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Abstract—The increasing demand for wireless cyber-physical
systems requires correct design, implementation and validation
of computation, communication and control methods. Traditional
simulation tools, which focus on either computation, communica-
tion or control, are insufficient when the three aspects interact.
Efforts to extend the traditional tools to cover multiple domains,
e.g., from simulating only control aspects to simulating both
control and communication, often rely on simplistic models of a
small subset of possible communication solutions. We introduce
GISOO, a virtual testbed for simulation of wireless cyber-physical
systems that integrates two state-of-the art simulators, Simulink
and COOJA. GISOO enables users to evaluate actual embedded
code for the wireless nodes in realistic cyber-physical experiments,
observing the effects of both the control and communication
components. In this way, a wide range of communication solutions
can be evaluated without developing abstract models of their
control-relevant aspects, and changes made to the networking
code in simulations is guaranteed to be translated into production
code without errors. A double-tank laboratory experimental setup
controlled over a multi-hop relay wireless network is used to
validate GISOO and demonstrate its features.

I. INTRODUCTION

The integration of wireless communications in cyber-
physical systems (CPSs) such as process automation, building
automation and intelligent transportation systems, poses many
challenges and has become an area of intense research [28],
[3], [27]. Wireless CPSs are complex systems characterized
by dynamic interactions between different devices (sensors,
controllers, actuators, radio transmitters and receivers) and
their environment (the physical process under control as well as
the communication medium). The correct design, development,
and validation of cyber-physical systems is recognized to be
an extremely hard task, requiring deep knowledge of commu-
nication, computation and control [3], [27], [4]. Simulation
is an important tool for evaluating various designs and for
developing a thorough understanding of the interactions among
the different components in wireless CPSs.

In this paper, we introduce GISOO, a virtual testbed
designed to provide realistic simulations of all the compo-
nents of a wireless cyber-physical system. GISOO integrates
Simulink [2], the most widely used tool for simulation and
model-based control design, and COOJA [25], a comprehen-
sive wireless sensor network simulator capable of emulating
real embedded code under realistic models of timing and
wireless communication [11]. The virtual testbed that we
propose has the following features: a) runs real embedded code
including the full wireless communication stack, combining
medium-access control (MAC), routing and application layer
and reproduces timing and packet loss rates without the

need for building abstract simulation models, b) it allows
embedded wireless communication code to be emulated in
GISOO without any changes, so that the same code that
has been evaluated in simulations can be executed directly
on the target platform, c) it provides full flexibility in the
design of the CPS architecture, where computation, control
and actuation may be implemented directly in wireless devices
or in Simulink, d) it allows a comprehensive analysis of
the interactions of communication, computation and control
components of the cyber-physical system and, e) it supports
various widely adopted wireless platforms in both TinyOS and
ContikiOS operating systems through COOJA.

II. RELATED WORK

Many efforts have been made to simulate and validate
wireless CPSs with a variety of simulation tools. However,
various limitations exist in the currently available tools. Mat-
lab/Simulink is the most widely used tool for modelling and
simulation of control systems. The Truetime simulator [9] is
a toolbox implemented in Matlab/Simulink which provides
link layer level simulation through various models. Packet-
level network simulation can be achieved through the usage
of ns-2 and OMNet++ which can provide high-level protocol
stack implementation. The PiccSIM tool chain [8] provides an
integration of Matlab/Simulink models with ns-2, allowing for
control system design and automatic code generation. Simi-
larly, NCSWT [12] integrates Matlab/Simulink and ns-2 for
simulating networked control system. A common denominator
of all the above tools is that all require the application code
and communication protocols to be modelled and developed
for their native simulation tool. Moreover, the simulation
accuracy is dependent on the network modelling capabilities
of the simulator, and the wireless models in ns-2 are not
able to capture the typical communication interactions among
nodes in a network. Emulation of real code with realistic and
detailed network behavior has become a priority in recent
developments. Such feature is provided in the wireless sen-
sor network tools TOSSIM [21], COOJA [25] and recently
in [23], providing realistic network emulation environment
for CPS security experiments. Both TOSSIM and COOJA
are able to capture the complex communication dynamics
and emulate real code, which are strong requirements for
faithful development, test and validation of wireless CPSs.
The WCPS tool developed in [29] integrates Simulink and
TOSSIM and has been applied on wireless structural control
applications [22]. The TOSSIM simulator emulates the TinyOS
operating system [20], solely for micaZ wireless platform and
is designed to perform operating system level simulations. On
the other hand, COOJA is able to emulate additional wireless

978-1-4799-0224-8/13/$31.00 ©2013 IEEE 5588



Physical

C1 C2 C3

A1

A2

A3 System

Network

S1

S2

S3

Actuators Sensors

Controllers

External
Nodes

Fig. 1: A general wireless cyber-physical system architecture.

platforms using both TinyOS and ContikiOS [10] and works at
networking, operating system and machine code instruction set
level. Additionally, COOJA is flexible, easily extendible and
with many extensions/plugins available off-the-shelf. While
GISOO shares the same real code emulation goal for wireless
CPSs as WCPS, we choose to integrate Simulink with COOJA
because of all its advantages in comparison to TOSSIM. The
architecture of the CPS provided by the WCPS simulator is
fixed and tailored only for data collection applications, where
only the sensor devices and relay nodes are wireless, while the
controller and actuators are required to be implemented solely
in Simulink. In GISOO, any kind of wireless CPS architecture
can be implemented and every CPS component is allowed to
be a wireless device. Additionally, in WCPS, communication
between the nodes and Simulink is performed through WCPS-
specific functions and not using the native peripherals of the
wireless platform as provided in GISOO. Such functions do
not allow the wireless devices code to be utilized in a real
scenario without requiring code modifications.

III. GISOO: A VIRTUAL TESTBED FOR WIRELESS CPSS

GISOO supports a general wireless CPS as shown in Fig. 1.
This system consists of several wireless sensors and actua-
tors collocated with a single or multiple physical system(s),
communicating with a set of controllers through a wireless
network. In our architecture the controllers may be centralized
or distributed and can be implemented inside wireless devices
or simulated in an external CPU. The wireless network uses
the IEEE 802.15.4 standard as the physical layer and is
open for any specification of the other communication layers.
Particularly, MAC and routing protocols may be designed by
the user, or available protocols may be used off-the-shelf.
Network transmissions may be scheduled by a centralized
networked manager or decided locally by each individual node
in the network.

A. Architecture

GISOO is an integrated simulation and emulation platform
for wireless CPSs which integrates Simulink for simulating the
physical system dynamics and perform controller designs, and
COOJA for simulating wireless devices in a wireless sensor
and actuator network. Simulink has been the most widely
used tool to design and study control systems by control engi-
neers, while COOJA is a simulator that provides simultaneous
cross-level simulation at application, operating system and
machine code instruction set level in a single framework, being
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Fig. 2: Detailed illustration of the GISOO architecture.

specifically designed to emulate wireless sensor and actuator
networks using realistic wireless radio mediums [11]. COOJA
is flexible and extensible in that all levels of the system can
be modified or replaced, e.g, sensor node platforms, operating
system software, radio transceivers, and radio propagation
models. Moreover, COOJA is able to emulate wireless devices
in both Contiki OS [10] and TinyOS [20], which are the most
widely used operating systems for wireless sensor and actuator
networks. With the combination of Simulink and COOJA we
are able to provide an environment to simulate wireless CPSs
in a realistic manner.

The GISOO architecture is illustrated in Fig. 2. A substan-
tial effort has been devoted to making sure that embedded
wireless code can be used in GISOO without any manual
intervention or changes to the code. This is achieved by the
GISOO Plugin implemented in COOJA which monitors any
calls made by the native Analog-to-Digital converter (ADC),
Digital-to-Analog converter (DAC) and serial port functions in
the real wireless nodes. Whenever these functions are called,
the plugin is responsible for exchanging data with Simulink,
retrieving Simulink data to the wireless node in COOJA or
delivering data to Simulink from the wireless node.

A typical wireless CPS scenario with communication be-
tween sensors, controller and actuators through a wireless
network has the following flow in the GISOO simulator. The
sensor data is the output of the physical system modelled in
Simulink and is to be read by the ADC or serial port of the
wireless sensor node. A COOJA GISOO plugin is activated
in an event-driven fashion, whenever a request for an ADC
reading or serial port communication is issued by the wireless
node. Communication then occurs between COOJA GISOO
plugin and Simulink GISOO plugin where a reading request
at the GISOO wireless node in Simulink is issued at the
specific simulation time. These readings may be periodic or
be generated in an event-based/aperiodic fashion. Incoming
data from Simulink is fed through the COOJA GISOO plugin
into the wireless mote in COOJA. This data may then be
transmitted by the sensor node through the wireless network,
which may be composed of many relaying nodes (pure relay
nodes or actual sensor nodes), until it reaches the specific
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controller node.
The controller algorithm may be implemented in a wireless
node or in Simulink, using appropriate Simulink blocks. In
the former case, after the computation of a new control input,
the controller node transmits this data to an actuator node
through the wireless network. In the latter scenario, the sensor
data can be communicated to the Simulink controller block
by a wireless basestation/controller mote through the serial
bus. This scenario occurs in reality when a controller is
implemented in Simulink and the CPU interfaces the wireless
network through a wireless node connected to the CPU’s USB
port [5]. The advantage of allowing for controller design in
Simulink is that changes in the controller algorithm do not
require a modification of the wireless devices code, increasing
the speed of evaluating new controller designs. Finally, the
actuator node is applied the control input to the specific
actuator through the Digital-to-Analog converter (DAC) port
or serial interface. The request for the actuation input is issued
at the wireless node and is received by the COOJA GISOO
plugin. This plugin communicates with the Simulink GISOO
plugin, which properly sets the actuation value at the requested
GISOO wireless node in Simulink.

Synchronization between COOJA and Simulink is man-
tained by a stop and run mechanism where GISOO’s COOJA
plugin controls the time clocks. Whenever an event happens at
a wireless node, e.g., performing an ADC reading or a DAC
writing, the action and the time at which this takes place in
COOJA are transmitted to the GISOO node in Simulink. At
this moment, the time clock of Simulink has been stopped
since the last event has occurred. Then, Simulink time clock
is allowed to run until the time requested for the action to take
place. After the action is completed, the time clock in Simulink
stops again. After the action and time are transmitted between
COOJA and Simulink, the time clock of COOJA also stops
and starts running again when the action to be performed in
Simulink is completed.

B. Communication protocols and sensor nodes

Several MAC and routing protocols are currently available
in Contiki OS and TinyOS from which we highlight, the
IEEE 802.15.4 MAC which is the current MAC standard for
WSNs [17], [15], [16], the routing protocol for low power
networks (RPL) proposed by the internet engineering task
force (IETF) [30], [18] and the Collection Tree Protocol
(CTP) [14]. Through COOJA, one has also access to many
debugging features such as break points, watches, logging,
and single stepping for the wireless code developments. Ad-
ditionally, full access to the wireless transmissions including
data and acknowledgement messages is provided, along with
printf logging from all nodes and node statistics such as energy
consumption. Moreover, several wireless sensor platforms are
supported by both ContikiOS and TinyOS [1], [13].

IV. CASE STUDY - NETWORKED CONTROL OF
DOUBLE-TANK SYSTEMS

In order to validate GISOO and demonstrate its capabilities,
we study the networked control of double-tank systems [7],
which have similar properties of a real industrial automation
setting. We start by describing the double-tank system, fol-
lowed by closed-loop control and communication performance
analysis when controlling the double-tank system in both real-
ity and in GISOO, using a simple network setup. Afterwards,
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Fig. 3: Double-tank system testbed at KTH Royal Institute of
Technology and the diagram of a double-tank system.

we perform communication analyses on large-scale a closed-
loop control experiment of ten double-tank systems through a
multi-hop relay network of sixteen relay nodes.

A. Double-tank system

The double-tank system consists of a pump, a water basin
and two tanks of uniform cross sections. Fig. 3 depicts the
experimental testbed and a diagram of the physical system.
The liquid in the lower tank flows to the water basin. A pump
fills the upper tank with water from the basin, which then flows
to the lower tank. Sensing of the water levels is performed by
pressure sensors placed under each tank. One wireless sensor
node interfaces the sensors with an analog-to-digital converter
(ADC), in order to sample the pressure sensor values for both
tanks. The pump actuation is made through the digital-to-
analog converter (DAC) of the wireless actuator node.

In this experiment, we chose to develop the control al-
gorithm for a linearized model of the nonlinear double-tank
system. However, we note that the usage of nonlinear models
is available in GISOO through Simulink. The linearized model
of the double-tank system is represented general linear state-
space system

ẋ(t) = Ax(t) +BVp(t) (1)

where x(t) = [L1 L2]
T , L1 and L2 are the height of the

water in the upper and lower tanks and Vp is the voltage applied
to the pump motor. A detailed description of the linear model
is given in [5]. The control objective is to keep the water level
of the lower tank L2 at 5 cm by adjusting the motor voltage
Vp accordingly. Tracking of a constant reference signal r(t)
can be achieved by using using a Proportional-Integral (PI)
controller, with the control input u(t) defined as,

u(t) = Kpx(t) +Kixc(t),

ẋc(t) = r(t)− Cx(t),
(2)

where xc(t) is the controller integral state, C = [0 1] and
the controller gains (Kp,Ki) are chosen so that the closed-
loop system is stable and achieves a desired closed-loop
performance in terms of rise time, settling time and overshoot.

B. Wireless nodes and communication network

The wireless sensor platform chosen for this experiment is
the Telos platform [26]. These nodes are equipped with a Texas
Instruments MSP430 16-bit, 8 Mhz microcontroller with 48 kB
of Flash and 10 kB of RAM memory and a 250 kbps 2.4GHz
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Fig. 4: GISOO environment, integrating COOJA (left) and
Simulink (right) for the closed-loop control of a single double-
tank system. Four wireless nodes are used in this experiment, a
sensor (node 5), relay (node 7), controller (node 4) and actuator
(node 6). The green region denotes the transmission range and
the grey region the interference range of node 4.

Chipcon CC2420 IEEE 802.15.4 compliant radio. All our
devices are programmed using TinyOS. We used the TinyOS
original MAC (BoX-MAC [24]) which is a CSMA/CA MAC
with retransmissions in case of transmission failures. As the
routing layer, we selected CTP [14].

C. Single process and simple network

We start by performing a comparison between a real
closed-loop control experiment on the double-tank system and
a closed-loop experiment simulation in GISOO simulation
using the same wireless code.

In this setup, four wireless devices are used as the sensor,
relay, controller and actuator. The GISOO environment for this
simulation is presented in Fig. 4. The wireless sensor node
(node 5 in GISOO) periodically samples every 1 s its ADC
to acquire the tank level values, and transmits these values
to an intermediate relay node (node 7 in GISOO). This node
forwards the data packet to the wireless controller node (node 4
in GISOO), which computes the control action according to (2)
and communicates the actuation input value to the wireless
actuator (node 6 in GISOO). The wireless actuator applies the
required voltage to the double-tank pump through the DAC.

The tank levels, the control input and the end-to-end delay
for this experiment are shown in Fig. 5. The end-to-end delay is
calculated as the time between the ADC sampling at the sensor,
until a value is requested to be placed in the actuator’s DAC,
in both GISOO and in the real experiment. From Fig. 5 one
can verify that the behavior of the linear double-tank model
in GISOO, follows fairly close the real nonlinear double-tank
system and a 5 cm set-point tracking on the lower tank is
achieved. Additionally, the end-to-end delay average difference
between the experiments is of only 1.27ms. This is believed to
be caused by the fact that the ADC reading and DAC writing
action can be detected immediately in GISOO, while in a
real experiment one has to rely on printf commands in order
to accurately time-stamp the ADC reading and DAC writing
actions.

D. Multiple processes and mesh network

We now aim at evaluating various typical scenarios in real
large-scale wireless CPSs. For this, we deploy ten double-tank
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Fig. 5: Double-tank levels x1(t) and x2(t) and control input
value u(t) for a real experiment (dotted) and GISOO experi-
ment (solid). The last plot depicts the end-to-end delay (ms)
for both experiments.

systems where its sensors communicate with a single wireless
controller node through a sixteen wireless relay multi-hop
network. Firstly, the case when sensors transmit periodically
in the network is evaluated, followed by the analysis when the
sensor transmission is event-based.

1) Periodic sensor transmissions: This scenario is depicted
in Fig. 6 and the resuls on the end-to-end delay and packet
loss are shown in Fig. 7a for nodes 1, 2, 5 and 8 which are
at different hop levels in the network. As it can be seen, the
distance to the controller greatly affects the end-to-end delay,
while there is a large delay variability due to the high density
of the network. Furthermore, packet losses exist in the network
due to high transmission periods in the network.

2) Event-based sensor transmissions: The event-based
sampler follows the proposal from [6]. The event condition
which decides if the sensor node transmits the most recent
tank levels is given by

|L2(t)− L2(ts)| > elim OR hact ≥ hlim,

where L2(ts) is the last transmitted lower tank level, elim the
threshold value, hact the time elapsed since the last transmis-
sion and hlim is the maximum allowed inter-transmission time.
The thresholds are set to elim = 0.2 and hlim = 10 s, which
on average generated 75 aperiodic transmissions on 150 s of
simulation time, while achieving set-point tracking. The end-
to-end delay results are depicted in Fig. 7b, where one can
see that there is an increased variability on the delay value, as
well as an increase of the average delay for sensors 1 and 2.

E. Impact of interference and node faults

The same scenario with multiple processes controlled over
a mesh network is evaluated under 1) network interference and
2) complete deactivation of a set of four faulty relay nodes.

1) Interference: The end-to-end delay and packet loss
statistics are shown in Fig. 8a. Interference is inflicted by an
external node 59 in the region close to the controller node 41,
which transmits periodically every 20ms packets with 48 bytes
of size, from t = 40s onwards. As expected, the interference
increases the end-to-end delay and the jitter. This is however
not causing any packet losses in the network.
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Fig. 6: Topology for the control of multiple double-tank
systems over a mesh network with sixteen relay nodes. Sensors
nodes are nodes 1 to 10, actuator nodes are nodes 21 to 30,
controller is node 41 and the relay nodes range from 42 to 58.
The transmission and interference range of all nodes is set as
the controller node 41 in the figure.
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(a) Periodic transmission of sensor data with no interference or relay
displacement as in Fig. 6.
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(b) Event-based transmission of sensor data with no interference or
relay displacement as in Fig. 6.

Fig. 7: Evaluation of the end-to-end delay and the total number
of packets lost for the closed-loop control of ten double-tank
processes through a large mesh network of sixteen relays.
Results for nodes 1, 2, 5 and 8 located at different hop levels
in the network.
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(a) Interference in the region close to the controller node starting at
t = 40 s.
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(b) Fault and removal of four relay nodes close to the controller node
at t = 40 s.

Fig. 8: Evaluation under network interference and node faults.

TABLE I: Time efficiency of a 150 s wireless CPS simulation
in GISOO

Scenario Actual simulation time
Single process - 1 relay 0 min 44 sec
Single process - 16 relays 1 min 15 sec
Multiple processes - 16 relays - no interference 18 min 30 sec
Multiple processes - 16 relays - interference 18 min 48 sec
Multiple processes - 16 relays - faults 17 min 37 sec

2) Node faults: Fig. 8b depicts the end-to-end delay and
packet loss statistics of the node fault experiment. Removal
of relay nodes 50, 54, 55 and 58 which are close to the
controller node 41 takes place at time t = 40s. Due to this
failure, there is an end-to-end delay peak that occurs due to
the fact that the faulty nodes were communicating the data
from the selected sensors. The two packets lost, transmitted
by sensor 2 and 8, were lost due to the fact that the relay
nodes which were in their routing path failed, not allowing
those packets to successfully arrive to the controller. Since
the network topology offers many redundant paths, the nodes
are able to quickly and distributively re-select a new parent
from their parent list when their preferred parent becomes
unavailable, using the CTP routing mechanism.

F. Time-efficiency of GISOO

Results on the total time required to run the above ex-
periments in GISOO are presented in Table I. As it can be
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seen, the total simulation time increases greatly with the total
number of wireless devices that exchange data with Simulink.
Additionally, the addition of wireless nodes that do not interact
with Simulink have a very small impact on the simulation time.

V. CONCLUSION

In this paper, we have presented and evaluated a vir-
tual testbed for wireless cyber-physical system simulation
which we call GISOO. By providing the integration between
Simulink and COOJA, we are able to model and simulate
physical systems, design control algorithms and real wireless
networks code, and evaluate their complete interaction in
a single platform. A case-study of the wireless control of
double-tank systems has provided insight on the capabilities
of GISOO. Additionally, we validated GISOO’s performance
against a real wireless CPS experiment, using real wireless
devices and the physical process. Future work will focus on the
further development of GISOO capabilities. We aim at allow-
ing for automated code generation of the wireless nodes code,
mainly control algorithms, through Simulink. The automated
code generation will be performed for TinyOS (nesC language)
and for ContikiOS (C language). Additionally, we plan to
create COOJA plugins to improve the speed of detection,
diagnosis and analysis of relevant situations in wireless CPSs
such as, ill deployments, node faults and interference devices.
Furthermore, we intend to demonstrate GISOO’s capabilities
in other CPS scenarios. The code and manual of GISOO is
available soon in the KTH-WSN code repository [19].
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