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Abstract— Distributed state estimation under uncertain pro- an Ethernet local area network providing an architecture for
cess and measurement noise covariances is considered. Anpetworked estimation and control.
algorithm based on sensor fusion using Kalman filtering is — Another class of examples is enabled by the standardized
investigated. It is shown that if the covariances are decomposed S .
into a known nominal covariance plus an uncertainty term, then controller area network (CAN), Wh'ch is used in mOSt_ Cars
the uncertainty of the actual estimation error covariance for the ~and trucks today and has revolutionized the automotive in-
Kalman filter grows linearly with the size of the uncertainty  dustry, where embedded control has grown from stand-alone
term. This result is extended to the sensor fusion scheme to systems to highly integrated and networked systems [2].
give an upper bound on the actual error covariance for the | 5ok ahead driver assistance systems and control systems
fused state estimate. Examples are provided to illustrate how . . . . .
the theory can be applied in practice. for improved fuel efficiency of au?ulla_ry units are mstanpes

of currently developed technologies in heavy duty vehicles

based on on-board sensors, online digitized maps, and var-
ious traffic information systems [3], [4]. As the number

Modern sensor and communication technologies enablet4 these type of systems grow, the resource constraints of
variety of new networked monitoring and control applicathe CAN and the implementation complexity need to be
tions. In many of these applications, there is an economic ii§onsidered in the design on the distributed estimation and
centive towards using off-the-shelf sensors and standardizé@ntrol algorithms. The results of this paper is applied to
communication solutions. A consequence of this is that th@ road grade estimation problem for a look-ahead cruise
individual hardware components might be of relatively lowcontroller.
quality and that communication resources are quite limited. Kalman filtering [5] is a well established methodology
These problems can sometimes be efficiently tackled throud® model-based fusion of sensor data [6]-{9]. Despite the
intelligent software implementations. A particular instanc@reat success of this approach, with extensions to for in-
of this approach is the distributed estimation algorithms th&tance nonlinear and decentralized systems, only recently the
take the added uncertainties and resource constraints ifeecific characteristics of the sensing and communication in
account discussed in this paper. networked estimation systems have been considered. Estima-

Networked sensor and control applications are found {HON under certain communication constraints has been con-
a growing number of areas, including automobiles, awidered, e.g., bandwidth I|m|t§tlon [10] and packet Ios; .[11],
tonomous vehicles, environmental monitoring, industrial ad12]. The shared communication resource can be efficiently
tomation, power distribution, space exploration, surveillanc&ontrolled through an active scheduling mechanism [13].
and transportation. Let us discuss three concrete examples! N€ traditional Kalman filter requires exact knowledge of
that have motivated our work. Alice is an autonomous vehici® plant model and the statistics of the process noise and
that was developed at California Institute of Technology fof&asurement noise. In sensor network applications this infor-
the 2005 DARPA Grand Challenge [1]. The sensors mountdgation is often uncertain due to hardware varlqblllty, sensor
on Alice include an inertial measurement unit (IMU), globa/drift, unmodeled plant dynamics etc. Kalman filtering with
positioning system (GPS), velocity and measurement rang@known process noise and measurement noise covariances
sensors, and monocular vision. To allow the vehicle t & classical problem, e.g., [14]. A variety of methods have
autonomously navigate through its environment, sensor dat§en developed to simultaneously estimate the covariances
are fused to provide Alice with an estimate of its own stat¥/ith the state [8]. An alternative approach is to consider the
and of the environment around it. The heterogeneous set igfluence on the estimation from unknown but fixed errors in

sensors is connected with the computation platform through€ noise statistics. This is the approach taken in this paper,
where bounds are given on the estimation error both for
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I. INTRODUCTION



where Qo > 0, Ryp; > 0 are known, but\&¥’ and ~;®; P’

z = Axp_1 + wp_q

are unknown. Each sensorruns a Kalman filter for gen-
erating its state estimat#, at time k& with error covariance
l \ P}. Those estimates and error covariances are then sent to a
yh=Cuptvl  ghi=Cimp+vi  y) = Cyap+o) fusion center to obtain a final state estimate.
Sensor 1 \39”50”\ \Se“SOfN\ For each sensar, if there is no uncertainty in the noise
covariancej.e, A\U¥’ = 0 and~,; ®,;®; = 0, then the Kalman
| Fiteri | | Fiter | filter provides an optimal estimate of the statg It gives

an efficient means to estimate the state of the process, in a
way that minimizes the mean of the squared error.

1 1 AN N
i : e On the other hand, if the exact noise covariance is not
Fusion Center known, i.e, ADW’ £ 0 or ;®;®, # 0, it is clear that the
output from the Kalman filter based oh Qq, C, Ry;, which
s P we denote as theomputed error covariancdoes not give
the true error covariance.
Fig. 1. Sensor fusion block diagram We are interested in how the uncertainties in the process

and measurement noise covariances from each individual
sensor affect the fused state estimate. The estimate is un-
tgased but the computed error covariance will not converage

known nominal covariance plus an uncertainty term, then g the true value. We provide bounds on the steady state

uncertainty of the actual estimation error covariance for théue of the covariance. _ _ ,
Kalman filter grows linearly with the size of the uncertainty Ve first study the one-sensor case and find the relationship

term. It is also shown how these results can be extend@§tween the actual error covariance and the uncertainties
to a networked system, where partial estimates of the plafigSociated with the process and measurement noise covari-
state are fused in a central node. An upper bound on tCes. For this part, we drop the subsciin Equ (2) and
actual error covariance for the fused state estimate is derivlfité the measurement noise ag which has covariance
Examples are provided to illustrate how the theory can b = o +y®®’. We then apply the result to the multiple
applied in practice. sensor fusion problem with details in Section V.

The outline of the paper is as follows. The state estimation m
problem is formulated in Section Il followed by some
preliminaries on Kalman filtering in Section Ill. A theorem We briefly introduce the essence of Kalman filter in this
on the estimation error covariance for uncertain process aggction. Before we give the recursive equations for Kalman
measurement noise covariances is given in Section IV. TH#er, let us first define the following quantities
result is utilized in Section V, where the main theorem of e

It is shown that if the covariances are decomposed into

. PRELIMINARIES

A
the paper is presented. It states the influence of the uncertain x’i : E[xkp)f‘l] (3)
noise covariances on a commonly used sensor fusion scheme €, = Tk Ty 4
from the literature. Section VI illustrates the theory through P, 2 E[e;e;'|yk_1] (5)
some _5|mulated ex_amples_ of increasing complexity. The #r 2 Elzp|Vi] 6)

paper is concluded in Section VII. A .
er = T —Ip (1)
Il. PROBLEM SET UP Py £ Eleger| Vil (8)

Consider a sensor network consisting 8f > 1 sensors where), = [y1,-- - , yx]-

that take measurements for the same process and send theiWhen A = 0 and~ = 0, the Kalman filter computes the
individual estimate of the state to a remote fusion center (se¢ate estimate and the error covariance as follows
Figure 1). The process dynamics is given by

i, = A#p_1, 9)
Ty = Azp_1 + wi—1, 1) P = APy 1A'+ Qo. (10)
and the measurement equation of each sehsogiven by By = Abp-1+ Ki(ys — CAZp—), (11)
| | Ky = P C'[CP;C'+ Ry, (12)
1 X3
Y = Cixp + Vg, (2) P. = (I — KkC)Pk_ (13)
wherei = 1,---,N, k = 1,2,--- andwy_1,vj, are white It can be shown thaP, evolves as
gaussian noises with covariance matriées 0 andR; > 0
respectively. Assume P =AP_ A +Qo

Q — QO + )\\II\III7RZ — ROi +%<I)Z(I)2, — APkiilc/[CPkiilc/ +R0}_1CP];71A/7 (14)



and P, evolves as where M is hermitian. Then the following are true.
1) If H is stable, thenX is unique and Hermitian and
P, = (KkCA—A)Pk_l(KkCA—A)/+K;€R0KI/€ o
+ (KxC — I)Qo(K,C —I). (15) X =) H'MH"*.
k=0
2) If H is stable andV/ > 0 (or M > 0), then X is unique,
Hermitian andX > 0 (or X > 0).
In this section, we consider the process and measurement Proof: The proof is omitted as this is from the standard
noise covariances take the form as stated in Section Il analysis of discrete time Lyapunov equation. u
Lemma 4:Suppose thak € R™*™ andY € R™*™ with
= AUV R=R P’ . .
@=Qo+ ’ ot7 m < n. ThenY X has the same eigenvaluesXa¥’, counting
Only Qg and Ry, are used in the Kalman filter update multiplicity, together with an additionah — m eigenvalues
equations as\v¥’ and~v®®’ are unknown. As a result the equal to 0.

IV. KALMAN FILTER WITH UNCERTAINTIES IN PROCESS
AND MEASUREMENTNOISE COVARIANCE

computedP;, from (9)-(13) is not the actual error covariance. Proof: See [15], Theorem 1.3.20, page 53. ]
We define the latter af,.. Notice that the state estimate Lemma 5:Consider the discrete time Riccati Equa-
still converges to the mean of the process stateas the tion (14) whereP;” > 0 ils arbitrary. Assume the pafC, A)
estimate is unbiased. Define is observable, andA, Q¢2) is controllable. Then
Py 2 lim P K 2 lim K, 1) There exists & > 0 such that for allP;” > 0,
k—oo k—o0 . _
) . lim P =P.
which satisfy k—oo
, Furthermore P is the unique solution of the algebraic matrix
Poo = APxA +Qo ) equation
_ ’ l - l
K = PyC'[CPxC"+ Ro] ™" (17) " iy o . .
within the class of positive semidefinite symmetric matrices.
Further define, if the limit exists, 2) The eigenvalues of the matrix
Po(\y) =Py & klim Py. D=A —C'[CPC’" + Ry 'CcPA
Then we have the following result. are strictly within the unit circle.

Proof: See [16], Proposition 4.4.1, page 145, with slight
Theorem 1:Assume(c’ A) observable andA’ Qé) con- modification of the parameterise(., replacingA with A’ and

trollable. ThenP,, > 0 is the unique solution to the B with C". _ u
following discrete time Lyapunov equation We have defined’. as the actual error covariance and we
B ~ will derive the update equation faP, below. Notice that
P = (KCA—-A)Py(KCA—A) 4+ KRoK' as long as the parametetsl, C, Qo, Ro) are given, the a
+AKCYU — U)(KCU — V) + yK®P' K’ priori estimation error covariancg, is updated recursively
+(KC — DQo(KC — I (18) according to Equ (14), and the Kalman galfy, is then
updated according to Equ (12). Those two update steps do
Moreover, not depend on\U¥’ or ydP’.

P (M) = Poc(0,0) + AV + 1 Vh From Equ (11), we expang, — C Az, to get

2 = AZp_1 + Kip(CAep—1 + Cwp—1 + v),

where
, where as beford(, is given by Equ (12) and’, is given
M = (KCV-U¥)(KCV-V) by Equ (14). We can then write
| Z(KCA —AFM(KCA - A, er = Aeg—1 +wi—1 — Ki(CAe—1 + Cwi—1 + vg).
k=0

- Since the actual process and measurement noise covariances

k=0 . Elwg_1w),_4{] = AU Elvgvy] = R P’
Remark 2: Notice that the second part of the theorem tells [we—1wh1] = Qo+ (o] 0+

us the actual error covariance grows linearly as a functiofe have
of the uncertainties of the process and measurement Noige  —  E[e,e}]

covariances. : = / / 5 1 v
We need a few tools before proving this theorem. = AP A+ Qo + AT+ K (CAP 1 ACT +

+CQoC" + N\CUV'C' + Ry + v K,
Lemma 3:Consider the discrete-time Lyapunov equation AP, A'C'K], — K, CAB, A’

HXH — X+ M =0, —(Qo + ANVV)C'K], — KrC(Qo + ATV,



After some simplification, we can writ&, as our analysis K. is the same for different noise covariances.
It is then true thatP, will be smaller for the the one having

Pi = (K:CA—-A)Py(KiCA - A) + Ky RoKj smaller noise covariances.
+H(K,C — NQo(KxC —I) + ’ka(I)(I)/K];
PAKLCT — U) (K, CT — 0. (19) V. SENSORFUSION IN A SENSORNETWORK

In this section, we apply the previous results to the sensor
fusion problem in a sensor network stated in Section II. We
get an upper bound on the fused state estimation error. For
Proof First notice that if (C, 4) observable and each sensof = 1,--- , N, the associated varlables (defined
(A QO) controllable, Equ (16)-(17 ) have unique solutionsgs in Section IV) are(mk’ek,pkvpk,pz pPi_ Vi V). Let

~ andK from part one of Lemma 5. It remains to show thathe fused state estimate at tirade 7. For ease of notation,
P exists for any\U¥’ > —Qg and anyy®®’' > —Ry . We et us define

Now we are ready to prove Theorem 1.

first show thatk CA — A = (KC — I)A is stable, which is N

equivalent to show thatl(KC — I) = AKC — A is stable. J A Z (PI£>_1 7

The equivalence is due to Lemma 4. Sinkee R™*" is ]

stable iff — X’ is stable, KC' A — A is stable is then further N ~1
. ,

equivalently to— (AKC — A)' is stable. Fo2 |1 Z Pi(P/)
—(AKC —A) = A -C'K'A J=1,5#i

_ I v ! -1 /
= A —C'[CPC'+ Ry 'CPA It can be showed thaf)\" | F; = I.
By part two of Lemma 5, the above matrix is stable, which Assuming no uncertainties associated with the process

proves KCA — A is stable. As a consequence, Lemma®r the measurement noise covariances, the optimal com-
3 guaranteesP, (\,7) > 0 exists and is unique for any bined estimate can be computed using the general fusion

AU > —Q, and anyy®d’ > —R,,. formula [9]
Since (KCA — A) is stable, it is clear that the second part N N
of the theorem is true from Lemma 3. [ ] N _1 iN—1 i i
Corollary 6: 1) If \; < Ay andy; < 72, then =7 ;( ) x’“} ; Tk (20)
(A1,0) < Po(N2,0), and Pa( ) < Poc(0,72). Now assume the_uncertalnt_les exist so that the actual error
covariancesP, # P;. The fusion center still makes use of
2) If —Qo < A\PY¥ <0 and—Ry <y®d" <0, then the fusion rule (20). We have the following result regarding

= the actual error covariance of the fused estimate.
POO )\7 < Poo Oa 0 . . _
(A7) = (0,0) Theorem 8:The actual error covariancB, from the fu-
3) If AUY’ >0 and~y®d’ > 0, then sion rule (20) satisfies

!’

POO()H'Y)ZPOO(O’O)- N _.
Proof: 1) ZF )| > Fi(P)): (21)
_ _ _ =1
Pyo(A2,0) — Poo(A1,0) = Po(A2 — A1,0) >0
Poo(0,72) — P (0,71) = P (0,72 — 1) > 0 Proof: We can write the state estimation error as

2) Notice that if —Qy < AWU¥’' < 0 and —Ry < v®d’ < 0,
then A\V; < 0 and~V, < 0 whereV; and V5 are defined in €k
Theorem 1. Hence we have

Py (N, ) = Pso(0,0) + AVi + Vs < Py (0,0).

3) The third part is similar to the second part. [ ]
Remark 7:Part two of Corollary 6 tells us that if the ac-

N N
i=1 i=1
N
ZFiellng-
i=1

Therefore we have

tual process and measurement noise covarianges §v¥’ P, = Elere

and Ry + A®®’) are smaller than the nominal ones used in

the Kalman filter, the actual estimation error covariance will - ZZ FE[e} ei’] r

be smaller than the output from the Kalman filter. Therefore =11 '

it is always better to over estimate the noise covariances than N N

under_ estimate _them as Iong as the over estima_lted noise < ZZFz‘(E[ek@g])%(E[eiei/])%Fj/
covariances satisfy the required performance. This can be =1 j=1

explained as follows. For general Kalman filtd?, is a
function of K, as well asQq, Ry. Pi is minimized for the _
Ky, given by Equ (12), assumin@, and R, are fixed. In




Qo +0.1* and Ro +2%

where the inequality comes from Cauchy-Schwartz Inequal-

20 B T T >
ity. [ ] : ey
Let us define 8 Running average of |ek|2
16+ 1mmi Trace(P))
N -1 i H — XX ]
Fi, 2 |1+ Y PP : I
J=10#i o 1 THNEE R
N o i 1
P N i Di i il i i I i HSE 7
POO()\7,Y17"' 77]\7) = ZFOO(POO(070)+)\V1 +’}’7,V2)2 8r : = 8 Pl : EH B
=l NP LN I LN S B O
Corollary 9: The actual error covariance in the steady AR A L : SR
state P, is related toP,, = Py (), 71, -+ ,7n) @S 2 -
Poo < POO Péo . (22) 00. fo 25 3‘0 4‘0 5;0 éo 7‘0 8‘0 9‘07 100

Corollary 9 shows how the uncertainties in the individual
sensors affect the fused estimate in the steady state. If the
sensor measurements are less correlated, the upper bound is
tight.

Fig. 2. Relationship betweeR), and P,

VI. EXAMPLES AND SIMULATIONS Notice that sensor 1 has less noise in its second output
and sensor 2 has less noise in its first component. The

In this section, we provide three examples to demonstragfsed estimate should therefore be better than any individual

the theory developgd so far. Example 10 con5|ders_the sing 8nsor, which is seen from Figure 3, where we choose
sensor case and it corresponds to the results in Section

. ; D1P] = PP, =T and A\VT’ = 0.11.
IV. Example 11 considers the two sensor case and is gﬁ 171 = 1272
illustration for the results in Section V. We use the following

nominal parameters for the Kalman filter in both examples. 4 —
[
[ ]. 0 05 0 3.5r Runningaverageof|ek|2
0 1 0 0.5 - -‘Trace(Pb
A - 0 0 1 0 Trace(Pi)
0 0 O 1 === upper bound of XX

[0.0256 0.0039 0.0625 0.0156
0.0039 0.0256 0.0156 0.0625

Q = 0.0625 0.0156 0.2600 0.0625
| 0.0156  0.0625 0.0625 0.2600 T S
100 0 10 I g5
¢ = _0100}’}20_[0 1}
The example is taken from [13] with slight modification S O

of the process and measurement noise covariances. In order
to visualize general vector cases, we plot the squared norm
of the estimation errors and the trace of the computed error

covariances. . We provide a plot below showing how the upper bound

Example 10:In this example, we chooseWV’ = 0.11  yaries as the uncertainty;®;®, of R; increases (see
and y®®’ = 21, therefore the actual noise covariances argigyre 4, legend for each subplot is the same as in Figure 3).
bigger than the ones used in the Kalman filter. As a result theis clear that the upper bound increases as well. It is also
actual error covarianc@r(F}) is bigger than the computed see from the plot that, if the uncertainties Ry is small
error covariancelr(Fy) from the Kalman filter. This can enoygh, it is guaranteed that the fused state is better than
be seen from Figure 2. We also plot the running averaggyy individual ones. Once the uncertainties in sensor 1 is
% =1 lex|® in the figure and we can see that this empiricahigger than certain value, it is then not guaranteed that the
average value converges Ta(Fy). _ fused state is better than using sensor 2 alone. We leave it to

Example 11:In this example, the nominal parameters ofne future work to analytically find out this threshold value
the two sensors are for guaranteed better fused performance due to the limited

o~ O 101 0 time and space here.
! 2 01 0 1 Example 12:A Kalman filter for estimating the road

3 0 01 0 grade based on uncertain GPS readings is developed and

{ 0 0.1 } s Ro2 = { 0 5 ] tested in [4]. The structure of the system is similar to the set-
up of this paper and the uncertainty of the sensor readings,

Fig. 3. Individual and fused estimates

Ry =



v=Lly,=1

¥=2,y,=1

N

50

100

50

100

problem and provided an upper bound of the estimation error
covariance.

For the future work, we will study if the network that those
sensors send their measurements over is bandwidth limited.
In that case only a small portion of the sensors are allowed to
transmit at a time. In [17], the current authors have provided
several schemes for the uncertainty free cases. It will be

¥=3,y,=1 =4y, =1

'
]
6 6%

Y Nt i [1

(2]

Fig. 4. Individual and fused estimates for different

(3]

correponding to the number of available satellites, is mod-
elled by varying the measurement noise covariance. We test
the validity of Theorem 1 by evaluating the estimation errorl
for data collected from a segment of a Swedish highway
for various values of the measurement noise covariance, i.e.,
various values ofy. Figure 5) shows the running average
of the squared error over a fixed time interval as a function
of the uncertaintyy. As expected from Theorem 1, there is [6]
approximately an affine relation betweerand the variance

of the estimation error. [8]
[l
0.115 T T T T
S [10]
@
5 0.11¢
g [11]
3
& 0.105} 1
‘s
>
g o1 : [12]
(0]
3
o [13]
£ 0.005¢ ]
c
3
0.09 : ‘ ‘ \ [14]
-5 0 5 10 15 20
y

[
Fig. 5. Running average of the squared error as a function of the
measurement noise uncertaintyAs expected from Theorem 1, the relation [16]
is approximately affine.

[17]

VIl. CONCLUSION AND FUTURE WORK

In this paper, we have studied the estimation problem
using Kalman filter but subject to uncertainties in the pro-
cess and measurement noise covariances. Using the nominal
values of the noise covariances as input to the Kalman filter,
we have provided a closed form solution to how the actual
error covariance evolves as a function of these uncertainties.
We have also applied the theory developed in a sensor fusion

1The data were kindly provided by Per Sahlholm.

interesting to extend that result for this work.
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