𝜉 (𝑡) − 1. If the moving bottleneck is slower than the traffic surrounding it,
𝜉 (𝑡) < 𝑞𝑖ℎ𝜉

(𝑡)∕𝜌𝑖ℎ𝜉
(𝑡), we model its influence by setting a reduced reference density in its vicinity. Densities 𝑟d𝜉 (𝑡) and 𝑟c𝜉 (𝑡) are set to

he solutions of 𝑄0(𝜌) = 𝑄sc(𝜌𝜏 ) + 𝑢𝜉 (𝑡)(𝜌− 𝜌𝜏 ), 𝑄′
sc(𝜌

𝜏 ) = 𝑢𝜉 (𝑡), 𝑟d𝜉 (𝑡) < 𝑟
c
𝜉 (𝑡), i.e., the intersections between the flux function 𝑄0(𝜌) and

he tangent of the scaled flux function 𝑄sc(𝜌) with slope 𝑢𝜉 (𝑡) (Monache and Goatin., 2014). The flux function 𝑄sc(𝜌) is scaled down
y the ratio of lanes not occupied by the moving bottleneck and the total number of lanes. The position of the moving bottlenecks
s updated to 𝑧𝜉 (𝑡 + 1) = 𝑧𝜉 (𝑡) + 𝑇 min

{

𝑞𝑖ℎ𝜉
(𝑡)∕𝜌𝑖ℎ𝜉

(𝑡), 𝑢𝜉 (𝑡)
}

.

A stop-and-go wave 𝑘 whose downstream end is at 𝑧𝑘(𝑡), is modelled by setting 𝑖ℎ𝑘(𝑡) = ⌊𝑧𝑘(𝑡)∕𝐿⌋ + 1, and 𝑖𝑡𝑘(𝑡) is the cell where
pstream end of its congestion is. We set 𝜌c

𝑘
to the maximum congestion level in the wave, and if 𝑄′

0(𝜌
c
𝑘
) < “𝑊−, where “𝑊− is the

onstant negative wave-speed propagation bound, we reduce the reference in its area. The discharging density 𝜌d
𝑘

is then given
as 𝑄0(𝜌d

𝑘
) = 𝑄0(𝜌c

𝑘
) + “𝑊−(𝜌d

𝑘
− 𝜌c

𝑘
), 𝜌d

𝑘
< 𝜌c

𝑘
, and the position of the downstream end of the stop-and-go propagates backwards to

𝑧𝑘(𝑡 + 1) = 𝑧𝑘(𝑡) + 𝑇 “𝑊−. Once the level of congestion of the stop-and-go wave falls to the level where 𝑄′
0(𝜌

c
𝑘
) ≥ “𝑊−, the stop-and-go

wave ceases to exist as a separate phenomenon, and if at some part of the road sufficiently dense congestion arises, a new stop-and-go
wave is created.

4.2. Simulation setup

The simulations were executed on a 10 km stretch of a two-lane road, which consists of 𝑁cell = 100 cells of length 𝐿 = 100 m
each. The simulation length is taken to be 𝑡end = 3 h, and the simulation time step is 𝑇 = 3 s. The inflow to the road segment
andomly varies in time, changing every minute, and is uniformly distributed 𝑞0(𝑡) ∼  (1450, 4350) veh/h. The CAVs arrive with
andom time gaps between them, 𝑔𝜉 = max{𝛾𝜉 , 30} s, 𝛾𝜉 ∼ Exp( 1

30 ). We create the stop-and-go waves, arriving from downstream,
by limiting the maximum outflow at the downstream end of the road segment to  (200, 400) veh/h for 30 s, causing congestion to
build up. Once this restriction is removed, the congestion starts dissipating, with discharging flow lower than the capacity of the
road, propagating upstream as a stop-and-go wave. The time gap between two generated stop-and-go waves is uniformly distributed
𝑞𝑘 ∼  (360, 1080) s (6 to 18 minutes).

In order to demonstrate how control adapts to time-varying traffic model, e.g., due to a change in weather conditions when it
starts raining (Billot et al., 2009), we change the flux function at time 𝑡 = 0.5 h. Both flux function are given by 𝑄0(𝜌) = 𝜌(𝜌), (15),
with parameters 𝛼 = 2.34, 𝑉 max

𝑄0
= 120 km/h, 𝜎max

𝑄0
= 51.1 veh/km, yielding capacity 𝑞max = 4000 veh/h, for 𝑡 ≤ 0.5 h, and 𝛼 = 3.4,

𝑉 max
𝑄0

= 75 km/h, 𝜎max
𝑄0

= 60.4 veh/km, yielding capacity 𝑞max = 3375 veh/h, for 𝑡 > 0.5 h. The variance of the additive process noise
of the velocity is in both cases 𝛥 = 16 km2/h2.

The FTSM state reconstruction and model learning algorithms used traffic flow bound 𝐵𝑞 = 1000, flux function breakpoint bound
𝐵𝜎 = 20, bound on the maximum number of used data points 𝐵�̌� = 10, overtaking flow bound 𝐵𝜔 = 500, and traffic density bound
𝐵𝜌 = 30. Furthermore, all of the measurements were perturbed with multiplicative noise 𝜀 ∼  (1, 0.0025).

4.3. Simulation results

We executed 50 simulation runs, comparing the performance of the four described control laws. For each simulation run, six
simulations with the same realization of all random variables were executed, one using each of the control laws, one with no
control, and a benchmark simulation with no stop-and-go waves. The performance metric used was the delay ratio, defined as the

case TTScase
𝑖 −TTSmin

100%. For
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percentage increase of Total Time Spent (TTS) compared to the TTS of the benchmark simulation, DR𝑖 =
TTSmin
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Fig. 6. Box plots of delay ratios with different control laws.FI: Full-information (11), EM: Estimated-model (12), RS: Reconstructed-state (13), FT: FTSM-based (14),
NC: No control.

Table 2
Achieved mean and median delay ratios of the different control laws.

Delay ratio [%] FI EM RS FT NC

Mean 2.92 3.44 9.44 8.02 15.69
Median 2.06 3.02 7.45 5.20 14.73

Fig. 7. Detail from the simulations comparing different control cases.

example, DRcase = 15% indicates that the TTS of that case of simulation run 𝑖 was TTScase𝑖 = 1.15 ⋅TTSmin, i.e., the stop-and-go waves
caused the vehicles to spend 15% more time on the road in total. The results are shown in Fig. 6 and Table 2.

We can see that all control cases achieve significant reduction of delay compared to the uncontrolled case. In particular, control
laws that use full information about the traffic density profile (FI and EM) perform significantly better than those based on state
reconstruction (RS and FT). This is not surprising, since in this case, the control law is able to react as soon as a stop-and-go wave
appears on the road, instead of waiting for one CAV to detect it first. In this case, not knowing the exact model only deteriorated
the control performance slightly (in case of EM compared to FI), since the change in model parameters was not severe.

Reconstructed-state control performs worse than the other control laws, probably due to the fact that it does not correctly capture
the buildup of congestion in the wake of CAVs. Conversely, since the traffic state reconstruction is done model-based in case of the
FTSM-based control, this control law achieves better performance, in spite of using less information. Overall, in spite of being fully
data-driven, this control law is able to dissipate stop-and-go waves and significantly reduce the overall Total Time Spent.
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Fig. 8. Overview of the changes to �̂�0 through time in one simulation run. In 8(a), some updates before 𝑡 = 0.5 when 𝑄0 is changed are shown. Density-flow
measurement pairs for 𝑡 < 0.5 are shown as grey dots and the current 𝑄0 is shown in dashed black. The estimation of �̂�0 is done based on measurements
(

�̌�𝑄0 , �̌�𝑄0
)

, shown as ×-es, and newly added ×-es are shown in the same colour as the current �̂�0. In 8(b), 8(c), and 8(d), �̂�0 is shown at three different times
𝑡 > 0.5. Here, only the measurements from 𝑡 = 0.5 to the time when �̂�0 was estimated are shown. The current 𝑄0 is shown in dashed black and the old 𝑄0 in
ashed red. Blue ×-es are the measurements used to estimate �̂�0, and red ×-es are the ‘‘forgotten’’ measurements, that were used at some previous time, but
ave since been removed from

(

�̌�𝑄0 , �̌�𝑄0
)

. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)

In Fig. 7 we show a detail from one of the simulations. In case no control is applied, stop-and-go waves grow and propagate
pstream. In this simulation run, the reconstructed-state control failed to dissipate the stop-and-go wave, and the other control laws
ere successful, albeit with the FTSM-based control causing some more congestion further upstream.

The traffic flux function 𝑄0 is the most impactful component of the overall traffic prediction model, so the process of estimating it
sing Algorithm 1 is shown in Fig. 8. It can be seen that the first estimates of 𝑄0 have a single breakpoint and are triangular, because
ll available measurements are still tightly clustered at that time. Later, as measurements of congested traffic become available, more
reakpoints are added and the flux function takes a somewhat more complex shape. Once the flux function is changed at 𝑡 = 0.5,
he algorithm gradually adapts the estimate to the new flux functions and either offsets or eliminates the measurements that are the
orst outliers. Even though the traffic speed is modelled with significant process noise, and the measurements used are also noisy,

he learning algorithms are able to quickly estimate the flux function using a low number of memorized measurements. Moreover,
ven though the piecewise linear flux function deviates from the form of the underlying actual flux function, this deviation does not
eflect particularly negatively on the control performance, while adopting such a simple form of the flux function greatly increases
he numerical efficiency of the prediction model.

. Conclusions

In this work we presented a cell-free traffic modelling approach based on front-tracking. We showed that the FTSM can capture
ischarging flows from stop-and-go waves lower than the capacity of the road, while also being able to model moving bottlenecks
nd other traffic phenomena. The solution of the FTSM was shown to be existing, unique, non-Zeno, and corresponding to the
olution of the LWR model with space-dependent piecewise linear flux functions and piecewise constant initial state. In order to be
ble to model stop-and-go waves with discharging flow lower than the road capacity, a new type of weak solution for the LWR was
ntroduced, the wave-speed-bounded solution, which constrains the propagation speed of fronts to some range, while only violating
he entropy condition at fronts where this constraint is active. We also described how traffic state reconstruction using local traffic
easurements from the CAVs can be implemented, as well as presented simple algorithms for model learning based on the same
easurements, leveraging the structure of the model. The proposed algorithms were shown to be able to approximate a more general

lux function with a piecewise linear one, only relying on a small dynamically changing subset of the collected traffic measurements.
sing the FTSM as a prediction model, we designed a control law for stop-and-go wave dissipation using CAVs, and compared it
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with other similar control laws. The control laws were tested in simulations, and were shown to significantly reduce the Total Time
Spent by eliminating stop-and-go waves.

There are many possible directions for further extending this work. Firstly, a more rigorous validation of the FTSM needs to
e performed, covering a wide variety of traffic conditions and infrastructure configurations. Next, while in this work we assumed
hat the considered road segment was homogeneous, the FTSM can easily be extended to the more general case. By introducing
ule-based transitions, we are able to define exactly what happens when fronts at the boundary of different flux functions collide,
hich can be used to model the transition of specific vehicles through zones with different road geometry, and consequently also
ifferent flux functions. The general structure of the FTSM allows modelling complex scenarios with dynamically changing zones
here the traffic is described by different flux functions. The modular nature of the model also allows for straightforward extensions,
y specifying additional transitions or modifying the described transitions. For example, we may modify the Boundary Riemann
ransition to introduce on- and off-ramps and more complex road network topologies into the model, as well as model the capacity
rop phenomenon at bottlenecks. Furthermore, these flux functions can be used to describe the aggregate effect of the CAVs on the
raffic in some area, allowing us to capture more complex interactions and formulate different control laws. Finally, an in-depth
tudy on the nature of solution that arise from introducing wave-speed bounds and zones described by different flux functions to the
WR model needs to be conducted. In particular, since these modifications can cause the total variation of the solution to increase,
ompared to that of the initial conditions, bounds on this increase need to be derived.

In this work we presented some basic model learning algorithms, designed to be simple and straightforward, but more efficient
lgorithms designed for specific purposes should also be developed. The proposed prediction-based traffic control based on the
TSM should also be applied to more general simulation setups, including in microscopic traffic simulations. Finally, for practical
pplications where the exactness of the calculated solution is not of critical importance, approximation schemes that will reduce
he computation burden need to be implemented. For example, fronts that separate zones where the same flux function holds and
he traffic densities do not differ too much could be removed, and flux functions could be simplified by reducing the number of
reakpoints that define them. We caution that care needs to be taken so that these approximations do not compromise non-Zenoness
f the transition system.
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ppendix A. Front-tracking with zones of different flux function and wave-speed bounds

The entropy solution to the LWR model (1), with flux functions (3), and initial conditions (2) is of the form

𝜌(𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌′1, 𝑥 < 𝑥𝜌′1 + 𝜆1𝑡,
⋮

𝜌′𝑖 , 𝑥𝜌′𝑖−1 + 𝜆𝑖−1𝑡 < 𝑥 < 𝑥
𝜌′
𝑖 + 𝜆𝑖𝑡,

⋮

𝜌′𝑁 ′+1, 𝑥 > 𝑥𝜌′𝑁 ′ + 𝜆𝑁 ′ 𝑡,

(16)

ith 𝜆𝑖−1 ≤ 𝜆𝑖 wherever 𝑥𝜌′𝑖−1 = 𝑥𝜌′𝑖 . Here 𝜆𝑖, 𝑖 = 1,… , 𝑁 ′ are the transition speeds, defined by the Rankine–Hugoniot condition

𝜆𝑖 =
𝑄(𝜌′𝑖+1) −𝑄(𝜌

′
𝑖)

𝜌′𝑖+1 − 𝜌
′
𝑖

.

he solution consists of zones of constant density separated by fronts 𝑥𝜌′𝑖 + 𝜆𝑖𝑡 where we have a discontinuity in the density. This
solution holds for 𝑡 ∈ [0, 𝜏], where 𝜏 is the minimum time when two fronts collide, 𝑥𝜌′𝑖−1 + 𝜆𝑖−1𝜏 = 𝑥𝜌′𝑖 + 𝜆𝑖𝜏, with 𝜆𝑖−1 > 𝜆𝑖. To get
he solution after that time, we solve a new composite Riemann problem for initial conditions 𝜌(𝜏, 𝑥), and by iterating this step, we
an obtain an exact entropy solution 𝜌(𝑥, 𝑡) to the initial value problem (1), (2) for any 𝑡. Due to Corollary 2.8 from Holden and
enrik Risebro (2015), the front-tracking method yields exact entropy solutions in case when the flux function is continuous and
iecewise linear and initial conditions piecewise constant, which is the case we consider here.
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Since 𝜌(𝑥, 0) is piecewise constant, we have 𝜕𝑥𝑄(𝜌(𝑥, 𝑡), 𝑥, 𝑡) = 0 everywhere except at discontinuities of 𝜌(𝑥, 𝑡), and at
discontinuities of 𝑄(𝜌, 𝑥, 𝑡) in 𝑥. Therefore, the process of finding (16) can be decomposed into finding the solutions to the Riemann
problems at each discontinuity. A Riemann problem, is an initial value problem of (1) with initial conditions

𝜌(𝑥, 0) =

{

𝜌−, 𝑥 < 0,
𝜌+, 𝑥 > 0,

(17)

and possibly different flux functions on either side of the discontinuity, with the boundary moving at a predefined constant speed
𝛬,

𝑄(𝜌, 𝑥, 𝑡) =

{

𝑄−(𝜌), 𝑥 < 𝛬𝑡,
𝑄+(𝜌), 𝑥 > 𝛬𝑡,

(18)

where 𝛬 is given as a parameter of the problem. Note that the space coordinate is shifted so that the discontinuity is at 𝑥 = 0.
If the discontinuity is only in 𝜌(𝑥, 𝑡), and 𝑄−(𝜌) = 𝑄+(𝜌), this Riemann problem corresponds to the basic form of finding the

entropy solution to the LWR model, which is well-known in the literature. In the following, we first discuss this case, and then
extend the results by defining a new type of weak solution, the wave-speed-bounded solution, for which we impose bounds on the
speed of fronts that originate from the discontinuity. Note that this solution can violate the entropy condition, but it allows us to
model some additional traffic phenomena. Finally, we discuss the solutions at the boundary between two different flux functions,
when 𝑄−(𝜌) ≠ 𝑄+(𝜌).

A.1. Entropy solution

When finding the entropy solution to Riemann problems (1), (17), (18), we need to calculate lower convex envelope or upper
concave envelope of the flux function if 𝜌− < 𝜌+ or 𝜌− > 𝜌+, respectively. We define these envelopes

𝜌−�̃�𝜌+𝑄 (𝜌) =

{

𝜌−�̆�𝜌+𝑄 (𝜌), 𝜌− < 𝜌+,
𝜌− “𝑄𝜌+𝑄 (𝜌), 𝜌− > 𝜌+,

𝜌−�̆�𝜌+𝑄 (𝜌)=sup
{

𝑄∗(𝜌)∶ 𝑞(𝜌)≤𝑄(𝜌), 𝑄∗ convex, 𝜌∈[𝜌−, 𝜌+]
}

,

𝜌− “𝑄𝜌+𝑄 (𝜌)=inf
{

𝑄∗(𝜌)∶𝑞(𝜌)≥𝑄(𝜌), 𝑄∗ concave, 𝜌∈[𝜌+, 𝜌−]
}

,

n [𝜌min, 𝜌max], 𝜌min = min(𝜌−, 𝜌+), 𝜌max = max(𝜌−, 𝜌+). We follow this notation in further text, with ̃ signifying ̆ (lower convex
envelope) if 𝜌− < 𝜌+, or “ (upper concave envelope) if 𝜌− > 𝜌+.

Note that 𝜌−�̃�𝜌+𝑄 (𝜌) also is a continuous piecewise linear function on [𝜌min, 𝜌max] and it can be defined in a similar way as (4),

�̃�(𝜌) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄(�̃�1) + 𝑉1(𝜌 − �̃�1), �̃�1 ≤ 𝜌 ≤ �̃�2,
𝑄(�̃�2) + 𝑉2(𝜌 − �̃�2), �̃�2 ≤ 𝜌 ≤ �̃�3,

⋮

𝑄(�̃��̃�−1) + 𝑉�̃�−1(𝜌 − �̃��̃�−1), �̃��̃�−1 ≤ 𝜌 ≤ �̃��̃�,

omitting superscript 𝜌− and 𝜌+ and subscript 𝑄 for better readability, and defining �̃�1 = 𝜌min, �̃��̃� = 𝜌max. We write the column vector
of slopes of such function 𝜌−𝑉 𝜌+

𝑄 , ordered from 𝑉1 to 𝑉�̃�−1 for 𝜌− < 𝜌+ or from 𝑉�̃�−1 to 𝑉1 for 𝜌− > 𝜌+. For all breakpoints of �̃�, we
have �̃�(�̃�𝑖) = 𝑄(�̃�𝑖). Breakpoints �̃�𝑖, 𝑖 = 2,… , �̃� − 1 are also breakpoints of 𝑄, 𝜎𝑗 for some 𝑗, on [𝜌min, 𝜌max], and can be determined
using efficient convex hull algorithms. Finally, we denote the sorted (ascending if 𝜌− < 𝜌+ and descending if 𝜌− > 𝜌+) column vector
of elements of 𝜌− �̃�𝜌+

𝑄 , including 𝜌− and 𝜌+, as 𝜌− �̃�𝜌+
𝑄 , and its length as 𝜌− �̃�𝜌+𝑄 . Same as with the envelopes 𝜌− �̃�𝜌+𝑄 (𝜌), 𝜌− �̃�𝜌+

𝑄 will consist
of breakpoints of the lower convex or upper concave envelope, depending on whether 𝜌− or 𝜌+ is larger.

The solution to the Riemann problem is then given by

𝜌(𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌−, 𝑥 < 𝑉1𝑡,
�̃�2, 𝑉1𝑡 < 𝑥 < 𝑉2𝑡,
⋮

�̃��̃�−1, 𝑒⊤�̃�𝑉�̃�−2𝑡 < 𝑥 < 𝑉�̃�−1𝑡,
𝜌+, 𝑥 > 𝑉�̃�−1𝑡,

(19)

gain omitting superscript symbols. Since 𝜌− �̃�𝜌+
𝑄 is monotonous, the Total Variation of the solution is equal to the Total Variation

of the initial conditions, T.V.(𝜌− �̃�𝜌+
𝑄 ) = T.V.([𝜌− 𝜌+]).

A.2. Wave-speed-bounded solution

Let [�̆�−, �̆�+] and [ “𝑊−, “𝑊+] be the admissible ranges of front speeds for compression (𝜌− < 𝜌+) and rarefaction (𝜌− > 𝜌+),
respectively. In case �̆� ≤ min{𝑽 } ≥ “𝑊 and �̆� ≥ max{𝑽 } ≤ “𝑊 , the entropy solution never violates the wave-speed bounds,
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and it thus coincides with the wave-speed-bounded solution. Otherwise, we define 𝑉− = min 𝜌−𝑉 𝜌+
𝑄 and 𝑉+ = max 𝜌−𝑉 𝜌+

𝑄 , and if
𝑉− < �̃�− or 𝑉+ > �̃�+, we need to look for a solution that fulfils the front speed constraints, while minimally violating the entropy
condition. The wave-speed-bounded solution is again given by (19), with

�̃�𝜌− 𝜌+
𝑄,𝑊=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

𝜌− �̃�
�̃�𝑊− �̃�𝑊+

𝑄

⊤
𝜌+

]⊤
, 𝑉− < �̃�−, 𝑉+ > �̃�+

[

𝜌− �̃��̃�𝑊− 𝜌+
𝑄

⊤ ]⊤
, 𝑉− < �̃�−, 𝑉+ ≤ �̃�+

[

�̃�
𝜌− �̃�𝑊+

𝑄

⊤
𝜌+

]⊤
, 𝑉− ≥ �̃�−, 𝑉+ > �̃�+

�̃�𝜌− 𝜌+
𝑄 , 𝑉− ≥ �̃�−, 𝑉+ ≤ �̃�+

𝑉𝜌− 𝜌+
𝑄,𝑊=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

�̃�− 𝑉
�̃�𝑊− �̃�𝑊+

𝑄

⊤
�̃�+

]⊤
, 𝑉− < �̃�−, 𝑉+ > �̃�+

[

�̃�− 𝑉�̃�𝑊− 𝜌+
𝑄

⊤ ]⊤
, 𝑉− < �̃�−, 𝑉+ ≤ �̃�+

[

𝑉
𝜌− �̃�𝑊+

𝑄

⊤
�̃�+

]⊤
, 𝑉− ≥ �̃�−, 𝑉+ > �̃�+

𝑉𝜌− 𝜌+
𝑄 , 𝑉− ≥ �̃�−, 𝑉+ ≤ �̃�+

where we define the densities

“𝜌𝑊− =max 𝜌 s.t. 𝜌<𝜌−,
d𝑄(𝜌)

d𝜌 ≥ “𝑊−,
𝑄(𝜌)−𝑄(𝜌−)

𝜌−𝜌−
=�̃�−, “𝜌𝑊+ =min 𝜌 s.t. 𝜌>𝜌+,

d𝑄(𝜌)
d𝜌 ≤ “𝑊+,

𝑄(𝜌+)−𝑄(𝜌)
𝜌+−𝜌

=�̃�+,

�̆�𝑊− =min 𝜌 s.t. 𝜌>𝜌−,
d𝑄(𝜌)

d𝜌 ≥ “𝑊−,
𝑄(𝜌)−𝑄(𝜌−)

𝜌−𝜌−
=�̃�−, �̆�𝑊+ =max 𝜌 s.t. 𝜌<𝜌+,

d𝑄(𝜌)
d𝜌 ≤ “𝑊+,

𝑄(𝜌+)−𝑄(𝜌)
𝜌+−𝜌

=�̃�+.

Note that the resulting solution can be non-monotone in density, and therefore cause an increase of Total Variation from the
initial conditions, since �̃�𝑊− and �̃�𝑊+ might lie outside of

[

min
{

𝜌−, 𝜌+
}

,max
{

𝜌−, 𝜌+
}]

, or might be differently ordered than 𝜌− and 𝜌+.
The entropy condition is only violated at the discontinuities between 𝜌− and �̃�𝑊− , and 𝜌+ and �̃�𝑊+ , and the potential increase in Total
Variation of the solution, compared to the initial condition, is

T.V.(𝜌− �̃�𝜌+
𝑄,𝑊 ) − T.V.([𝜌− 𝜌+]⊤) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|�̃�𝑊− − 𝜌−| + |�̃�𝑊+ − �̃�𝑊− | + |𝜌+ − �̃�𝑊+ | − |𝜌+ − 𝜌−|, 𝑉− < �̃�−, 𝑉+ > �̃�+,
|�̃�𝑊− − 𝜌−| + |𝜌+ − �̃�𝑊− | − |𝜌+ − 𝜌−|, 𝑉− < �̃�−, 𝑉+ ≤ �̃�+,
|�̃�𝑊+ − 𝜌−| + |𝜌+ − �̃�𝑊+ | − |𝜌+ − 𝜌−|, 𝑉− ≥ �̃�−, 𝑉+ > �̃�+,
0, 𝑉− ≥ �̃�−, 𝑉+ ≤ �̃�+.

In order to model stop-and-go waves with discharging flow lower than road capacity, it is enough to use “𝑊−>min{𝑽 𝑄}. If the
onsidered flux function is concave, as is typically the case in practice, only “𝑊− and �̆�+ constrain the solution.

A.3. Flux function boundary solution

Stationary and moving bottlenecks are modelled by using different flux functions in different regions, and we study the evolution
of traffic conditions around a bottleneck by solving a Riemann problem (1), (17), (18), with 𝑄−(𝜌) ≠ 𝑄+(𝜌). In order to find the

eak solution, the propagation speed of the boundary between two flux functions 𝛬 needs to be defined first. Then, we find the
olution that maximizes the flow over the boundary between two regions, while satisfying the Rankine–Hugoniot condition across
he boundary, and yielding entropy solutions inside both regions. The solution with initial conditions (17) and flux function (18)
an thus be split into two parts, consisting of Riemann problems between 𝜌− and 𝜌′−, and between 𝜌′+ and 𝜌+. The solutions to these

problems both need to be constrained to only have discontinuities inside the zones of 𝑄− (𝑥 < 𝛬𝑡) and 𝑄+ (𝑥 > 𝛬𝑡), respectively.
The Rankine–Hugoniot condition at the boundary between the two flux functions

𝑄+(𝜌′+) −𝑄−(𝜌′−) = 𝛬
(

𝜌′+ − 𝜌′−
)

,

can be rewritten in terms of the flow over the boundary 𝜔,

𝜔 = 𝑄−(𝜌′−) − 𝛬𝜌
′
− = 𝑄+(𝜌′+) − 𝛬𝜌

′
+.

Boundary densities 𝜌′− and 𝜌′+ both depend on 𝜌−, 𝜌+, 𝑄− and 𝑄+, and are given as optimizers of the optimization problem

maximize
𝜌′− ,𝜌

′
+

𝜔

s.t. 𝑄+(𝜌′+) −𝑄−(𝜌′−) = 𝛬(𝜌′+ − 𝜌′−),
𝜌−𝑉 𝜌′−

𝑄− ,𝑊
< 𝛬,

𝜌′+𝑉 𝜌+
𝑄+ ,𝑊

> 𝛬,

(20)

so that the flow over the boundary 𝜔 is maximized, under specified constraints.
For most simple flux functions used in practice, solving this maximization problem can be done explicitly. Since optimal 𝜌′− and

𝜌′+ will always be such that either 𝜌′− ∈ 𝜮𝑄−
∪
{

𝜌−
}

or 𝜌′+ ∈ 𝜮𝑄+
∪
{

𝜌+
}

, the problem can be solved by forming a set of all possible
pairings of (𝜌′−, 𝜌′+) that satisfy the Rankine–Hugoniot condition, and then checking the second and third constraint for each of them,
in order of descending boundary overtaking flow, so that the first pair to satisfy these constraints is the optimizer.

Another type of boundary that we consider is the one that arises when we force the density on one side to be equal to some
231

externally defined value, 𝜌(𝑥, 𝑡) = 𝐹−, 𝑥 < 𝜆𝑡 or 𝜌(𝑥, 𝑡) = 𝐹+, 𝑥 > 𝜆𝑡. We write 𝐹± ≠ ⊘ for those sides where the density is forced,
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and 𝐹± = ⊘ where it is not forced. In this case, the dynamics of traffic on the forced side are ignored, and the forced traffic density
nstead acts as a boundary condition for the other side, and the solution is given as

minimize
𝜌′+

|

|

|

𝜌′+ − 𝐹−
|

|

|

s.t. 𝑄+(𝜌′+) −𝑄+(𝐹−) = 𝛬(𝜌′+ − 𝐹−),
𝜌′+𝑉 𝜌+

𝑄+ ,𝑊
> 𝛬,

if 𝐹− ≠ ⊘ and 𝐹+ = ⊘, i.e., the density upstream is forced, or

minimize
𝜌′−

|

|

𝜌′− − 𝐹+||

s.t. 𝑄−(𝐹+) −𝑄−(𝜌′−) = 𝛬(𝐹+ − 𝜌′−),
𝜌−𝑉 𝜌′−

𝑄− ,𝑊
< 𝛬,

if 𝐹− = ⊘ and 𝐹+ ≠ ⊘ and the density downstream is forced. Alternatively, we may define special rules for handling the behaviour
at the boundary between two flux functions, e.g., when a moving bottleneck moves from a zone of one capacity to a zone of different
capacity.

The potential increase in Total Variation of the solution, compared to the initial conditions, is given by

T.V.([𝜌− �̃�𝜌′−
𝑄− ,𝑊

⊤𝜌′+ �̃�𝜌+
𝑄+ ,𝑊

⊤]) − T.V.([𝜌− 𝜌+]⊤) =

⎧

⎪

⎨

⎪

⎩

|𝜌′− − 𝜌−| + |𝜌′+ − 𝜌′−| + |𝜌+ − 𝜌′+| − |𝜌+ − 𝜌−|, 𝐹− = ⊘,𝐹+ = ⊘,
|𝜌′+ − 𝐹−| + |𝜌+ − 𝜌′+| − |𝜌+ − 𝐹−|, 𝐹− ≠ ⊘,𝐹+ = ⊘,
|𝜌′− − 𝜌−| + |𝐹+ − 𝜌′−| − |𝐹+ − 𝜌−|, 𝐹− = ⊘,𝐹+ ≠ ⊘.

Appendix B. FTSM implementation

In this section, we give the details of the implementation of the FTSM, defining how the particular transitions change the current
state  . We first define the notion of admissible state, which is used to define guard sets, and then specify the transitions.

B.1. Admissible states

Since the passage of time transition constitutes the flow dynamics of the system, we call the states for which this transition can
be taken the admissible states. Depending on the initial state 𝑋0, we can be forced to take some number of other transitions before
the current state enters the set of admissible states. This set is defined by the following conditions:

(

𝑧𝑗+1 > 𝑧𝑗
)

∨
((

𝑧𝑗+1 = 𝑧𝑗
)

∧
(

𝜆𝑗 ≤ 𝜆𝑗+1
))

, 𝑗 = 1,… , 𝑛 − 1, (⋆−)
(

𝜌𝑗 ≠ 𝜌𝑗+1,
𝜌𝑗 �̃�

𝜌𝑗+1
𝑄𝑗 ,𝑊

=
[

𝜌𝑗 𝜌𝑗+1
]⊤
)

, if 𝑄𝑗 = 𝑄𝑗+1, 𝑗 = 1,… , 𝑛, (⋆∼)
(

𝜌𝑗 = 𝜌′−(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1), 𝜌𝑗+1 = 𝜌′+(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1)
)

, if 𝑄𝑗 ≠ 𝑄𝑗+1, 𝑗 = 1,… , 𝑛, (⋆ ∕)

𝜌𝑗 = 𝐹𝑗 , if 𝐹𝑗 ≠ ⊘, 𝑗 = 1,… , 𝑛 + 1, (⋆ !)

where 𝜌′−(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1) and 𝜌′+(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1) are given as the optimizers from the solution described in Appendix A.3. These
conditions are also used to define guards of the transitions, as will be described in the following subsection.

B.2. Transitions

Here we describe the various transitions that model the evolution of the FTSM. For each of the transitions, the states that do not
change are omitted from the description. The transitions are listed in order of increasing priority, i.e., we first present the transitions
that can only be taken if no other transition can be taken, and end with transitions which do not depend on the state of the system,
only on exogenous inputs. We use notation ◦ to represent any of the transitions.

B.2.1. Passage of time transition 𝜏(𝑡end)
The first transition we describe is the passage of time, which describes the propagation of fronts between their interactions, or

until the externally provided goal time 𝑡end. This transition is taken if the state 𝑋 is in guard set

𝑋 ∈ 𝜏 =
{

𝑋 ∈ |(⋆−), (⋆∼), (⋆ ∕), (⋆ !), 𝜏 ∈ [0, 𝜏∗]
}

,

i.e., the state is admissible (conditions (⋆−), (⋆∼), (⋆ ∕), and (⋆ !) hold). The transition is defined by

(𝑡, 𝑧)
𝜏(𝑡end)
←←←←←←←←←←←←←←←←←←←←←←←←→

(

𝑡′, 𝑧′
)

′ ∗ ′ ∗
232

𝑡 = 𝑡 + 𝜏 , 𝑧 = 𝑧 + 𝜆𝜏
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a

B

w
𝑋

where 𝜆 =
[

𝜆1 … 𝜆𝑛
]⊤, and the wave-speeds 𝜆𝑖 are given as

𝜆𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑄𝑖+1(𝜌𝑖+1)−𝑄𝑖(𝜌𝑖)
𝜌𝑖+1−𝜌𝑖

, 𝜉𝑖 = 𝜉𝑖+1,

𝜆+𝑖 , 𝜉𝑖 > 𝜉𝑖+1,
𝜆−
𝑖+1, 𝜉𝑖 < 𝜉𝑖+1.

he maximum time shift 𝜏∗ is the minimum of the time for which condition (⋆−) is first violated,

𝜏∗𝑧 =min

{

𝑧𝑖+1 − 𝑧𝑖
𝜆𝑖 − 𝜆𝑖+1

|

|

|

|

|

𝑧𝑖+1≥𝑧𝑖, 𝜆𝑖>𝜆𝑖+1, 𝑖=1,… , 𝑛 − 1

}

nd the time to specified goal time 𝜏∗end = 𝑡end − 𝑡, 𝜏∗ = max
{

0,min
{

𝜏∗𝑧 , 𝜏
∗
end

}}

. Note that if 𝑡 ≥ 𝑡end, 𝑋′ = 𝑋.

.2.2. Front interaction transition −𝑖
A front interaction transition is taken when two fronts collide and the state is in guard set

𝑋 ∈ −𝑖 =
{

𝑋 ∈ |¬(⋆−)𝑖, (⋆−)𝑗 , 𝑗 > 𝑖, (⋆∼), (⋆ ∕), (⋆ !)
}

,

here by ¬(⋆−)𝑖 we signify that the 𝑗 = 𝑖-th condition in (⋆−) is violated. For all transitions ◦ ∈ {−,∼, ∕, !}, we write 𝑋 ∈ ◦ if
∈ ◦𝑖 for any 𝑖. In this case, the position of fronts becomes equal, 𝑧𝑖 = 𝑧𝑖+1 while their distance is decreasing, 𝜆𝑖 > 𝜆𝑖+1. The front

interaction transition corresponds to deactivating one state,

(𝑛, 𝑧, 𝜌,𝑄)
−𝑖
←←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′)

𝑛′= 𝑛 − 1,
𝑧′=

[

𝑧1 … 𝑧𝑖 𝑧𝑖+2 … 𝑧𝑛
]⊤,

𝜌′=
[

𝜌1 … 𝜌𝑖 𝜌𝑖+2 … 𝜌𝑛+1
]⊤,

𝑄′=
[

𝑄1 … 𝑄𝑖 𝑄𝑖+2 … 𝑄𝑛+1
]⊤.

If 𝑄𝑖 ≠ 𝑄𝑖+2, this transition is likely to cause condition (⋆ ∕) to be violated, and thus be followed by transition ∕𝑖. Note that the
Total Variation of the traffic density is nonincreasing through the transition,

T.V.(𝜌′) − T.V.(𝜌) =

{

0, 𝜌𝑖+1 ∈ [min(𝜌𝑖, 𝜌𝑖+2),max(𝜌𝑖, 𝜌𝑖+2)],
|𝜌𝑖+2 − 𝜌𝑖| − |𝜌𝑖+1 − 𝜌𝑖| − |𝜌𝑖+2 − 𝜌𝑖+1|, otherwise.

B.2.3. Internal Riemann transition ∼𝑖
This transitions results from solutions to Riemann problem given in Appendix A.2, and it is taken when the state is in guard set

𝑋 ∈ ∼𝑖 =
{

𝑋 ∈ |¬(⋆∼)𝑖, (⋆∼)𝑗 , 𝑗 > 𝑖, (⋆ ∕), (⋆ !), 𝑄𝑖 = 𝑄𝑖+1
}

,

The transition can be described by

(𝑛, 𝑧, 𝜌,𝑄)
∼𝑖
←←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′)

𝑛′ = 𝑛 + 𝑚 − 2, 𝑚 = �̃�𝜌𝑖 𝜌𝑖+1
𝑄𝑖 ,𝑊

𝑧′=
[

𝑧1 … 𝑧𝑖−1 𝑧𝑖1⊤𝑚−1 𝑧𝑖+1 … 𝑧𝑛
]⊤,

𝜌′=
[

𝜌1 … 𝜌𝑖−1 �̃�𝜌𝑖 𝜌𝑖+1
𝑄𝑖 ,𝑊

⊤ 𝜌𝑖+2 … 𝜌𝑛+1
]⊤
,

𝑄′=
[

𝑄1 … 𝑄𝑖−1 𝑄𝑖1⊤𝑚 𝑄𝑖+2 … 𝑄𝑛+1
]⊤.

Depending on 𝜌𝑖 and 𝜌𝑖+1, the number of active states can decrease (if 𝜌𝑖 = 𝜌𝑖+1), increase, or stay the same.

B.2.4. Boundary Riemann transition ∕𝑖
This transition can occur at interfaces between zones with different flux functions and reflect the solution from Appendix A.3.

It is taken when the state is in guard set

𝑋 ∈ ∕𝑖 =
{

𝑋 ∈ |¬(⋆ ∕)𝑖, (⋆ ∕)𝑗 , 𝑗 > 𝑖, (⋆ !), 𝑄𝑖 ≠ 𝑄𝑖+1
}

.

The transition can be described by

(𝑛, 𝑧, 𝜌,𝑄)
∕𝑖
←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′)

𝑛′=𝑛 + 𝑚− + 𝑚+ − 2, 𝑚− = �̃�𝜌𝑖 𝜌′−
𝑄𝑖 ,𝑊

, 𝑚+ = �̃�
𝜌′+ 𝜌𝑖+1

𝑄𝑖+1,𝑊

𝑧′=
[

𝑧1 … 𝑧𝑖−1 𝑧𝑖1⊤𝑚−+𝑚+
𝑧𝑖+1 … 𝑧𝑛

]⊤
,

𝜌′=
[

𝜌1 … 𝜌𝑖−1 �̃�𝜌𝑖 𝜌′−
𝑄𝑖 ,𝑊

⊤ �̃�
𝜌′+ 𝜌𝑖+1

𝑄𝑖+1 ,𝑊
⊤ 𝜌𝑖+2 … 𝜌𝑛+1

]⊤
,

𝑄′=
[

𝑄 … 𝑄 𝑄 1⊤ 𝑄 1⊤ 𝑄 … 𝑄
]⊤
,

233
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𝑗
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𝑗

where densities 𝜌′− = 𝜌′−(𝜌𝑖, 𝜌𝑖+1, 𝑄𝑖, 𝑄𝑖+1) and 𝜌′+ = 𝜌′+(𝜌𝑖, 𝜌𝑖+1, 𝑄𝑖, 𝑄𝑖+1) are obtained by solving the optimization problem (20), with
− = 𝜌𝑖, 𝜌+ = 𝜌𝑖+1, 𝑄− = 𝑄𝑖, and 𝑄+ = 𝑄𝑖+1.

.2.5. State forcing !𝑖
This transition ensures that the density matches the forced traffic density where 𝐹𝑖 ≠ ⊘; it is thus taken when the state is in

uard set

𝑋 ∈ !𝑖 =
{

𝑋 ∈ |¬(⋆ !)𝑖, (⋆ !)𝑗 , 𝑗 > 𝑖
}

,

nd defined by

(𝜌)
!𝑖
←←←←←←←→

(

𝜌′
)

𝜌′𝑖 =

{

𝜌𝑖, 𝐹𝑖 = ⊘,
𝐹𝑖, 𝐹𝑖 ≠ ⊘.

.2.6. State insertion ∨(𝜌∨, 𝑥∨)𝑖
State insertion is an exogenous transition, i.e., it can be taken for any 𝑋 ∈  given the appropriate external input. It consists of

dding two fronts at position 𝑥∨ downstream of front 𝑖, with 𝑧𝑖 ≤ 𝑥∨ ≤ 𝑧𝑖+1,

(𝑛, 𝑧, 𝜌,𝑄)
∨(𝑥∨)𝑖
←←←←←←←←←←←←←←←←←←←←←←←←→

(

𝑛′, 𝑧′, 𝜌′, 𝑄′)

𝑛′ = 𝑛 + 2,
𝑧′ =

[

𝑧1 … 𝑧𝑖 𝑥∨ 𝑥∨ 𝑧𝑖+1 … 𝑧𝑛
]⊤ ,

𝜌′ =
[

𝜌1 … 𝜌𝑖 𝜌𝑖+1 𝜌𝑖+1 𝜌𝑖+1 … 𝜌𝑛+1
]⊤ ,

𝑄′ =
[

𝑄1 … 𝑄𝑖 𝑄𝑖+1 𝑄𝑖+1 𝑄𝑖+1 … 𝑄𝑛+1
]⊤ .

t is only necessary to specify 𝑖 if 𝑧𝑖 = 𝑥∨ or 𝑧𝑖+1 = 𝑥∨, in order to disambiguate the ordering of fronts.

B.2.7. Flux function transition (𝑄, 𝑖, 𝑗)
Finally, flux function transition is another exogenous transition, which covers changes in flux functions in specific areas. The

transition is defined as

(𝑄)
(𝑄 ,𝑖,𝑗)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

(

𝑄′)

𝑄′ =
[

𝑄1 … 𝑄𝑖 𝑄 … 𝑄 𝑄𝑗+1 … 𝑄𝑛
]⊤,

with 𝑄 ∈  and 𝑗 > 𝑖. Formally, this change has no immediate effect on any of the other states, but it is likely to cause (⋆ ∼),
(⋆ ∕), or (⋆ !) to be violated.

Appendix C. Proofs

We state the proofs of theorems from Section 2.2, along with some required lemmas.

Lemma 1. The FTSM is nonblocking and deterministic.

Proof. All 𝑋 ∈  are in exactly one guard set, since the guard sets ◦ form a partition of  . Furthermore, all transitions ◦ ensure
that if 𝑋 ∈  and 𝑋

◦
←←←←←←→ 𝑋′ then 𝑋′ ∈  . Therefore there exists a unique solution of the FTSM for every initial state 𝑋0 ∈  . □

This lemma establishes the basic properties of the FTSM based directly on the guard sets of the transitions. Next, we study the
ehaviour of the FTSM in zones where the flux function is homogeneous, and with constant boundary conditions.

emma 2. If the state of FTSM 𝑋 ∈ ◦𝑖 , where transition ◦𝑖 is ∼𝑖 if 𝑋
∼𝑖
←←←←←←←←←←→ 𝑋′ or ∕𝑖 if 𝑋

∕𝑖
←←←←←←←←←→ 𝑋′, then 𝑋′ ∉ ∼𝑗 and 𝑋

′ ∉ ∕𝑗 for
= 𝑖,… , 𝑖 + 𝑛′ − 𝑛.

roof. First, consider the case when 𝑋 ∈ ∼𝑖 and (⋆ ∕). Based on the definition of the transition ∼𝑖, we have that

𝜌′𝑖 … 𝜌′𝑖+𝑛′−𝑛+1]
⊤ = 𝜌𝑖 �̃�𝜌𝑖+1

𝑄𝑖 ,𝑊
. Therefore, for 𝑘 = 0,… , 𝑛′ − 𝑛, [𝜌′𝑖+𝑘 𝜌

′
𝑖+𝑘+1]

⊤ = 𝜌′𝑖+𝑘 �̃�
𝜌′𝑖+𝑘+1
𝑄𝑖 ,𝑊

, so condition (⋆ ∼)𝑖+𝑘 holds and 𝑋′ ∉ ∼𝑗 ,

= 𝑖 + 𝑘. Next, if 𝑋 ∈ ∕𝑖 , based on the definition of the transition ∕𝑖, we have that [𝜌′𝑖 … 𝜌′𝑖+𝑚−−1
]⊤ = 𝜌𝑖 �̃�𝜌′−

𝑄𝑖 ,𝑊
and

[𝜌′𝑖+𝑚−
… 𝜌′𝑖+𝑛′−𝑛+1]

⊤ = 𝜌′+ �̃�𝜌𝑖+1
𝑄𝑖+1 ,𝑊

, where 𝑚− = 𝜌𝑖 �̃�𝜌
′
−
𝑄𝑖 ,𝑊

and 𝜌′± are the solutions to the optimization problem (20) for 𝜌− = 𝜌𝑖,

𝜌+ = 𝜌𝑖+1, 𝑄− = 𝑄𝑖, 𝑄+ = 𝑄𝑖+1. Therefore, for 𝑘 = 0,… , 𝑚− − 2, 𝑚−,… , 𝑛′ − 𝑛, [𝜌′𝑖+𝑘 𝜌
′
𝑖+𝑘+1]

⊤ = 𝜌′𝑖+𝑘 �̃�
𝜌′𝑖+𝑘+1
𝑄′
𝑖+𝑘 ,𝑊

, so condition (⋆∼)𝑖+𝑘 holds
and 𝑋′ ∉ ∼𝑗 , 𝑗 = 𝑖 + 𝑘. For 𝑖 +𝑚− − 1, we have 𝜌′𝑖+𝑚−−1

= 𝜌′−, 𝜌
′
𝑖+𝑚−

= 𝜌′+, 𝑄′
𝑖+𝑚−−1

= 𝑄𝑖, and 𝑄′
𝑖+𝑚−

= 𝑄𝑖+1, so since 𝜌′− and 𝜌′+ are the
result of transition ∕𝑖, condition (⋆ ∕)𝑖+𝑚−−1 holds and 𝑋′ ∉ ∕𝑖+𝑚−−1

. □

We can now state the proof of Theorem 1.
234
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Proof of Theorem 1. First, if the density is forced in the zone of flux function 𝑄∗, 𝐹 ∗ ≠ ⊘, this holds trivially, with 𝜌(𝑥, 𝑡′) = 𝐹 ∗ on
[𝑧∗−(𝑡

′), 𝑧∗+(𝑡
′)] for 𝑡′ > 0. Otherwise, after a finite number of transmissions 𝑋0

◦1
←←←←←←←←←←→ …

◦𝐾
←←←←←←←←←←←←→ 𝑋′

0, the state 𝑋′
0 satisfies (⋆−), (⋆∼), (⋆ ∕),

and (⋆ !) for 𝑖 = 𝑖∗−(0),… , 𝑖∗+(0). Here transitions ◦𝑘 are: ∕𝑖∗−(0), ∕𝑖∗+(0), and a finite number of transitions ∼𝑖 and −𝑖 for 𝑖∗−(0) < 𝑖 < 𝑖∗+(0),
if the state enters their respective guard sets during the transitions from 𝑋0 to 𝑋′

0. Afterwards, due to Lemma 2, while 𝑡 < 𝑇 , the

evolution of the state can be described with only transitions
𝜏(𝑡end)
←←←←←←←←←←←←←←←←←←←←←←←←→ and

−𝑖
←←←←←←←←←←→, for which the Total Variation and number of active

fronts is nonincreasing. □

Next, we study an infinitesimally narrow zone with a different flux function, and show that it does not give rise to Zeno behaviour.

Lemma 3. Let 𝑋 be the state of the FTSM with 𝑧𝑖− = 𝑧𝑖−+1 =…= 𝑧𝑖+ and no other front positions equal, where 𝑄𝑖− = 𝑄L, 𝑄𝑖 = 𝑄C for
𝑖= 𝑖−+1,… ,𝑖+, 𝑄𝑖++1 = 𝑄R, 𝑄L ≠ 𝑄C, 𝑄C ≠ 𝑄R, and the density in the zones of 𝑄L and 𝑄R is not forced, 𝐹L = 𝐹R = ⊘. Then 𝑋′ ∈ 𝜏 ,
where 𝑋

◦1
←←←←←←←←←←→ …

◦𝐾
←←←←←←←←←←←←→ 𝑋′, ◦𝑘∈{−𝑖𝑘,∼𝑖𝑘, ∕𝑖𝑘, !𝑖𝑘}, 𝑘 = 1,… , 𝐾 with finite 𝐾.

Proof. Without loss of generality, assume (⋆∼)𝑖, (⋆ ∕)𝑖, and (⋆ !)𝑖, hold for 𝑖 ∉ [𝑖−, 𝑖+], which could always be achieved in a finite
number of transitions. Firstly, if the density in the zone of 𝑄C is forced, after transitions !𝑖, 𝑖 = 𝑖− + 1,… , 𝑖+ inside the zone, ∕𝑖−
and ∕𝑖+ at both borders of the zone, and 𝑖+ − 𝑖− − 1 instances of transition −𝑖−+1, the resulting state 𝑋′ ∈ 𝜏 . Otherwise, after up to
two transitions ∕𝑖 and up to 𝑖+ − 𝑖− − 1 transitions ∼𝑖, the resulting state is 𝑋0, and it holds that either 𝜆𝑖0− = 𝜆𝑖0−+1 = ⋯ = 𝜆𝑖0+ and
𝑋0 ∈ 𝜏 , satisfying the requirements of the lemma, or 𝑋0 ∈ −𝑖 for some 𝑖0− ≤ 𝑖 ≤ 𝑖0+. We denote 𝑖𝑚− and 𝑖𝑚+ based on state 𝑋𝑚 so that
𝑄𝑚𝑖𝑚−

= 𝑄L, 𝑄𝑚𝑖 = 𝑄C for 𝑖 = 𝑖𝑚− +1,… , 𝑖𝑚+, 𝑄𝑚𝑖𝑚++1
= 𝑄R. If 𝑋0 ∈ −𝑖 for some 𝑖, after 𝑘0 front interaction transitions, 1 ≤ 𝑘0 ≤ 𝑖0+− 𝑖

0
−−1,

the resulting state 𝑋0′ will either satisfy the requirements of the lemma, or 𝑋0′ ∈ ∕𝑖0′− ∪ ∕𝑖0′+
. After transition ∕𝑖0′− or ∕𝑖0′+

from 𝑋0′

to 𝑋1, the process repeats with 𝑘𝑚 front interaction transitions, 1 ≤ 𝑘1 ≤ 𝑖1+ − 𝑖1− − 1, and with 𝑖𝑚+1+ < 𝑖𝑚+, 𝑚 = 1,… ,𝑀 , until state
𝑋𝑀 ′ satisfies the requirements of the lemma, with 𝜆𝑖𝑀′

−
≤ 𝜆𝑖𝑀′

−
≤ … ≤ 𝜆𝑖𝑀′

+
if 𝜆𝑖𝑀′

−
≤ 𝜆𝑖𝑀′

+
, and 𝑄𝑀 ′

𝑖𝑀′
−

= 𝑄L, 𝑄𝑀 ′

𝑖𝑀′
− +1

= 𝑄R if 𝜆𝑖𝑀′
−

> 𝜆𝑖𝑀′
+

(i.e., the zone described by flux function 𝑄C vanishes), or we have 𝑄𝑖𝑀′
−

= 𝑄L, 𝑄𝑖𝑀′
+

= 𝑄C, and 𝑄𝑖𝑀′
+ +1 = 𝑄R. Finally, if 𝑄𝑖𝑀′

−
= 𝑄L,

𝑄𝑖𝑀′
+

= 𝑄C, and 𝑄𝑖𝑀′
+ +1 = 𝑄R, the state satisfies the requirements of the lemma after up to three series of transitions, where the first

and third series consist of a finite numbers of transitions ∕𝑖𝑝± or −𝑖𝑝± , and the second series consists of a finite number of transitions
∕𝑖𝑝∓ or −𝑖𝑝∓ , i.e., if the first transition is ∕𝑖𝑀′

−
, the second series of transitions will happen at the boundary between 𝑄C and 𝑄R, and

if the first transition is ∕𝑖𝑀′
+

, the second series of transitions will happen at the boundary between 𝑄L and 𝑄C. Therefore, no infinite
internal behaviour of the FTSM, starting from 𝑋 and with no states in 𝜏 can exist, and after a finite number of transitions, the
system reaches state 𝑋′ ∈ 𝜏 . □

Finally, the proof of Theorem 2 is stated.

Proof of Theorem 2. Consider first the case when there are no exogenous transitions and passage of time transition is taken with
an arbitrarily large 𝑡end. Firstly, due to Lemma 1, the solution to initial conditions 𝑋0 from arbitrary 𝑡 = 𝑡0 until arbitrary 𝑡end > 𝑡0
exists and is unique. Due to Theorem 1, the only way Zeno behaviour can arise in FTSM is through interactions with flux function
boundaries. Due to Lemma 2, the transitions at a flux function boundary can only happen once a front reaches the boundary, and
the fronts created by the flux function boundary transition travel away from the boundary. Therefore any periodic behaviour would
require interaction between two flux function boundaries. If the zone between two flux function boundaries is of non-zero length, the
fronts originating from one boundary can only reach the other boundary after non-zero time, so the only case when Zeno behaviour
could arise is if the length of the zone goes to zero. Therefore, due to Lemma 3, no Zeno behaviour can arise. If exogenous transitions
are forced at times 𝑇1,… , 𝑇exo, the solution can be split into intervals [𝑡0, 𝑇1), [𝑇1, 𝑇2),… , [𝑇exo, 𝑡end]. Since the exogenous transitions
do not cause the output of the system to change, we may form 𝜌(𝑥, 𝑡) out of pieces between two exogenous transitions, with each
exogenous transition changing some part of the LWR model. □

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.trb.2022.10.008.
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