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Abstract— This paper studies a design problem of how
a group of wireless sensors are selected and scheduled to
transmit data efficiently over a multi-hop network subject to
energy-saving consideration, when they are observing multiple
independent discrete-time linear systems. Each time instant,
some sensors are selected to transmit their measurements to
a remote estimator. We formulate an optimization problem,
minimizing a linear combination of the averaged estimation
error and the averaged transmission energy consumption to
obtain suitable network scheduling and estimation algorithms.
Necessary conditions for optimality are derived and these
conditions help trim the feasible solution space so that the
optimal solution can be computed efficiently. A numerical
example is provided to demonstrate the theoretical results.

I. INTRODUCTION

Recent development of wireless sensor technology enables
control and estimation of process states over wireless sensor
networks, which is of significant interest for process and
automation industries [1], [2]. Wireless sensor networks
provide advantages through enhanced and massive sensing,
flexible deployment and operation, and more efficient main-
tenance. However, since wireless sensors have usually no
inexhaustible or reliable energy sources, energy limitation of
wireless sensors affect system performance. In this context,
energy-aware protocols, real-time algorithms as well as em-
pirical studies for optimizing the performance of wireless
sensor networks have been discussed in [3], [4], and [5].
In addition, as the number of wireless sensors over an area
increases, data packets in the network may be lost due
to interference or network congestion. This leads to poor
estimation and control performance of the overall networked
systems.

To tackle these problems, sensor scheduling approaches
have been investigated by several research groups [6], [7],
[8], [9], and [10]. For example, collision-free TDMA-like
sensor scheduling scheme was proposed in [6]. This scheme
considered networks where the sensors are connected directly
to a shared network, and the gateway transmits one sensor
measurement from a single sensor to a remote estimator at
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each time. Later, a more general version of sensor scheduling
allowing more than one sensors to be scheduled was pro-
posed in [7]. Other significant works on sensor scheduling
features event-based scheme [11] and scheduling problem
among multiple sensors observing indentical process [12],
[13].

In this paper, we consider the problem of how to select and
schedule a set of sensors to transmit sensor data efficiently
over a multi-hop network subject to energy constraints when
the sensors observe independent discrete-time linear systems.
The problem set up is motivated by an industrial case study
at a Swedish paper plant [14]. At each time step, some
sensors are scheduled to transmit to the estimator. By not
allowing all sensors to send data every time, the energy
consumption of the sensors can be reduced. Different from
[6], the measurements are not directly sent to the estimator
but through some intermediate nodes and a gateway.

For the medium access and the communication protocol,
we consider a periodic superframe structure common for
many existing wireless sensor network protocols [15]. A
superframe between every sampling interval is divided into
timeslots. We assume only one point-to-point link is activated
at a time. Then, by activating links in a certain order, the
measurement data of selected sensor nodes can be efficiently
conveyed to the estimator. The link activation is jointly
determined with the sensor selection by considering data
aggregation techniques [16], [17], [18], constrained by the
energy consumption of the sensor nodes.

The contributions of this work are as follows:
1) We study the offline optimal sensor network scheduling

for remote estimation under sensor energy constraints.
We find necessary conditions for optimality.

2) By exploiting the necessary conditions, we can find a
periodic optimal sensor network schedule.

The remainder of the paper is organized as follows.
Section 2 describes the notation and preliminaries. System
description including process, communication, energy con-
sumption models together with remote estimation is given in
Section 3. Optimal sensor network schedules are discussed
in Section 4. A numerical example is provided in Section 5.
Section 6 presents the conclusion.

II. PRELIMINARIES

Notations: N and R are the sets of nonnegative integers
and real numbers, respectively. The set of n by n positive
semi-definite (positive definite) matrices (that are restricted
to be Hermitian) over the field R is denoted as Sn+ (Sn++). For
simplicity, we write X ≥ Y (X > Y ), where X,Y ∈ Sn+,
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Fig. 1. Wireless sensor network with a remote estimator

if X − Y ∈ Sn+ (X − Y ∈ Sn++) and X ≥ 0 (X > 0) if
X ∈ Sn+ (X ∈ Sn++). For a matrix A, we use λmax(A) to
denote an eigenvalue of A that has the largest magnitude.

A directed graph is an ordered pair G = (V, E), where
V is a set of nodes and E ⊆ V × V is a set of ordered
pairs of nodes. An ordered pair of nodes (j, i) ∈ E , called
a directed edge, means there is a link from node j to node
i. For an edge e ∈ E , denote the the node that e departs
from as vout(e) and the one that e flows into as vin(e). Let
N in

i and N out
i denote the in- and out-neighbors of node i,

respectively, i.e.,

N in
i = {j ∈ V | (j, i) ∈ E},

N out
i = {j ∈ V | (i, j) ∈ E}.

In a directed graph G, a directed path from node i1 to node
il is a sequence of nodes (i1, . . . , il) such that (ij , ij+1) ∈ E
for j = 1, . . . , l−1. A in-tree with a root r ∈ V is a directed
subgraph of G such that every node i, where i ∈ V/{r}, has
exactly one directed path from itself to node r. A spanning
in-tree is an in-tree that contains all the nodes of G. If a graph
G = (V, E) is an in-tree, we define a partial order ≽ over E .
For any e, ẽ ∈ E , we say e ≽ ẽ if there exist a direct path
from vout(e) to vin(ẽ). It is straightforward to see that ≽
is reflexive, antisymmetric, and transitive, i.e., the following
properties for e, ẽ, ē ∈ E :
(i). Reflexivity: e ≽ e.

(ii). Antisymmetry: if e ≽ ẽ and ẽ ≽ e, then e = ẽ.
(ii). Transitivity: if e ≽ ẽ and ẽ ≽ ē, then e ≽ ē.
This justifies that ≽ defines a partial order over E .

III. SYSTEM DESCRIPTION

A set of sensors, denoted by Vs = {1, 2, . . . , N}, are
distributed in an area, monitoring N independent discrete-
time linear time-invariant (DLTI) processes. The sensors
are interconnected via a wireless network and they pass
measurements through the network to the remote estimator
via a gateway (Fig. 1). We denote the gateway as node 0
and denote the whole node set including the gateway as
V = Vs ∪{0}. The estimator generates state estimates based
on the received information. We will elaborate the main
components of the system in the following part.

A. Process Model

We consider N DLTI processes, the ith of which is
described as follows:

x
(i)
k+1 = Aix

(i)
k + w

(i)
k , k = 0, 1, . . . , i ∈ Vs (1)
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Fig. 2. A superframe and timeslots

where x
(i)
k ∈ Rn is the ith process’s state vector at time

k, w
(i)
k ∈ Rn is zero-mean independent and identically

distributed (i.i.d.) noises, described by the probability density
function (pdf) µw(i) with E[w(i)

k (w
(i)
k )T] = Wi (Wi > 0).

The initial state x
(i)
0 , independent of w(i)

k , k ∈ N, is described
by pdf µ

x
(i)
0

, with mean E[x(i)
0 ] and covariance Σ

(i)
0 . Without

loss of generality, we assume E[x(i)
0 ] = 0. Notice that the

state x
(i)
k can be observed directly by sensor i. The system

parameters are all known to the sensors as well as the remote
estimator. To make the problem of interest nontrivial, we
assume the plants are unstable, i.e., |λmax(Ai)| > 1, ∀i.

B. Communication Model

The sensors communicate to the estimator through inter-
mediate sensors and a gateway which configure underlying
communication network. The communication network is
described by a directed graph G = (V, E) where E is the
set of all communication links.

We assume that all the sensors are perfectly time-
synchronized. Then the time horizon are partitioned into
strips of identical sampling time intervals. Each time interval
is further divided into two phases: sensing phase and commu-
nication phase, where the former one for a sensor to obtain
the precess state x

(i)
k , i ∈ Vs and the later one is a time

period for message delivery (Fig. 2). The communication
phase between time k and k + 1, which we also call
superframe sk, is divided into L(k) timeslots kl, where
l ∈ Lk = {1, 2, . . . , L(k)}, L(k) ≤ Lmax, ∀k. Superframe
structures that can be categorized into this abstract model
are practically used in industrial wireless communication
protocols [19], [20], built upon the IEEE 802.15.4 MAC layer
[21].

The transmission during a superframe over the network is
performed in the following way:

1) At each timeslot, only one link e ∈ E can be activated
to avoid interference across the network, and the order
of link activation {ek1 , . . . , ekL(k)

} is pre-scheduled.
2) Let I(i)

kl
be a set of the measurements stored by sensor

i at timeslot kl which consists of the one sampled
by itself and the ones received from its neighboring
nodes. If ekl

= (i, j), the measurement set I(i)
kl

or
part of it is transmitted without failure to sensor j with
unicast-based communication protocol. Then I(i)

kl
can



be recursively written by

I(i)
kl

=


I(i)
k−1 ∪ {x(i)

k }, if l = 1,

I(i)
kl−1

∪ Ĩkl
(ekl−1

),

if l ≥ 2 and i = vin(ekl−1
),

I(i)
kl−1

, if l ≥ 2 and i ̸= vin(ekl−1
),

with I(i)
0 = ∅, where Ĩkl

(ekl
) is the measurement set

transmitted over the link ekl
. Obviously, Ĩkl

(ekl
) ⊆ I(i)

kl

with i = vout(ekl
).

3) After L(k)th timeslot, the gateway transmits all the
measurement Ik := I(0)

kL(k)
to the estimator.

We assume that the maximum number of timeslots Lmax

is sufficiently large for accommodating all communication
links in G. We also make the realistic assumption that
communication is much faster than sampling of the processes
considered. Hence, the time delays due to communication
allocation within a superframe can be ignored. The problem
we are interested in is to find the optimal sensor network
schedule (ekl

, Ĩkl
)
L(k)
l=1 for all superframe sk, k = 1, 2, . . .,

which is defined and discussed later.

C. Energy Consumption

The sensors consume certain amount of energy when they
receive data from and transmit data to the other sensors.
Here we introduce the energy consumption model used in
the LEACH protocol [16], [17]. The energy consumption
for receiving a packet which contains p-bits information is,

Er(p) = Eelecp, (2)

where the energy coefficient Eelec is determined by the
electronics, coding etc. The energy consumption for sending
p-bits information is,

Es(p, d) = Eelecp+ Eampd
2p, (3)

where Eamp is the energy coefficient for the amplifier and d is
the distance to the receiving sensor or a gateway. When trans-
mitting multiple measurements, each sensor can join them in
a single packet in order to reduce the transmission overhead.
This technology is called packet aggregation. Assume that
a single measurement from any sensor has c bits. Then the
bits of information after aggregation is

p(q) = c · [1 + (q − 1)(1− r)], (4)

where q is the number of measurements and r ∈ [0, 1] is the
data aggregation rate (DAR) [22]. Notice that it is difficult
to aggregate collected data from different sensors perfectly,
but some part of the data such as header can be removed
when aggregating; in this case we let 0 < r < 1. Let qkl

:=
|Ĩkl

(ekl
)| be the number of measurements transmitted to the

downstream sensor over link ekl
and dkl

be the distance of
ekl

at timeslot kl. Then the total energy consumption for
sensor i in a superframe sk is

E
(i)
k =

∑
l∈T (i)

r,k

Er(p(qkl
)) +

∑
l∈T (i)

s,k

Es(p(qkl
), dkl

)), (5)

where T (i)
r,k = {l ∈ Lk|vin(ekl

) = i} and T (i)
s,k = {l ∈

Lk|vout(ekl
) = i}.

D. Remote Estimation

Let τi(k) = maxti{ti : x
(i)
ti ∈ Ik} be the last superframe

that node 0 receives measurement from the ith process. The
optimal remote state estimate for the ith process, denoted by
x̂
(i)
k , is computed as

x̂
(i)
k =

{
x
(i)
k , if τi(k) = k;

A
k−τi(k)
i x̂

(i)
τi(k)

, if τi(k) ≤ k − 1.
(6)

The error covariance of x(i)
k is denoted as

P
(i)
k = E[(x(i)

k − x̂
(i)
k )(x

(i)
k − x̂

(i)
k )⊤|Ik]. (7)

It can be recursively updated as follows:

P
(i)
k =

{
Wi, if τi(k) = k;

h
k−τi(k)
i (Wi), if τi(k) ≤ k − 1,

(8)

where hi : S+n → S+n is an operator defined as hi(X) =
AiXA⊤

i +Wi.

IV. OPTIMAL SENSOR NETWORK SCHEDULE

A. Problem of Interest

Let θk = (ekl
, Ĩkl

)
L(k)
l=1 and Θ := (θ1, . . . , θi, . . .) be

a feasible schedule. The problem of interest is to find
an optimal schedule that minimizes the trace of the error
covariance subject to an average sensor energy constraints.
That is,

min
Θ

lim sup
T→∞

1

T

T−1∑
k=0

N∑
i=1

tr(P
(i)
k (Θ)), (9a)

s.t. lim sup
T→∞

1

T

T−1∑
k=0

E
(i)
k (Θ) ≤ αi, i ∈ Vs, (9b)

where αi > 0 is the average sensor energy constraints for
node i.

To solve problem (9), we use a Lagrangian technique
similar to [23], [24], to derive the unconstraint problem:

min
Θ

lim sup
T→∞

1

T

T−1∑
k=0

N∑
i=1

tr(P
(i)
k (Θ)) + βiE

(i)
k (Θ) (10)

where βi > 0 is the Lagrange multiplier. Problem (10) corre-
sponds to jointly optimize a weighted average of estimation
error and sensor energy consumption. Minimization of (10)
with given values of βi corresponds to an optimal schedule of
(9) with respect to given energy constraints αi. We consider
the problem (10) in the rest of the work.



B. Optimality of Sensor Network Scheduling

In this part, we study properties of sensor network sched-
ules and state estimator. We will give necessary condi-
tions for stable estimation and optimality of sensor network
scheduling. Here, stable estimation under a given schedule Θ

refer to uniform boundedness of P
(i)
k (Θ) for all processes,

i.e., supk∈N tr(P
(i)
k (Θ)) < ∞ for all i ∈ Vs.

Lemma 1: If graph G has a spanning in-tree with a unique
root node 0, then there exists at least one schedule Θ such
that the estimation is stable.

Proof: Let Gst = (V, Est) be a spanning in-tree con-
tained in G with node 0 being the unique root. Then each
node i ∈ Vs has an unique directed path going from node
i to 0. Next we shall complete the proof by constructing a
simple schedule Θ to ensure the remote estimation is stable.

Denote the unique path from node j to 0 by
(j, i1, . . . , imj , 0). Set θk = (ekl

, Ĩkl
)
L(k)
l=1 with

ekl
=

 (j, i1), if l = 1,
(im−1, im), if l = 2, . . . ,mj ,
(imj , 0), if l = mj + 1,

and Ĩkl
= {x(j)

k } for all l ∈ Lk. Then we repeat θ1, . . . , θN
every N period, i.e., θj+tN = θj for t ∈ N and j ∈
{1, . . . , N}. By constructing Θ is this way, it yields

lim
T→∞

1

T

T−1∑
k=0

tr(P
(i)
k (Θ)) =

1

N

T−1∑
l=0

tr(hl
i(Wi)) < ∞.

This completes the proof.
To guarantee the existence of a stable estimator, the

following assumption is made.
Assumption 2: The graph G contains a spanning in-tree

with a unique root being node 0.
Remark 3: By Lemma 1, as long as G contains a spanning

in-tree, we can find a schedule Θ for any arbitrary small
αi > 0 leading to stable estimate. Hence, the optimization
problem (10) is always feasible.

If we consider all the communication links within a
single superframe jointly and analysis the resulting graph
by treating these links as a whole, it is helpful to introduce
the notation of joint graph. Let us define the joint graph for
a superframe sk under an optimal sensor network schedule
Θ∗ in the following way. We denote by E∗

k the sequence of
the communication links in sk according to time order, i.e.,
E∗
k := (ek1 , . . . , ekL(k)

). Then we call G∗(sk) = {V, E∗
k} the

joint graph of sk under an optimal schedule Θ∗.
The following property holds for E∗

k and G∗(sk) respec-
tively.

Lemma 4: Assume that the problem (10) has an optimal
solution. Then, for all k ∈ N, G∗(sk) is an in-tree with node
0 being the unique root.

Proof: The roadmap of the proof has two steps: 1) We
first show that G∗(sk) is a disjoint union of in-trees. 2) We
show that G∗(sk) has a unique root which is node 0.

From energy saving point of view, for each θ∗k in Θ∗,
G∗(sk) is a disjoint union of in-trees, i.e., any two nodes
are connected by at most one path. If not, without loss

of generality, assume that there are two pathes, denoted
as e = (i, i1, . . . , il, j) and e′ = (i, j1, . . . , jl′ , j), going
from nodes i to j and the lengths of e and e′ are l(e) and
l(e′) respectively with l(e) ≤ l(e′). Node i has q (q ≥ 1)
measurements to be transmitted to node j, among which qj
number of measurements are transmitted through node j2
and qi number of measurements through node i2. Evidently,
qi + qj = q. The number of bits node i transmits to node i2
is

p(qi) = c(1− r)qi + cr

and the number of bits node i transmits to node j2 is

p(qj) = c(1− r)qj + cr.

We consider another scheduling decision θ̃k, where θ∗k and
θ̃k are the same except for that the q measurements of node
i are all transmitted to node j through node i2. We compare
θ∗k with θ̃k In this case, the number of bits node i transmits
to the downstream node i2 is

p(q) = c(1− r)q + cr.

Since p(qi) + p(qj) > p(q) and l(e) ≤ l(e′), to transmit
the p measurements of node i to node j, θ∗k consumes more
energy compared to θ̃k. This contradicts the optimality of
Θ∗, showing that G∗(sk) is a disjoint union of in-trees.

Next we will show that G∗(sk) has a unique root which
is node 0. Notice that in (6), x̂(i)

k is updated based on the
latest information of the ith process that node 0 receives.
Therefore, removing the in-trees not having node 0 as the
root does not affect the calculation of x̂(i)

k , while energy for
receiving and sending packets is saved.

The proof is now complete.
In virtue of Lemma 4, we have the following lemma.
Lemma 5: Assume that the problem (10) has an optimal

solution and denote Θ∗ := (θ∗1 , . . . , θ
∗
k, . . .) and θ∗k =

(Ĩ∗
kl
, e∗kl

)
L(k)
l=1 . Then

(i). Ĩ∗
kl
(e∗kl

) = {x(i)
k : i = vout(e

∗
kj
), e∗kj

≽ e∗kl
} for e∗kl

∈
E∗
k ;

(ii). ki ≤ kj if e∗ki
≽ e∗kj

for e∗ki
, e∗kj

∈ E∗
k .

Proof: By Lemma 4, G∗(sk) is an in-tree with node
0 being the unique root. Also notice that x̂

(i)
k in (6) is

updated only based on the latest information about the ith
process received by node 0. By letting each sensor i in
G∗(sk) sends x

(i)
k following upstream-node-first order, all

measurements sampled and sent within sk can reach node
0 free of delays. Otherwise, if either (i) or (ii) is violated,
some measurements received by node 0 will be delayed. In
this sense, any Θ violating either (i) or (ii) can never by
optimal.

By Lemmas 4 and 5, we only need to consider the
cases that G(sk) are in-trees and the network schedules in
each superframe always follow Lemma 5. Thus, the cost
defined by (10) can be determined only by the selection
of the sensors Ik and their paths to the estimator, i.e., the
topology of in-trees G(sk). Therefore, the cost function (10)



is redefined by Ξ := (ξ1, . . . , ξk, . . . , ) instead of Θ where
ξk = (Ik,G(sk)), and the cost function is

min
Ξ

J(Ξ) := lim sup
T→∞

1

T
W (Ξ, T ), (11)

where

W (Ξ, T ) =
T−1∑
k=0

N∑
i=1

tr(P
(i)
k (Ξ)) + βiE

(i)
k (ξk). (12)

Note that the energy consumption term in (12) is only
determined by current sensor selection and network topology
ξk = (Ik,G(sk)). With this formulation, we can simplify the
problem of finding the optimal sensor network schedule by
formulating Markov decision Process (MDP). Before that,
we present the follwoing lemma, which can restrict state-
space of MDP into finite space.

Lemma 6: Let τ̃i(k) = k−τi(k). Assume that the problem
(11), (12) has at least an optimal schedule Ξ∗. Then there
exists an optimal schedule Ξ∗ of which τ̃i(k) is bounded,
i.e., there exists δi := maxk{τ̃i(k) : k ∈ N} < ∞.

Proof: The proof is inspired by that of Theorem 1 in
[6]. Main idea is to use the fact that the error covariance term
of (12) increases exponentially but it can be reset by sending
the latest measurement with some energy consumption. In
that sense, any optimal schedule have to ensure that each
sensor can only exceeds a certain bound δi in “off-duty”
period τ̃i(k) for finite times over the entire time horizon;
otherwise we can always find a better schedule. Since the
cost over finite time steps will vanish while taking average
over T → ∞, there is no loss of performance if we directly
search for optimal strategy in a state space truncated by the
bounds δi.

C. MDP formulation

The problem (11), (12) can be described as finite-
space MDP to derive the optimal schedule with a tuple
(S,A,Pr(·|·, ·), R(·, ·)), where

• the state space S = {τ = [τ1, . . . , τN ]T ∈ NN : τi =
1, . . . , δi, i ∈ Vs} represents the time duration between
current time and the last instance when the ith sensor
transmits the measurement;

• the action space A = {a = (S, g) : S ∈ 2Vs , g ∈ Gtr}
where Gtr is the set of sub-graphs in G which are in-trees
with root node 0;

• the transition probability form state τ to τ ′ is defined
as

Pr(τ ′|τ, a) =


1, if τ ′i = 1, i ∈ S,

and τ ′j = τj + 1, j /∈ S,
0, otherwise;

• the reward function is defined as

R(τ, a) = −
N∑
i=1

tr(hτi−1
i (Wi)) + βiE

(i)(a),

where E(i)(a), a = (S, g) is the energy cost for ith
sensor with selected sensor set S over the graph g.
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Fig. 3. A small sensor network with N = 3

With this set-up, we formulate the MDP problem to find
a policy {πk}∞k=1 which maximizes the average expected
reward

gπ(τ0) = lim
T→∞

1

T
Eπ
τ0

[
T−1∑
k=0

R(τ, a)

]
, (13)

where τ0 is the initial state.
Lemma 7: For the finite-state MDP (13), there exists a

stationary optimal policy π∗.
Proof: It is follows from Theorems 9.1.4 and 9.1.7 in

[25]. The proof is omitted due to space limit.
Now we are ready to state our main result which shows

that the optimal sensor schedule is periodic.
Theorem 8: There exists a periodic policy π∗ that is

optimal to (13), that is, there exists a sensor network schedule
Ξ∗ satisfying ξ∗k = ξ∗k+d for some positive integer d.

Proof: Now, there exists a stationary policy π∗, which
is deterministic, since even if there exists more than one
optimal actions for some τ ∈ S under π∗, we can take
arbitrary one action as an optimal one. Furthermore, as S
is finite, there exists a recurrent state over π∗. Thus, if the
system reaches the recurrent state again, the state transition
will repeat. In other words, there exists the periodic schedule
which is optimal.

V. NUMERICAL EXAMPLE

To illustrate our theoretical results in the previous section,
we consider a small network case with N = 3 and a gateway
shown in Fig. 3. To be specific, the system parameters of the
three plants are

A1 =

[
1.2 0
0 1.4

]
, A2 =

[
2.0 0
0 1.8

]
, A3 =

[
1.5 0
0 1.2

]
.

For communication parameters, we assume that d10 = d20 =
d13 = d23 = 1, c = 1 and r = 0.5. In cost function, we
assume β1 = 0.1, β2 = 0.2, β3 = 0.3.

The action set consists of every possible subset of sensors
selected to transmit accompanied by all possible routes
among them as shown in Table I.

Since the convergence of value function is proved, we
adopt value iteration algorithm in MDP toolbox [26] to cal-
culate the optimal policy, which will induce a Markov chain
with least expected value in cost function. Then according
to Theorem 8, given an arbitrary initial state, we can get a
periodic network schedule Ξ∗, as shown in Fig. 4.

In the figure, we can see the period length of the optimal
schedule is 7. In which only action 3 and 13 (Figure 5) are
taken and the network is inactive (action 0) in the rest of
time.



Action index Sensor selection: S In-tree graph: g
0 ϕ -
1 1 1 → 0
2 1 1 → 3 → 2 → 0
3 2 2 → 0
4 2 2 → 3 → 1 → 0
5 3 3 → 1 → 0
6 3 3 → 2 → 0
7 1,2 1 → 0, 2 → 0
8 1,2 1 → 3 → 2 → 0
9 1,2 2 → 3 → 1 → 0
10 2,3 3 → 2 → 0
11 2,3 3 → 1 → 0, 2 → 0
12 2,3 2 → 3 → 1 → 0
13 3,1 3 → 1 → 0
14 3,1 3 → 2 → 0, 1 → 0
15 3,1 1 → 3 → 2 → 0
16 1,2,3 3 → 1 → 0, 2 → 0
17 1,2,3 3 → 2 → 0, 1 → 0
18 1,2,3 1 → 3 → 2 → 0
19 1,2,3 2 → 3 → 1 → 0

TABLE I
ALL POSSIBLE SENSOR SELECTION AND THEIR ROUTES TO THE

GATEWAY
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Fig. 4. Optimal periodic schedule

VI. CONCLUSIONS

In this paper, we considered a sensor network scheduling
for remote estimation of multiple DLTI systems. We pro-
posed the offline sensor network scheduling under energy
consumption constraints by formulating the optimal problem
which minimizes the infinite time averaged estimation error
covariance. The periodic optimal solution can be found
by exploiting necessary conditions for optimality. Possible
future works will focus on the cases that communications
have channel fading.
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