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Abstract— Platooning is a way to significantly reduce fuel
consumption of trucks. Vehicles that drive at close inter-
vehicle distance assisted by automatic controllers experience
substantially lower air-drag. In this paper, we deal with the
problem of coordinating the formation and the breakup of
platoons in a fuel-optimal way. We formulate an optimization
problem which accounts for routing, speed-dependent fuel
consumption, and platooning decisions. An algorithm to obtain
an approximate solution to the problem is presented. It first
determines the shortest path for each truck. Then, possible
platoon configurations are identified. For a certain platoon
configuration the optimal speed profile is the solution to a
convex program. The algorithm is illustrated by a realistic
example.

I. INTRODUCTION

Truck-platooning means that several trucks drive with
small inter-vehicle distance. The distance is maintained by
appropriate, automatic control of the vehicle speeds. Earlier
research on truck-platooning has mostly been motivated by
the possible increase in traffic throughput [1], [2], [3], [4],
[5]. The potential for fuel saving has renewed the interest
in the topic[6]. When the spacing between the vehicles is
sufficiently small, the follower vehicles experience reduced
aerodynamic drag [7], [8]. This, in turn, leads to reduced fuel
consumption. Advances in related technologies have made
the commercial availability of trucks that can platoon likely
in near future.

Much of the research on truck-platooning focuses on the
control of the inter-vehicle distances [9], [10]. Unless trucks
have the same route and start at the same time, platoons have
to be created during their journeys. If we use platooning to
reduce fuel consumption and only have a small part of vehi-
cles equipped with a platooning system, the formation of the
platoons needs to be coordinated over large regions, which is
the subject of this work. Related problems arise for example
in air traffic management [11], convoy movement [12], and
other areas [13], [14], [15]. Related research on coordination
of truck platooning is considered in [16] where a heuristic
scheme based on distributed controllers at road intersections
is proposed. The complexity of an off-line optimization
algorithm is discussed in [17]. Schemes where platoons are
formed on the on-ramps as in [5] require huge investments
in infrastructure. The authors of [18] consider that trucks
wait to form platoons and use data-mining techniques. [19]
computes the global fuel saving opportunities based on a
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simulation study but does not explicitly detail the means of
coordination.

The goal of this paper is to introduce a framework for
a fuel-optimal coordination where the trucks adapt their
speeds in order to form platoons during their journeys while
driving. The influence of speed on the fuel consumption is
explicitly considered and trucks are guaranteed to arrive at
their destinations by their arrival deadlines.

We consider a number of transport assignments, each with
a start position and time and an arrival position and deadline.
In Section II we introduce notation and formulate an opti-
mization problem. The route of a truck is modeled as a path
in a graph. The average speed of the trucks is constrained to
take into account legal speed limits, performance of the truck,
and traffic. Decision variables are the paths taken from start
to destination and the speed on each edge. We optimize the
total fuel consumption for all transport assignments while
taking into account both reduced fuel consumption due to
platooning as well as speed-dependent fuel consumption.
Platooning is considered to take place when two or more
trucks traverse an edge at the same time with the same speed.
We illustrate why this optimization problem is difficult to
solve. In Section III, we derive an approximate solution to the
problem. The approximate solution is based on the shortest
path for each transport assignment, which can be efficiently
computed with available algorithms. The remaining selection
of edge traversal speeds is solved by identifying platoon
configurations taking into account the route and the timing
constraints. For a certain platoon configuration, the optimal
speeds are computed as the solution to a convex, continuous
optimization problem, which can be efficiently solved. We
describe how the existence of a solution to the convex
problem can be checked for a platoon configuration. By
searching through the possible platoon configurations, we
obtain optimal speed profiles for the trucks. We show that
each two trucks form a platoon at most once during a journey,
which can significantly reduce the discrete search space. We
demonstrate the algorithm on a realistic scenario.

II. PROBLEM STATEMENT

We consider a road network modeled as a weighted,
directed graph G = (N , E ,W ), where N is a set of nodes,
E ∈ N ×N is a set of edges, and W : E → R+ are positive
edge weights. Each edge corresponds to a road segment and
the nodes correspond to the intersections. The edge-weights
model the length of the road segments.

We have K transport assignments, each characterized by
a start node nSk ∈ N and a destination node nDk ∈ N . There



is a start-time tSk at which the transport starts from nSk and
a deadline tDk by which the transport needs to reach nDk .
We consider that each transport assignment is assigned to
one truck. The truck carrying out transport assignment k has
index k, i.e., the same index as the transport assignment.

The speed of a truck is positive and smaller than an
allowed maximum speed vmax. We assume that the speed
over each edge is constant. So, if the speed of a truck over
edge (n1, n2) is v and the truck starts traversing the edge at
time t, it arrives at t+W ((n1, n2))/v at node n2.

A path of G is a sequence of nodes (nk[1], nk[2], . . . ), so
that (nk[i], nk[i + 1]) ∈ E for i = 1, . . . , (|nk| − 1), where
|nk| denotes the length of the sequence, i.e., the number
of nodes in the path. A path connecting nSk and nDk has
nk[1] = nSk and nk[|nk|] = nDk .

We say that a set of edges Ẽ forms a path if and only
if there exists a path ñ so that Ẽ = {(ñ[i], ñ[i + 1]) : i =
1, . . . , (|ñ|−1)}. Let ñ be a path. We say that ñs is a sub-path
of ñ if and only if ñs is a path and there exists j such that for
every i = 1, . . . , (|ñs| − 1) it holds that (ñs[i], ñs[i+ 1]) =
(ñ[j+i], ñ[j+i+1]). We denote the sequence of edges on the
path of transport assignment k as ek[i] = (nk[i], nk[i + 1])
for i = 1, . . . , (|nk| − 1).

For a path nk, we can collect the edge traversal speeds
in a sequence vk of length |ek|. The ith element vk[i] is the
edge traversal speed on edge ek[i].

The arrival time tk[i] of a truck k at the ith node on its
path is the sum of the start time and the edge traversal times
up to this point. Given the sequences nk and vk, we calculate
tk recursively as

tk[1] = tSk

tk[i] = tk[i− 1] +
W (ek[i− 1])

vk[i− 1]
, i ∈ {2, . . . , |nk|}.

(1)

We denote the set of paths as R = {n1, . . . , nK} and the
set of speed sequences as V = {v1, . . . , vK}.

A. Fuel Consumption Model

We model the fuel consumption per distance traveled as a
function of speed f(v). A simple model of fuel consumption
per distance is a second order polynomial in the speed:
f(v) = Fr + Fav

2, where Fr, Fa are positive constants [6].
Fr accounts for forces mainly caused by rolling resistance
and Fav

2 accounts for aerodynamic forces. For the sake
of simplicity, we neglect other factors influencing the fuel
consumption such as selected gear, road grade, wind, etc.
Many of these influences could be added without funda-
mentally changing the problem formulation, but they would
complicate notation.

When platooning as a follower, i.e., not the first vehicle in
the platoon, we assume that the aerodynamic coefficient is
reduced to ηFa with 0 < η ≤ 1, i.e., f(v, η) = Fr + ηFav

2.
We neglect the small fuel savings of the platoon leader,
i.e., the first vehicle in the platoon. Note that η = 1
corresponds to the fuel consumption without platooning.
Recent experiments have shown that, typically, η ≈ 0.6 [8].
We say that a group of trucks platoon over edge (n1, n2), if

the start times of the edge traversal and the speeds on the
edge are the same for all trucks in the group. One of the
trucks is assigned to be the platoon leader. The coefficients
Fr and Fa are assumed to be the same for all trucks. This
implies that η for the followers does not depend on the
platoon leader or on how the trucks are ordered in the
platoon. We appoint the truck in the platoon with the highest
index the role of the platoon leader.

The complete fuel expense is the sum of the fuel ex-
penses of each truck on each edge on its path: fc(R,V) =
K∑

k=1

|ek|∑
i=1

W
(
ek[i]

)
f
(
vk[i], ηl(k, i)

)
, with ηl(k, i) = η if

∃ kl, il : kl > k, ekl
[il] = ek[i], tkl

[il] = tk[i], vkl
[il] = vk[i]

and ηl(k, i) = 1 otherwise. R, V is the set of paths and
the set of speed sequences respectively. The function ηl is
equal to η, if a truck with higher index kl traverses the same
edge ekl

[il] = ek[i] at the same time tkl
[il] = tk[i] with the

same speed vkl
[il] = vk[i], and 1 otherwise. Hence, ηl = η

if the current truck gets the role of a platoon follower and
then experiences reduced air-drag on this edge, and η = 1
otherwise.

B. Problem Statement

We are ready to state the optimization problem. For each
transport assignment k we want to find a path in G from
nSk to nDk denoted by nk and a speed vk for each edge on
the path so that the truck arrives in time, does not violate
the speed constraints, and that the total fuel expense fc is
minimized.

Problem 1.

min
R,V

fc(R,V) (2a)

s.t.

for k ∈ {1, . . . ,K}
0 ≤ v ≤ vmax, v ∈ vk (2b)

nk[1] = nSk , nk[|nk|] = nDk (2c)
ek[j] ∈ E , j ∈ {1, . . . , |ek|} (2d)

tk[1] = tSk (2e)

tk[|nk|] ≤ tDk (2f)

The constraints (2b) ensure that the speed v on each
edge is positive and below the maximum speed vmax. The
constraints (2c) ensure that the paths connect the start and
the destination of each transport assignment. The constraints
(2d) ensure that each sequence of node n1, . . . , nk describes
a path in G, i.e., that between any two successive nodes
in nk there is an edge in E connecting these nodes. The
constraints (2e) ensure that each truck starts at tSk . The
constraints (2f) ensure that each truck arrives in time with
tk given by (1). It would not be difficult to make vmax, Fr,
and Fa dependent on the edge. We omitted this, however,
in order to keep the notation simple. In general, Problem 1
is not straightforward to solve, since small changes in the
constraints can entirely change the routes of the trucks when
there are several possible routes of similar length.



III. APPROXIMATE SOLUTION BASED ON SHORTEST
PATHS

The problem stated in Section II is hard to solve exactly
[16], [17]. Therefore, we propose here an approximate so-
lution which addresses routing and speed selection in two
successive steps.

In the first step, we determine the pathsR [20]. We choose
nk as the shortest paths with respect to the weights W
between nSk and nDk . We assume that the shortest path for
any pair of nodes in N is unique.

Having computed the path for each truck, the problem
remains to select the speeds on each edge of the paths
such that fc is minimized. Without the fuel saving effect
of platooning, this would just be the slowest speed for
each truck with which it arrives before the deadline tDk .
Taking platooning into account, it might, however, be ben-
eficial to choose higher speeds on some edges, in order
to form platoons. There is a non-trivial trade-off between
higher fuel consumption due to increased speed and reduced
fuel consumption due to platooning. Notice that the speed-

independent part of the fuel consumption
K∑

k=1

|ek|∑
i=1

W (ek[i])Fr

is fixed, if the paths are fixed, and hence it does not have to
be considered when selecting the speeds.

We formulate the approximate problem with R (ek) as the
shortest routes:

Problem 2.

min
V

K∑
k=1

|ek|∑
i=1

W
(
ek[i]

)
Favk[i]2ηl(k, i) (3a)

s.t.

for k ∈ {1, . . . ,K}
0 ≤ v ≤ vmax, v ∈ vk (3b)

tk[1] = tSk (3c)

tk[|tk|] ≤ tDk (3d)

We cannot directly apply standard continuous optimization
techniques to Problem 2 since fc(R,V) is not continuous in
V . Instead, we propose explicitly considering which trucks
platoon together over which edges as a discrete decision,
which we call platoon configuration. Based on this decision,
we can formulate a continuous, convex optimization problem
with linear constraints, whose solution gives V in a way that
fc(R,V) is minimal for this particular platoon configuration.
In order to find the optimal platoon configuration, we solve a
convex program for each feasible platoon configuration and
select the best one.

A. Optimal Speed for a Given Platoon Configuration
In this section, we will describe how to model the platoon

configuration and how to formulate the convex program
whose optimal solution are the optimal velocities V for a
given platoon configuration. A program like this can be
efficiently solved. In Section III-B, we will describe how to
search through the possible platoon configurations in order
to determine the optimal one.

Firstly, we specify in mathematical terms what we mean
by platoon configuration. We assign each transport assign-
ment k on each edge of its path nk a predecessor. If the
truck is not part of a platoon or if it is a platoon leader on
this particular edge, the predecessor is the truck itself. If it
is a follower in a platoon, the predecessor is the truck in the
platoon with the smallest index higher than k. We collect the
predecessors for truck k in a sequence lk.

We reformulate the problem in terms of the traversal times
Tk[i] = W (ek[i])/vk[i] as opposed to the traversal speeds
vk since this allows us to express all constraints as linear
constraints. The choice of lk determines ηl to ηl(k, i) = η if
lk[i] 6= k. We will assume that lk is chosen so that ηl(k, i) =
1 if lk[i] = k. We can write the objective function as

Fa

K∑
k=1

|ek|∑
i=1

η(k, i)
W (ek[i])3

Tk[i]2
, (4)

where we have only kept the speed dependent part of fc and
substituted vk[i]2 = W (ek[i])2/Tk[i]2. We can also remove
Fa from the objective function since it is a constant positive
scaling factor in (4).

Constraint (3b) is reformulated in terms of Tk as 0 ≤
W (ek[i])/vmax ≤ Tk[i]. Constraints (3c) and (3d) turn

into tSk +
|ek|∑
i=1

Tk[i] ≤ tDk . Finally, we have to introduce

a number of constraints that ensure that the trucks do
platoon as specified by lk. Therefore, we have to add a
constraint for each truck k ∈ {1, . . . ,K} on each link
j ∈ {1, . . . , |ek|} on its path, ensuring that it arrives at the
same time at the beginning of the edge as its predecessor:

tSk +
j−1∑
i=1

Tk[i] = tSlk[j] +
jl−1∑
i=1

Tlk[j][i], and that it traverses

the edge at the same speed: Tk[j] = Tlk[j][jl], where we
define jl : nk[j] = nlk[j][jl] as the index of node nk[j] in
the path of the predecessor of truck k on edge ek[j]. We
get the following optimization problem for a given platoon
configuration l1, . . . , lK .

Problem 3.

min
{T1,...,TK}

K∑
k=1

|ek|∑
i=1

η(k, i)
W (ek[i])3

Tk[i]2
(5a)

s.t.

for k ∈ {1, . . . ,K}
W (ek[i])

vmax
≤ Tk[i], i ∈ {1, . . . , |ek|} (5b)

tSk +

|ek|∑
i=1

Tk[i] ≤ tDk (5c)

tSk +

j−1∑
i=1

Tk[i] = tSlk[j] +

jl−1∑
i=1

Tlk[j][i], j ∈ {1, . . . , |ek|}

(5d)
Tk[j] = Tlk[j][jl], j ∈ {1, . . . , |ek|}, (5e)

with jl : nk[j] = nlk[j][jl]
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Fig. 1. Example road network to illustrate Problem 3. The nodes are
indicated by circles and directed edges by arrows. The edge between node
“3” and “4” has length 2, all other edges length 1. The dashed arrows
indicate the paths of the trucks.
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Fig. 2. Optimal solution to Problem 3 for the road network and the paths
shown in Figure 1. The time trajectory along the route is shown. Smaller
slope corresponds to higher speed. The crosses indicate the nodes’ positions.
The optimal trajectories without the platooning effect are drawn in black.

We can verify that we have a convex, twice-differentiable
objective function on the domain of positive traversal times
Tk[i] > 0 : k ∈ {1, . . . ,K}, i ∈ {1, . . . , |Tk|} and con-
straints that are linear in the decision variables {T1, . . . , TK}.
We provide an example to illustrate the formulation and
solution of Problem 3.

Example 1. Figure 1 depicts a small road network and the
paths of two trucks. We choose for the platoon configuration
that the two trucks platoon from node 3 to 5, which means
l1 = (1, 2, 2, 1, 1) and l2 = (2, 2, 2, 2, 2).

Figure 2 shows the solution to this problem. We can see
that the two trucks do meet at node 3 and platoon until node
5. Then they split up and have different velocities due to
their different deadlines. An interesting observation is that
both trucks attain their maximum speed, corresponding to
minimum slope in Figure 2, while platooning whereas lower
speeds are optimal when they drive on their own. This is
due to the reduced air drag that can render beneficial to
choose high speed while driving in a platoon and low speed
otherwise.

B. Evaluation of Platooning Possibilities

In order to find the optimal platoon configuration, we pro-
pose solving Problem 3 for different platoon configurations.
We first describe how to enumerate all platoon configurations
so that Problem 3 has a feasible solution. We then establish
a property of optimal platoon configurations which further
limits the discrete search space. Finally, we provide examples
to illustrate the procedure.

In the first step, we determine which paths share edges.
Two trucks can only platoon on common edges on their
paths. We define the set of shared edges between two paths
nk1

, nk2
as nk1

∩E nk2
= {(nk1

[i], nk1
[i + 1]) : ∃j :

(nk1
[i], nk1

[i + 1]) = (nk2
[j], nk2

[j + 1])}. The following
lemma is useful when determining the possible platoon
configurations.

Lemma 1. If the paths nk1
and nk2

are unique shortest paths
in G, then either nk1

∩E nk2
is empty or the path formed by

nk1 ∩E nk2 also forms a shortest path between two nodes of
G.

Proof. It is well known that every sub-path of a shortest path
is a shortest path [21]. But then the path between any two
nodes of nk1 as well as between any two nodes of nk2 is
unique. If nk1

∩E nk2
does not form a shortest path there

exists a sub-path in nk1
as well as in nk2

connecting the
same nodes which is not a sub-path of the path formed by
nk1
∩E nk2

. Then there are different sub-paths in nk1
and

nk2 connecting the same nodes. This, however, contradicts
the assumption that the shortest path between two nodes is
unique.

If the paths of two trucks share common edges, we can
check if it is possible that the two trucks form a platoon
according to the constraints on the maximum speed (5b) and
the before-deadline arrival (5c).

Therefore, we calculate the earliest and latest arrival time
at each node of the paths R. The earliest arrival times for
the path of truck k, denoted by tk, can be calculated forward
the same way tk is calculated in (1) with vk[1] = vk[2] =
· · · = vk[|vk|] = vmax: tk[1] = tSk and tk[i] = tk[i − 1] +
W (ek[i− 1])/vmax for i ∈ {2, . . . , |nk|}.

In a similar way, we can calculate the latest arrival time t̄k
at each node backward. We have tk[1] = tSk . Since there is
no immediate constraint on how large Tk[1] can be, the latest
arrival time at nodes nk[2], nk[3], . . . is only constrained by
(5b) and (5c). The latest arrival time nk[|nk|] is t̄k[|nk|] =
tDk . Then, the latest time the truck can leave at nk[|nk| − 1]
in order to arrive at nk[|nk|] before tDk is given by t̄k[|nk|]−
W (ek[|nk| − 1])/vmax. In this way we can work backwards
until nk[2]. So, we define t̄k recursively as t̄k[|nk|] = tDk ,
t̄k[1] = tSk and t̄k[i − 1] = t̄k[i] −W (ek[i − 1])/vmax for
i ∈ {3, . . . , |nk|}.

If there is a solution to Problem 2, we have t̄k[i] ≥ tk[i],
and since all elements of vk can take any value in the interval
[0, vmax], the truck can reach any tk[i] ∈

[
tk[i], t̄k[i]

]
for a

particular node nk[i]. Due to (5b) not every sequence tk[i]
which fulfills tk[i] ∈

[
tk[i], t̄k[i]

]
has to be feasible. Figure 3

illustrates the calculation of the sequences tk and t̄k. The
following result can now be stated.

Theorem 1. Assume that k2 > k1 and that there exists
a solution to Problem 3 without platoon followers, i.e.,
lk[j̃] = k for all j̃ ∈ {1, . . . , |lk|} and all k ∈ {1, . . . ,K}.
Then, there exists a solution to Problem 3 with k2 = lk1

[j]
with j ∈ {1, . . . , |lk1

|} if and only if
[
tk1

[j], t̄k1
[j]
]
∩[

tk2
[jl], t̄k2

[jl]
]
6= ∅ where jl : nk1

[j] = nlk1
[j][jl].
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Fig. 3. Illustration of the calculation of t̄1 and t1 for a route with index
k = 1. On the vertical axis, time is plotted over the position along the
route. The upper solid line indicates the latest and the lower solid line
the earliest feasible arrival time. The position of the nodes is indicated by
vertical dashed lines. The distance between two nodes is equal to the weight
of the edge connecting these two nodes. As an example, t̄1[3] and t1[4] are
indicated.

Proof. Constraints (5d) and (5e) enforce tk1
[j] = tk2

[jl] and
tk1 [j + 1] = tk2 [jl + 1], with j and jl as in the theorem. On
the other hand, we have tk1 [j] ∈

[
tk1

[j], t̄k1 [j]
]

and tk2 [jl] ∈[
tk2

[jl], t̄k2
[jl]
]
. So, if

[
tk1

[j], t̄k1
[j]
]
∩
[
tk2

[jl], t̄k2
[jl]
]

= ∅,
we cannot find a solution to Problem 3 with tk1

[j] = tk2
[jl].

This proves necessity.
Assume lk[p] = k for (k, p) 6= (k1, j), (k1, j + 1). If[
tk1

[j], t̄k1
[j]
]
∩
[
tk2

[jl], t̄k2
[jl]
]
6= ∅ ∧

[
tk1

[j + 1], t̄k1
[j +

1]
]
∩
[
tk2

[jl + 1], t̄k2
[jl + 1]

]
6= ∅, then there exists

Tk1
[1], . . . , Tk1

[j − 1] and Tk2
[1], . . . , Tk2

[jl − 1] such that

max(tk1
, tk2

) ≤ tSk1
+

j−1∑
p=1

Tk1
[p] = tSk2

+
jl−1∑
p=1

Tk2
[p] ≤

min(t̄k1 , t̄k2). Assign now Tk[p] = W (ek[p])/vmax for
(k, p) 6= (k1, 1), . . . , (k1, i−1), (k2, 1), . . . , (k2, j−1). Since
the solution for lk[i] = k exists, these T1, . . . , TK fulfill
constraints (5b) to (5e). This proves sufficiency.

Theorem 1 allows us to easily identify possible values for
the elements of the sequences lk, k ∈ {1, . . . ,K}. However,
Problem 3 does not have a solution for each combination of
these values. Therefore, we describe next how to check fea-
sibility for a particular platoon configuration. We do this by
iterating over all paths of the trucks and the nodes therein. We
calculate the intersection of the feasible arrival time at this
node between a truck and its predecessor on the next edge
on the truck’s path. In each iteration, we set

[
tk[j], t̄k[j]

]+
=[

tlk[j][jl], t̄lk[j][jl]
]+

=
[
tk[j], t̄k[j]

]
∩
[
tlk[i][jl], t̄lk[i][jl]

]
,

where the superscript “+” indicates the values after the
iteration and jl : nk[j] = nlk[j][jl] is the index of node nk[j]
in the path of the predecessor of truck k on edge ek[j]. Then,
we propagate constraint (5b) for the trucks associated with
transport assignments k and lk[j]. In this way, we prune the
intervals created by t, t̄ until there either is a node where[
tk[j], t̄k[j]

]
∩
[
tlk[j][jl], t̄lk[j][jl]

]
is empty or there is no

change after an iteration over all nodes. In the first case,
the platoon configuration is not feasible. In the second case,
there is a solution to Problem 3. Furthermore, the sequences

tk, k ∈ {1, . . . ,K} of the solution lie in the intervals with
lower bound tk and upper bound t̄k.

The above procedure will give us all platoon configu-
rations for which Problem 3 has a solution. Recall that
we are only interested in platoon configurations where the
predecessor of a truck on an edge is the truck in the platoon
with next largest index. However, we want to find the
solution to Problem 2. To this end, we can show that in
an optimal platoon configuration two trucks will meet and
split up at most once.

Theorem 2. If the solution to Problem 3 with platoon
configuration l1, . . . , lk is the unique solution to Problem 2,
then l1, . . . , lk have the property that for kl 6= k there exists
for each k ∈ {1, . . . ,K} at most one pair (j1, j2) : j1 ≤ j2
such that kl 6= lk[j1 − 1], kl = lk[j1] and kl = lk[j2], kl 6=
lk[j2 + 1].

Proof. Let ñ be the path formed by nk1
∩E nk2

and let ẽ
be the corresponding sequence of edges. We know from
Lemma 1 that ñ will indeed be a path. Assume there
is a unique optimal solution with vk1

, vk2
to Problem 2

where the above statement does not hold, i.e., assume there
exists j1, j2 : j2 > j1 so that trucks k1, k2 platoon on
(ñ[j1 − 1], ñ[j1]) and on (ñ[j2], ñ[j2 + 1]) but not on the
edges between ñ[j1] and ñ[j2]. Then, k1, k2 could also
platoon on the edges between ñ[j1] and ñ[j2]. Denote the
speed profile of truck k1, k2 on these edges as vk1 , vk2

respectively. Assume without loss of generality
∑
m
W (ẽ[j1−

1 +m])vk1
[m]2 ≤

∑
m
W (ẽ[j1 − 1 +m])vk2

[m]2. We assign

truck k2 on these nodes the speed profile of truck k1 which
implies they platoon on these edges. For each edge m there
are two cases: k2 was part of another platoon. Then the
change in the contribution of this edge to the objective
function is η(vk1 [m]2 − vk2 [m]2). If k2 was not part of a
platoon then the change for this edge in the objective function
is ηvk1

[m]2 − vk2
[m]2 ≤ η(vk1

[m]2 − v2k2
). So, the change

in the objective function from the old to the new speed
profile is upper bounded by η

∑
m
W (ẽ[j1−1+m])(vk1

[m]2−

vk2 [m]2) ≤ 0 which contradicts the assumption that vk1 , vk2

are part of a unique optimal solution.

In the next example, we illustrate how our method is
applied to a realistic scenario.

Example 2. We have four transport assignments. The road
network G is shown in Figure 4. It is a handmade abstraction
of an area in the east of Hungary and the west of Romania.
The weights are in kilometers.

We set vmax = 90 and η = 0.6. The start times are
set to tS1 = 0.2, tS2 = −0.3, tS3 = 0.75, ts4 = −0.05. The
arrival deadlines are set to the arrival time when traveling
the whole path with a speed of 80. This creates 340 valid
platoon configurations. The result of the optimization is
shown in Figure 5. The best configuration turns out to be
l1 = (1, 1, 2, 2, 2, 2, 1), l2 = (2, 2, 2, 2, 2, 3, 2, 2, 2), l3 =
(3, 3, 4, 4), l4 = (4, 4, 4). It is interesting to note that trucks 1



Fig. 4. Road-network to illustrate the approximate solution based on
shortest paths. The nodes are shown as red dots and the edges as black
lines. All edges are bi-directional. The index of a node is placed next to the
node and the weight of an edge is placed next to the edge. The shortest paths
for the four transport assignments are indicated in color. At the beginning
of each path, “TA” and the index of the transport assignment are shown.

Fig. 5. Optimization result of the approximate solution based on shortest
paths. In black, the road network of Figure 4 is shown. The vertical axis
indicates the sequences tk for the four routes at the nodes. The colors are
as in Figure 4. The dashed lines indicate to which node each data point
belongs.

and 2 (blue and green) do not platoon on the edges (2, 3) and
(16, 18), even though they could according to the constraints.
The value of the objective function is 5 % lower than the
solution where no coordination takes place, i.e., the air drag
coefficient is in average reduced by 5 %. If more favorable
starting times are chosen, the reduction can be much bigger.

IV. CONCLUSION

In this paper, we have investigated the problem of how
to plan the speed of trucks by exploiting the possibility
of forming platoons. We ensured that speed limitations
and arrival deadlines are not exceeded. We proposed an
approximate solution, where each truck takes its shortest
path, yielding a number of convex optimization problems.
We demonstrated our solution on a realistic scenario.

We made a number of simplifications that would need to
be considered in a real world deployment. Some of them
can be easily tackled, such as different speed levels per edge

and fuel consumption depending on the edge. Other factors,
such as unknown traffic conditions and mandatory rest times
for the driver, might be more difficult to handle and will be
subject to future work. Furthermore, we will investigate how
to decrease complexity. The complexity of the algorithm can
be problematic in scenarios where many trucks can platoon.
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