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Abstract— Overtaking the lead vehicle on two-way roads
in the presence of several oncoming vehicles is a complex
task for autonomous vehicles. In this paper, we formulate
the overtaking behavior of an ego vehicle based on a deep
reinforcement learning (DRL) method. First, a two-way urban
road is created, wherein the ego vehicle aims to reach the
destination safely and efficiently while considering multiple
traffic participants. We use different intelligent driver model
(IDM) parameters to account for different drivers’ habits.
Furthermore, we introduce different responses of other vehicles
when the ego vehicle takes overtaking maneuver. Then, a
hierarchical control framework is proposed to manage vehicles
on the road, which supervises vehicle behaviors at the high
layer and controls the motion at the lower layer. The DRL
method named Proximal Policy Optimization is applied to
derive the high-level decision-making policies. A self-attention
mechanism is further introduced to improve the performance
of our algorithm. Finally, the overtaking maneuvers of the ego
vehicle in different training timesteps are analyzed and how
the responses of other vehicles affect the ego one’s overtaking
behavior is investigated. Simulation results show that our
approach can achieve good performance to deal with the two-
way road autonomous overtaking task. Supplementary video is
available at https://youtu.be/jPEGjM7cBuk.

[. INTRODUCTION

Autonomous driving (AD) has received unprecedented
interest from the public since the DAPRA Grand
Challenge [1]. In recent years, autonomous vehicles are
very capable in localization [2], lane-keeping [3], obstacle
avoidance, and braking [4]. Despite AD has made remark-
able achievements, there are still many challenges under-
explored. One of the big challenges is interacting with var-
ious vehicles on the road [5]. Autonomous vehicles tend to
be overly defensive when encountering complex interactive
scenarios (like multi-way intersection, double merge [6],
overtaking, and other dense traffic), which is known as
the freezing robot problem [7]. Their conservative behav-
iors cause traffic jams and may furthermore bring accidents
such as rear-end collisions [8]. In fact, the actions taken by an
autonomous vehicle influence the behaviors of surrounding
human-driver vehicles and vice-versa [9] [10]. In general,
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the ego vehicle can rely on some interactive behaviors with
other vehicles on the road to achieve the desired task.
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Fig. 1. The schematic diagram of the overtaking problem. We use green to
represent the ego vehicle, yellow defensive vehicles, blue normal vehicles,
and red aggressive vehicles.

We consider the following scenario which is depicted
in Fig. 1. One ego vehicle is driving behind several lead
vehicles in the same lane, while some oncoming vehicles are
moving in the adjusted lane in the opposite direction. The ego
vehicle must autonomously make decisions to stay within
the origin lane or overtake the slow-moving lead vehicle.
We set several driving styles for other vehicles to reproduce
the different driving habits of human drivers. In addition,
the overtaking maneuver operated by the ego vehicle not
only affects the vehicles in the same lane but influences the
actions of the oncoming vehicles as well. The surrounding
vehicles will take different responses when the ego vehicle is
overtaking. Notice that, the driver styles of other vehicles are
unknown to the ego vehicle. Although overtaking maneuver
in this scene is very dangerous due to lack of on-road gaps,
limited visibility and non-cooperative behaviors from other
drivers, etc. Safely overtaking the lead vehicle with several
oncoming vehicles on the two-way road is necessary since
this can be very critical in some emergencies. In summary,
our problem can be succinctly stated as: Successfully execute
safe and efficient overtaking maneuvers on two-way roads
with behavioral interactions.

In this paper, we concentrate on the autonomous overtak-
ing problem in the above scenario. We adopt a hierarchical
control framework for overtaking decision strategy. The high-
level manages the longitudinal and lateral behaviors of the
vehicle, and the low-level focuses on governing vehicle
velocity and acceleration. We utilize the ability of Deep
Reinforcement Learning (DRL) to learn complex policies
from data to implicitly obtain the joint behavioral interactions
between the vehicles in the environment [7]. The Proximal
Policy Optimization (PPO) algorithm is applied to learn
the overtaking maneuver while considering the different
reactions of other vehicles. A thought of self-attention is
introduced to improve the performance of the algorithm. Our
main contributions can be summarized as follows:

978-1-7281-5394-0/21/$31.00 ©2021 IEEE 1057

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:42:32 UTC from IEEE Xplore. Restrictions apply.



e We produce a challenging scenario for autonomous
driving on a two-way road that other vehicles have
different driving styles. To account for the interactions
between vehicles, the intelligent driver model (IDM)
is modified to include different responses from other
human drivers to the ego vehicle’s overtaking maneuver.

« We employ a policy gradient-based DRL approach
named PPO with a self-attention mechanism to learn
driving policies. In addition, a well-designed reward
function is proposed to balance between velocity and
security by overtaking maneuver effectively. The exten-
sive simulations show that our method can successfully
accomplish the driving task with the appropriate over-
taking behaviors.

The rest of the paper is organized as follows: Section II
provides an overview of related work. The detailed problem
setup and the PPO algorithm with a self-attention layer are
introduced in Section III. The performance of our algorithm
is shown by several numerical examples in Section IV. After
that, Section V concludes this paper.

II. RELATED WORK

Traditional planning and control methods may be difficult
to apply in the two-way road scene with multiple traffic
participants, due to the complexity of the environment and
the uncertainty of other vehicles’ behaviors. Classical propor-
tion integral differential (PID) controller and linear quadratic
regulator (LQR), struggle when dealing with complex tasks
like overtaking behaviors [11]. A lane-changing fuzzy con-
troller is designed in [12] to perform the overtaking ma-
neuver, where some prior knowledge about the autonomous
driving system is needed. Model predictive control (MPC)
algorithms have been applied to the predictions of dynamic
environments like lane changing [13], but those methods
are computationally heavy during online implementation.
In [14], authors present a stochastic control formulation to
minimize the probability of collisions when overtaking in
two-way roads. The authors in [15] implement offline and
online phases to identify the intention of the lead vehicle to
decide whether or not it is safe to overtake in a two-way road.
These approaches are difficult to model interactions between
vehicles in a highly dynamic environment, which may lead
to unpredicted failures when encountering unknown states.

For these reasons, researchers try to find solutions using
machine learning approaches. DRL shows the advantages
of the adaptability to learning complex policies in high
dimensional environments [16]. Compared with the existing
literature that relies on machine learning approaches, this
paper makes contributions two-fold. First, most of the ex-
isting literature only assumes that the other vehicles share
the same driving style [11], [17], [18]. On the contrary, our
paper utilizes different IDM parameters to reveal various
driving styles. Second, notice that the interactions between
the ego vehicle and the others are not considered in the afore-
mentioned literature. The cooperative behaviors are taken
into account in [19], [20]. However, the non-cooperative
or conflict behaviors are not considered between the ego

vehicle and others. In order to show these various behaviors
between vehicles, we apply different responses of other
vehicles to the overtaking maneuver of the ego vehicle.
Of late, attention-based DRL methods to make decisions
in complex intersection scene has raised. The authors in
[21] use Deep Q-Network (DQN) with social attention to
make the optimal sequence decisions successfully in the
interactions scene. In [22], spatial attention and temporal at-
tention with the Deep Deterministic Policy Gradient (DDPG)
framework are applied to make lane change behaviors. In
our study, the PPO algorithm is applied to learn appropriate
overtaking maneuvers from scratch. We follow a similar
trend of learning combined with an attention mechanism
to deal with the problem of overtaking on the two-way
road while considering the cooperative or non-cooperative
behaviors from the other vehicles to the overtaking behavior
of the ego vehicle.

III. METHODOLOGY

We intend to teach autonomous vehicles to make proper
high-level decisions on a two-way road (Fig. 1) by coping
with a continuous state space and a discrete action space. The
ego vehicle needs to utilize the opposite lane to overtake
a slow-moving lead vehicle and make a trade-off between
safety or effectiveness.

A. Hierarchical control framework

Autonomous driving should consider the diverse behaviors
of other vehicles on the road. The movement of all vehicles in
the scene are mastered by a hierarchical control framework,
which is shown in Fig. 2. A perception module processes
sensor data and provides the most relevant information about
the environment. The high-level decision controller utilizes
this information and generates control commands which
will be executed by the low-level controllers. The low-level
controller manages the longitudinal and yaw acceleration of
the vehicle. Output values from the low-level controllers are
then taken by vehicle actuators for vehicle movement. We
suppose these modules are coupled and work collaboratively,
thus we focus on the high-level decision-making controller
in our study. The details of the low-level controllers can be
obtained from [23].

High-level

Behavior
Selection

Vehicle
actuators

4| Envir t )~

Fig. 2. The hierarchical control structure for vehicles.
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Fig. 3. Illustration of the DRL-based decision-making process for autonomous vehicles.

The process of learning the decision and control of the ego
vehicle is illustrated in Fig. 3. The ego vehicle is driving in
a two-way road environment and aiming to run through a
particular driving scenario. First, the DRL method PPO is
derived for the ego vehicle to learn the high-level decision-
making policies. Then, the policy output is executed by the
low-level controller to act out different driving behaviors.

Other vehicles in our driving scene follow realistic behav-
iors that dictate how they accelerate and steer on the road.
IDM [24] and Minimizing Overall Braking Induced by Lane
Change (MOBIL) [25] for lane-keeping and lane-changing,
respectively. IDM describes the change of vehicles from free
flow to congested flow in a unified way. The velocity dif-
ference between adjacent vehicles and the distance between
vehicles are considered.

B. Driver Behaviors

From the naturalistic human drivers’ study [26], how
a driver reacts to the stimulus from surrounding vehicles
can be affected by the individual experience and history of
driving. Based on the fact that different drivers may behave
differently in identical traffic conditions and the variables
of vehicle models are directly related to driving behaviors,
we determine the parameters of IDM and MOBIL for three
classes of drivers to represent “defensive”, “normal"”, and
“aggressive" driving styles. The corresponding parameters
in our simulation are listed in Table I.

In addition, the behaviors of the ego vehicle can affect
other drivers’ behaviors and result in complex interactions.
We make a few modifications of IDM to include what other
vehicles will do in response to the overtaking maneuver
of the ego vehicle that the defensive vehicles brake to
facilitate overtaking, the aggressive vehicles accelerate to
prevent overtaking and the normal vehicles take no action.
The details of the interactive behaviors in our simulations
are described as follows:

o Aggressive vehicle. Assume the direct leader with an
aggressive driver. When it finds that the following ego
vehicle within the rear [50,100]m has a steering angle
about 5°, the leader will execute an acceleration of
2m/s? to increase the distance from the rear and urge
the ego vehicle to give up overtaking. When the ego
vehicle with a steering angle exceeds 10° within 50m
behind the leader, it can be considered that the ego
vehicle is executing overtake maneuver. The aggressive
vehicle will produce an acceleration of 3m/s? to make
it more difficult for the ego vehicle to overtake. If the
aggressive vehicle is an oncoming vehicle driving in
the opposite lane, when it finds that the steering angle
of the ego vehicle exceeds 5° within [150,250]m or
[80, 150]m ahead, it can be judged that the ego vehicle
has overtaking intention. Therefore, the oncoming ag-
gressive vehicle will generate accelerations of 21 /s>
and 3m/s? respectively to prevent the ego vehicle from
overtaking. When the steering angle of the ego vehicle
exceeds 10° in the front [40, 80]m horizon, the oncom-
ing aggressive vehicle will produce an acceleration of
1m/ s2, which will make the overtaking condition of the
ego vehicle more severe.

o Defensive vehicle. Cautious drivers drive defensively
and are more likely to produce cooperative behaviors
when interacting with other vehicles. We assume there
will be some behavioral changes for a defensive driver
as well. If the defensive vehicle is the direct lead
vehicle, the acceleration of —2m/s? or —3m/s? will
be generated respectively when the steering angle of
the ego vehicle exceeds 5° or 10° within the range of
[50, 100]m or [0, 50]m. It means the cautious driver will
slow down and create an opportunity for cooperation.
When it is an oncoming vehicle, the acceleration will be
—2m/s% or —3m/s? if the ego vehicle’s turning angle
exceeds 5° in the range of [150,250]m or [80, 150]m.
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When the ego vehicle’s turning angle exceeds 10° in
the range of [0, 80]m, the acceleration will be —4m/s?,
leaving a longer safety distance for the ego vehicle to
overtake.

o Normal vehicle. The behaviors change of this driving
style vehicles is based on the relevant parameters of
IDM, we do not set additional rules.

Notice that, our modification of IDM only focuses on
the steering behavior of the ego vehicle, and the principal
behavior changes depend on the relevant parameters of IDM.
In our simulations, vehicles with different driving styles are
randomly generated, which increases the complexity of the
traffic scene. What’s more, we assume that when the ego
vehicle gives up overtaking, the other vehicles will gradually
recover to their own normal states. In addition, for the sake
of more intuitively reflecting the overtaking maneuver of the
ego vehicle, we have banned the automatic lane-changing
maneuvers of other vehicles.

C. Vehicle Model

To reflect the real vehicle characteristics and simplify
the movement of the vehicle, a modified kinematic bicycle
model [24] is assumed for the vehicles on the road.

D. Reinforcement Learning

In this paper, we use a policy gradient based RL algo-
rithm. The policy gradient algorithms usually maximize the
following objective via gradient ascent:

T T

7—~7r9(7') ZV(;ZOQ’TF(; (at|st) ZT (at,st)], (1)

t=1 t=1

Vol (0) =

where 7 is a trajectory, mg(7) is the likelihood to execute the
trajectory under the current policy 7. The formula 7y (a|s;)
is the probability to select action a, at state s;, and r(ay, s¢)
is the reward value after executing that action.

1) Proximal Policy Optimization: As one of the most
popular reinforcement learning algorithms based on policy
gradient, PPO has the ability to accomplish complex discrete
or continuous control tasks. To simplify the problem and
improve learning efficiency, we use PPO with discrete action
space to deal with high-level decision-making tasks. In PPO,
a clipped surrogate objective or actor has the following form:

LCLIP(G) =E, [min(pt(ﬁ)fit, cip(ri(0),1 —e, 1+ e)flt)],

where pi(0) = mg(at|st)/(ma,,,(at|st)) is the probability
ratio under the new and old policy parameter. The expression
Ay isan advantage estimator within timesteps 7'. The formula
clip(+) is a clip function and e a hyperparameter. The loss
function of the critic has the following form:

L(8) = = S 7t — V(1)

t=1 t'>t t:l

MH

; (2)

where the actor aims to maximize L¢*/(¢) and the goal of
critic is to minimize A;. The actor will adopt the new policy
based on the old policy according to advantage estimates A,.
The clip item prevents excessive policy updates.

TABLE I: Parameters of different driving styles with IDM
and MOBIL in simulations.

IDM Parameters Normal Defensive Aggressive
Desired velocity vg (m/s) 18 15 21
Desired time gap 1" (s) 1.5 2.0 1.0
Desired jam distance sg (m) 10 15 5
Maximum acceleration a (m/s2) 3 2 4
Maximum deceleration b (m/s2) -4 -2 -6
Acceleration exponent § 4 4 4
MOBIL Parameters Normal Defensive Aggressive
Politeness factor p 0.5 1.0 0.0
Acceleration threshold a;j, (m/sz) 0.1 0.2 0.0
Safe braking bsafe(m/s2) 2.0 1.0 3.0

2) Attention mechanism: In human driving, the position,
velocity, and heading of surrounding vehicles have different
contributions to the decision-making of the ego vehicle.
Therefore, the ego vehicle should pay different attention to
surrounding vehicles that are related to the driving tasks. We
add a self-attention structure in the critic network to model
this form. The scaled dot-product attention mechanism used
in this paper can be written as:

T

. QK
A K =
ttention(Q, K, V) = softmax( NP
where the details of the attention mechanism are illustrated
in Fig. 4. The process of calculating attention is to use a
Q (query), calculate its similarity with each K (key), and
sum the calculated results with all V (value) weighted. The
features of scene observation are split into the ego vehicle
features and the other features. And each of both is embedded
with Multilayer Perceptron (MLP). The query () is computed
with a linear layer where the features are only from the ego-
embedding. The key K and value V are computed with
a single linear layer, of which the inputs are combined
with ego-embedding and other-embedding. The similarities
between query Q and key K are assessed by scaled dot-
product (QKT)/(v/d},). Normalizing these similarities with
a softmax function, we obtain the attention matrix. The final
attention output is described as formula (3). We use two
heads of self-attention to capture the dependencies between
the ego vehicle and the others. The attention outputs, after a
linear layer, are then combined with the ego embedding as
in residual networks.

3) Neutral Network structure: We employ an actor-critic
structure network that is trained using the PPO algorithm.
The detailed architecture of our network is shown in Fig. 4.
Some hyperparameters of our algorithm are shown as: v =
0.92, learning rate =5 x 1075, ¢ = 0.2, A = 0.85.

E. The Ego Vehicle Observations and Actions

Observations. For autonomous vehicles, we can obtain
numerous environmental information through the developed
perception system, some of which may not be directly related
to the decision-making task. Therefore, we only extract the
most relevant state representation information, in which the
state variables can be described by the continuous positions,
orientation angles, and velocity of the vehicle. We set an
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V x F array to represent a series of V vehicles with
characteristic size F'. Then, the joint states of road vehicles
which we call kinematics observation are shown as :

5 = (i, T4, Yi, vf , V), COSP;, SINP;)ic(o,N]» “4)
where sg is the ego vehicle’s state and s;,1 < ¢ < N are
states of the other IV vehicles. Each item of s; is described
as follows. Feature p; represents whether the surrounding
i-th vehicle can be observed by the ego vehicle, and pg is
set as 1 for all the time. The features (z;,v;), (v, v!), and
(cosp;, sing;) are the global position, velocity, and heading
of each vehicle. In our simulations, we transform all absolute
features of the others into features relative to the ego vehicle.

Several other types of observations like occupancy-grid
observation [19], [21] or image-input observation [22] are
also used in autonomous driving scene. Compared with other
observations, kinematics observation has less dimension. In
addition, the features measured by the kinematics observation
method can be obtained directly by low-cost sensors, which
have high robustness in a harsh environment.

Actions. The ego vehicle makes high-level decision-
making behaviors in discrete action space. For lon-
gitudinal cruise control, accelerate or brake behaviors
can be chosen from a finite set of actions A =
{Slower, Keep lane, Faster}. The lateral actions are listed
in B = {Left lane — change, Keep lane, Right lane —
change}.

FE. Reward Function

The design of the reward function is of great significance
to guide the agent to learn the driving policies. The reward
function R is designed to balance safety, efficiency, and
the completion of driving tasks. Specifically, our reward
function contains several terms to encourage different driving
behaviors. The ego vehicle obtains a penalty R.,1ision, When
collisions have occurred. Positive rewards R, and R, are
used to encourage the ego vehicle to keep the lane and drive
in the opposite lane, respectively. Relatively high velocity can
improve traffic efficiency, thus the ego vehicle will obtain
the maximize velocity rewards Ryejocity When it drives at
full velocity, which will linearly map to zero for minimum
velocity. We encourage the ego vehicle to overtake by giving

TABLE II: Terms in the reward function.

Reward Term Reward function

Collision penalty Reottision = 71Re, Re € {0,1}
. R,, R, e€{0,1
Lane keeping bonus ~ Rjgpe = { 121%2, RZ c J{[07 1%

. v —v i1
Velocity bonus Ryciocity = 74 5 - L— "m0

Ymax —VUmin

Overtaking bonus Rovertaking = V5 (L - ”fmnt)

Terminal bonus Ricrminal = V6 Re, Ry € {0,1}

the reward Ropertaking if it overtakes the lead vehicle suc-
cessfully. The more vehicles that the ego vehicle overtakes,
the better reward obtained. Besides, when the ego vehicle
successfully arrives at the destination without collisions, we
give a terminal reward Riermingi- The instantaneous reward
R, in autonomous driving can be expressed as follows:

R(Lll = Rcollision +Rlane +Rvelocity +Rm)ertaking +Rtm’minal .

The specific reward functions are shown in Table II. Here
L and nj.on: denote the total number of vehicles on the
right lane and the number of real-time vehicles drives in
front of the ego vehicle in the same direction at a given
episode, respectively. The parameter ~; is the weight of each
term. Then we normalize the reward values to the range (0,1)
and search for different weighting parameters to find the
combination that generates the best result. In our simulations,
the detail coefficients of each term are v; = —1.5, v = 0.21,
Y3 = 042, Y4 = 16, Y5 = 02, Y6 = 0.2.

IV. SIMULATION RESULTS
A. Simulation Environment

We train the ego vehicle in a two-way road scenario as
shown in Fig. 5. It is implemented by using an open highway
traffic simulation framework highway-env [27]. Without loss
of generality, the parameters of our environment are settled as
follows. We create a two-way road with a length of 1000m.
There are 3 lead vehicles in front of the ego vehicle and 4
oncoming vehicles in the opposite lane. The driving style of
each vehicle is randomly generated, with a proportion of 1/3.
The initial velocity of the ego vehicle is randomly selected
from the range [25,30]m/s and its maximum velocity is
30m/s. All vehicles have the length = 5m and width = 2m.
The parameters setting of other vehicles are shown in Section
III. The simulation frequency is 15H z and the duration time
of one episode is 38s. Each vehicle has a random initial
position on the road. For longitudinal acceleration and lateral
steering angle, we allow values in the range [—6,6]m/s?
and [—7 /4, 7/4]rad. The episode is terminated either when
the ego vehicle collides with another vehicle or reaches
the destination, or when the time duration exceeds a preset
threshold.

B. Performance Evaluation

In our experiments, the performance of our algorithm is
compared with the other two benchmark algorithms, namely
the PPO baseline (with the same network structure yet
no attention layer) and DQN. All these algorithms have
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Fig. 5. Bird view of the overtaking scenario in highway-env. The ego vehicle
is marked with a green rectangle and its trajectory is shown behind. The
aggressive vehicles are shown in purple, the normal vehicles in blue, and
the defensive vehicles in yellow.

been trained a million timesteps. The following metrics are
utilized to quantitatively evaluate the performance of the
three methods, and then the results are plotted in Fig. 6.

o Total accumulated rewards. The total reward represents
the cumulative return along the vehicle trajectory and
can be used to evaluate the quality of the policy.

o Average velocity. This is the average velocity of the ego
vehicle in one episode.

o Collision-free travel distance. The maximum driving
distance of the ego vehicle when it is collision-free or
reaching the destination.

e Collision rate. The collision rate is the percentage
of collisions in the last 600 episodes executed in the
environment.
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Fig. 6. Performance of each metric during training. (a) Total accumulated
rewards (higher the better), (b) Average velocity (sooner the better), (c)
Collision-free travel distance (longer the better), (d) Collision rate (lower
the better). We show the mean learning curve using an average of over 20
random seeds with a 95% confidence interval.

It is obvious in Fig. 6 that the DQN method has a slower
convergence rate compared with the PPO based methods
(i.e., ours and the PPO baseline). To better illustrate the
performance of the three methods, we present the averaged
ones of the last 5000 episodes (around 2 x 10° timesteps)
in Table III. One sees that our method has the largest total
reward, fastest velocity, longest distance, and lowest collision
rate. Though the DQN method only has a slightly lower
velocity than our method, its velocity curve oscillates much
wider than ours, as depicted in Fig.6 (b).

TABLE III: The average performance of the three methods
in training.

Metrics Our method  PPO baseline DQN
Average total reward 27.41 26.49 25.74
Average velocity (m/s) 27.84 27.26 27.67
Average distance (m) 944.13 916.81 902.51
Average collision rate 8.1% 13.6% 16.7%

C. Driving performance during training

To analyze the learning process at different timesteps of
our method, we save a series of checkpoints during train-
ing. Fig. 7 shows the visualization of some typical vehicle
behaviors on different timesteps at some saved checkpoints.

(e)

Fig. 7. Scenario shots of representative training cases. (a) Collision with
another vehicle, (b) The behavior of failing to overtake and returning to
the original lane, (c) Swinging driving behavior of the ego vehicle, (d)
Overtaking with an aggressive oncoming vehicle, (e) Overtaking with a
defensive oncoming vehicle.

Fig. 7 (a) shows the scenarios with typical vehicle collision
behaviors. Most collisions occur when the ego vehicle is
trying to overtake or being forced to change a lane. The ego
vehicle has a rear-end collision with a direct lead vehicle
(the bottom one of Fig.7 (a)) or collision with an oncoming
vehicle at the opposite lane (the top one of Fig.7 (a)). One
case is the high-velocity ego vehicle fails to follow the leader
after overtaking since the ego vehicle does not learn to brake
ahead of time. The reason is that the action space is explored
randomly and the ego vehicle does not know what good
actions should be taken.

Fig. 7 (b) displays an unsuccessful overtaking maneuver
of the ego vehicle. Since the oncoming vehicle is close to
the ego vehicle, there is not enough safe overtaking gap in
the opposite lane. After trying to steer, the ego vehicle gives
up overtaking and drives back to the original lane with the
behavior of braking. This behavior depicts that in the process
of training, the learning ego vehicle gradually behaves like
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TABLE IV: Performance comparison during test.

Algorithms Average total reward  Success rate
Our method 28.26 93.3%
PPO baseline 27.35 88.5%
DQN 25.82 84.3%

a novice driver.

Fig. 7 (c) indicates the swing driving behaviors of the ego
vehicle on the road after passing all vehicles safely. Whereas
the ego vehicle has learned overtaking behavior, it does not
learn the best maneuver when driving close to the destination.

Fig. 7 (d) demonstrates a safe overtaking. The aggressive
vehicle accelerates when the ego vehicle prepares to over-
take, which will shorten the safe overtaking time and may
force the ego vehicle to give up overtaking.

Fig. 7 (e) reveals another successful overtaking scene.
The defensive vehicle brakes earlier and leave more safety
distance for the overtaking maneuver of the ego vehicle. It
shows that the cooperative behavior of the defensive vehicle
contributes to the successful overtaking of the ego vehicle.

Furthermore, we use the trained model to run 1000
timesteps in the two-way road to test the adaptability of
our method. The most concerning measures are the average
reward and success rate. As shown in Table IV, although
all methods can learn overtaking behavior, our method has a
higher total reward and success rate than other two methods.

TABLE V: Experiment 1. Other drivers on the two-way road
do not exhibit responses to the overtaking maneuver of the
ego vehicle.

Metrics Our method  PPO baseline DQN
Average total reward 28.01 27.24 26.15
Average velocity (m/s) 27.34 26.41 27.33
Average distance (m) 953.83 934.50 921.22
Average collision rate 7.2% 8.6% 12.1%

D. Comparative Experiments

To further demonstrate the influence of different driving
styles of other vehicles and their reactions to the overtaking
maneuver of the ego vehicle, several experiments are con-
ducted. Tables V and VI contain results from experiments
1 and 2 respectively. All the performances are the averaged
one of the last 5000 episodes during the training. We then
test the adaptability of our trained model in experiment 3.

Experiment 1. We compare the performance of different
methods when the other vehicles will not react to the over-
taking maneuver of the ego vehicle. Due to the complexity
reduction of the dynamic scenario, the ego vehicle only needs
to regard other vehicles as moving obstacles with different
velocities. As depicted in Table V, our method arguably has
the best performance among all benchmarks when all three
methods perform better than in the interactive scenarios (see
Table III).

TABLE VI: Experiment 2. The performance of our method
during training in three different scenarios, where the pro-
portion of aggressive drivers on the road is 0 (Defensive), 1
(Aggressive), 1/3 (Mixed).

Metrics Defensive ~ Mixed  Aggressive
Average total reward 28.90 27.41 25.79
Average velocity (m/s) 29.73 27.84 26.92
Average distance (m) 975.43 944.13 909.62
Average collision rate 3.5% 8.1% 11.7%

TABLE VII: Experiment 3. The generalization ability of
our training model in similar but different environments,
where the proportion of aggressive drivers on the road is
0 (Defensive), 1 (Aggressive), 1/3 (Mixed).

Without Responses With Responses

Metrics

Agg. Mixed Def. Agg. Def.

27.94 28.04 28.34 25.54 28.67
913% 928% 93.5% 87.9% 95.0%

Average total reward

Success rate(%)

Experiment 2. We create three driving scenarios, in which
the other drivers are all aggressive style or defensive style,
or generate random driving style by 1/3. It can be seen in
Table VI that the braking maneuver (cooperative behavior) of
the defensive drivers is conducive to the overtaking maneuver
of the ego vehicle. The ego vehicle can safely overtake at a
high velocity and have a high total reward, thus it performs
more aggressively. On the contrary, when the other drivers
are all aggressive, safe overtaking behavior is the most chal-
lenging for the ego vehicle. Due to the acceleration maneuver
(non-cooperative behavior) of the aggressive drivers, the ego
vehicle tends to adopt more conservative policies (with low
total reward and slow velocity) and has a poor success rate
when overtaking. Generally, the different reactions of the
other vehicles will influence the overtaking maneuver of the
ego vehicle significantly. The cooperative behaviors between
traffic participants benefit to safe driving on the road.

Experiment 3. In order to certify the robustness and
generalization capability of our method, we use the model
trained by our method to test in similar scenarios, where the
other vehicles behave differently. Notice that our algorithm is
trained when the aggressive driver is randomly selected with
a probability of 1/3. We perform 1000 timesteps tests on
each setting for the other vehicles on the road. Experiment
results are shown in Table VII (The test results of mixed
scenario considering the response of the other vehicles are
listed in Table IV). Our model has good performance in
various scenarios. In the scenario where other vehicles are
all defensive and interactive, the ego vehicle has the best
performance. On the contrary, when the other vehicles are
all aggressive and interactive, the performance is worst,
whereas the success rate is still acceptable. In general,
the performance of our model decreases slightly with the
increasing complexity of the environment.
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V. CONCLUSIONS & FUTURE WORK

We present a two-way road scenario with multiple traffic
participants for overtaking tasks. We consider the different
driving styles of the other vehicles and their reactions to the
overtaking behavior of the ego vehicle. A DRL technique
named PPO with self-attention is used to deal with the
decision-making problem and the resulting policies suc-
cessfully learn overtaking maneuver in this scenario. The
performance of our algorithm is illustrated by numerous
simulations. We suppose that the combination of attention
mechanism improves the efficiency and safety of decision-
making, which makes the behaviors of the ego vehicle more
human-like.

In this paper, only the interactions between different vehi-
cles are concerned. When driving in a city-like situation, we
need to consider traffic lights, pedestrians, and road signals,
which is a more challenging problem worthy of further
study. Furthermore, due to the limited control accuracy of
the discrete action space, we cannot guarantee collision-free
during training and execution. This situation will be harmful
to real-world driving systems, thus our future work includes
safe reinforcement learning methods.
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