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Abstract—This paper is about fully-distributed support vector
machine (SVM) learning over wireless sensor networks. With the
concept of the geometric SVM, we propose to gossip the set of
extreme points of the convex hull of local data set with neigh-
boring nodes. It has the advantages of a simple communication
mechanism and finite-time convergence to a common global solu-
tion. Furthermore, we analyze the scalability with respect to the
amount of exchanged information and convergence time, with
a specific emphasis on the small-world phenomenon. First, with
the proposed naive convex hull algorithm, the message length
remains bounded as the number of nodes increases. Second, by
utilizing a small-world network, we have an opportunity to dras-
tically improve the convergence performance with only a small
increase in power consumption. These properties offer a great
advantage when dealing with a large-scale network. Simulation
and experimental results support the feasibility and effectiveness
of the proposed gossip-based process and the analysis.

Index  Terms—Distributed learning, support vector
machine (SVM), wireless sensor networks.
I. INTRODUCTION

in wireless communica-

UE TO recent advances
Dtion and embedded computing, supervised machine
learning can address various applications related to wire-
less sensor networks. Basic supervised learning techniques
have been applied to diverse sensor network scenar-
ios. Kernel-based learning [14], [17] has been suggested
for simplified localization, object tracking, and environ-
mental monitoring. Also, maximum-likelihood parametric
approaches [7], Bayesian networks [13], hidden Markov
models [2], statistical regression methods [11] and sup-
port vector machines (SVMs) [20], [23] have been employed
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for source localization, activity recognition, human behavior
detection, parameter regression, self-localization and environ-
mental sound recognition, respectively. In particular, SVM is
a classification algorithm with the advantages of wide appli-
cability, data sparsity, and global optimality. Training an SVM
requires solving a quadratic optimization problem of dimen-
sionality dependent on the cardinality of the training (example)
set. The resulting discriminant rule is expressed by a subset
of the training set, known as support vectors [21].

In recent studies, due to the tight energy, bandwidth and
other constraints on communication capabilities for wire-
less sensor networks, distributed SVM training has been
investigated. A parallel design of centralized SVM is one
approach [6], [26]. When the training data set is very large,
partial SVMs are obtained using small training subsets and
combined at a fusion center. This approach can handle enor-
mous sizes of data, but can be applied only if a central
processor is available to combine the partial support vec-
tors, and convergence to the centralized SVM is not always
guaranteed for arbitrary partitioning of the data set [10].

On the other hand, there are fully distributed approaches that
solve the entire SVM using distributed optimization methods.
Because SVM is a quadratic optimization problem, exist-
ing convex optimization techniques can be used. In [9], a
distributed SVM has been presented, which adopts the alter-
nating direction method of multipliers [4]. This approach is
based on message exchanges among neighbors and prov-
ably convergent to the centralized SVM. However, since
the gradient-based iteration should maintain the connection
between nodes until convergence, the intercommunication cost
is large. Furthermore, in the nonlinear case, the exchanged
message length can become extremely long. These issues ren-
der it not suitable to wireless sensor network applications.
Another class of distributed SVM, which is not based on the
gradient method, relies on gossip-based incremental support
vectors obtained from local training data sets [8], [25]. These
gossip-based distributed SVM approaches guarantee conver-
gence when the labeled classes are linearly separable. When
they are not linearly separable, these approaches can approx-
imate, although not ensure, convergence to the centralized
SVM solution.

In this paper, we employ the concept of gossip-based incre-
mental SVM with a geometric representation. The geometric
interpretation of SVMs is based on the notion of convex hulls
and geometric nearest point algorithms [3], [19]. Unlike the
gossip-based incremental support vectors [8], we propose an
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algorithm based on incremental convex hulls where the nodes
gossip only the extreme points of their local convex hulls, ini-
tially obtained from local training data sets. Through the join
operation of convex hulls, the proposed algorithm guarantees
the convergence in finite time to the global solution, i.e., the
centralized SVM.

The structure of this paper is as follows. Section II sum-
marizes the contribution of this paper. In Section III, we
introduce the geometric SVMs under both the separable
and nonseparable cases. The gossip-based distributed SVM
training is described in Section IV, with scalability and con-
vergence analysis. In Sections V and VI, simulation and
experimental results are presented respectively, which validate
the proposed algorithm, and convergence and energy consump-
tion issues are discussed. Finally, the conclusion is given in
Section VIIL.

II. CONTRIBUTIONS

This paper focuses on how to make SVM work over the
sensor network in a fully distributed manner. Unlike in [26],
which deals with the efficient training method in the parallel
structure of sensor network topology, this paper assumes that
there is no centralized training. Here, training is performed
only using one-hop communications between sensor nodes
with low computation capability. This includes the nonlinear
SVM training, whereas [8] is not applicable to the nonlinear
version. Reference [9] has the same structure of training with
ours (a fully distributed approach) and is applicable to the
nonlinear case, however, the intercommunication cost is large
and the exchanged message length can become extremely long
in the nonlinear case. These issues render it not suitable to
wireless sensor network application.

Deriving  inspiration  from  geometric  properties
in [3] and [19], we consider the join operation of the
convex hull of each labeled data set. The join operation has
been introduced in [25] for distributed and incremental SVM
learning in linearly separable cases. In this paper, we extend
it to nonseparable and nonlinear cases, and theoretically
analyze this extension. In order to resolve the nonseparable
cases, the concept of reduced convex hull is applied and the
convex hull for kernel space is discussed for nonlinear cases.

This paper also contributes to lowering the computational
complexity associated with the data fusion process in both
memory and computation and to reducing the overall power
requirements through coordinating the network connectivity in
a fully distributed manner. Furthermore, the convergence time
analysis is performed utilizing the concept of a small-world
network, for static and random connection topology. A small-
world network is a network where the path length between
two randomly selected nodes grows logarithmically with the
number of nodes [24]. Analysis of the small-world network
shows that the average path length of the network topol-
ogy decreases as reconnection probability increases. From the
viewpoint of a trade-off between energy savings and per-
formance improvements, the small-world concept gives the
opportunity to drastically increase the performance with only
a small increase in energy consumption.
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From the overall framework of the proposed distributed
SVM training, the following contributions can be obtained.

1) Fully Distributed Communication: Basically, the pro-
posed gossip-based algorithm exchanges messages only
with neighboring nodes so that the network connection
topology is simply determined with one-hop communi-
cation.

2) Guaranteed Convergence to the Centralized SVM
Performance: The local calculation of the convex hull
with join operation guarantees finite-time convergence
and the global optimality of the solution at each node.

3) Scalability With Respect to the Communication Packet
Length: As the amount of training data increases, the
number of extreme points increases in the worst case. To
deal with this, we propose a naive algorithm for convex
hulls, where the amount of exchanged information can
be controlled, even in the worst case.

III. GEOMETRIC REPRESENTATION OF SVMSs

In this section, we describe geometric SVMs [19] briefly. In
geometric SVMs, the data set is represented using geometric
convex hulls, and the classification problem can be converted
to a nearest point problem which leads to an elegant and effi-
cient solution to the SVM classification. First, we describe the
geometric process for a separable data set, in which two types
of labeled data sets are completely divided. Then, we deal with
a nonseparable case and formulate centralized SVM training
over wireless sensor networks.

A. Separable Case

For the separable cases, the dual form of the original SVM
problem is described by

1
n717;n 3 E yi)’,i’?t”?,/'xiTx./ - Z i
ij i

such that Z niyi=0, ni>0 (1)

1

where, x; € X ¢ R% and y; € {—1,1} fori,j = 1,...,|X|
are input and output data, respectively, and n; are the corre-
sponding Lagrangian multipliers. d is the dimension of X and
|X] is the cardinality of X. The set X and corresponding set
Y = {y1,...,yx)} are the input—output-paired training sets.

Here, we start the geometric representation of SVMs with
some definitions.

Definition 1 (Convex Set): A set is convex if for every pair of
points within the set, every point on the straight line segment
that joins the pair of points is also within the set.

Definition 2 (Convex Hull): A convex hull C(X) C R4 of
data set X € R is the smallest convex set containing X such
that C(X) = {zlz = > ; Aixi, )_; 4 = L,x; € X, A; > 0}, for
i=1,...,X].

Definition 3 (Extreme Point Set): An extreme point set £(X)
is a set of points in X € R¢ which cannot be represented as a
convex combination of any other distinct points in X.

For the given set X, we can consider the subsets X and X,
which contain only the points of one class (y; = 1) and the
points of another class (y; = —1), respectively, and X satisfies
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X = XT UX~ where X* N X~ = . For the separable case,
the original SVM problem described in (1) is equivalent to
finding the closest points between the convex hulls generated
by X* and X~ in the feature space [3]. Using the definition
of a convex hull, the geometric representation of SVMs in the
separable case can be described as follows:

2
Z Aix; — Z AiX;

ityi=1 ityi=—1
such that » 4 =1, Z ri=1 )

iryi=1 iyi=

min
1i>0

where the constraints guarantee that the coefficient A;s respect
the convexity conditions of C(X™) and C(X™). From (2), we
derive the performance index as

2

Z Aixj — Z AiX;

ityi=1 iryi=—1

= Z Z )Liijlrxj'—i- Z Z K[)ijl-TXj

iyi=1jy=1 iyj=—1jyj=—

Z Z Aiijiij— Z Z)\.i)\.jxl-TXj

iyi=1jyj=—1 iyi=—1j:y;=1
T
=D D vivikikx X
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and also the constraints can be derived as

> ni- Z,\_Zy,,\_o

iryi=1 iyi=—1
)IEIEED SIS ZA —>

iryi= iryi=—
Finally,
obtained:

the following equivalent formulation can be
: T
Irilin Zyiyj)\i)»jxi Xj

such that » "yi2; =0, Y A =2
1 i

L
Ai=0, i j=1,...,|X] 3)

According to [3], the above problem leads to the same solu-
tion as (1). For a nonlinear case, the inner products of x; can
be replaced by a kernel function in (1), (3), and (11). We
mainly consider the Gaussian kernel, « (x,y) = ¢ () ¢ (y) =
e~ =1720) which is the most popular one.

Interestingly, for (3), the data sets X* and X~ can be
reduced to £(XT) and £(X7), respectively, because of the
following lemma.

Lemma 1: £(X) is the smallest set to represent C(X).

Proof: See the Appendix. |

Remark 1: From Lemma 1, we can redefine the convex hull
of set X as

CX)={zlz=) 2ixi, ) _hi=1x €EX), A = 0} €))

where i = 1,...,|E(X)|, and |E£(X)| is the cardinality of £(X).
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Algorithm 1 Convex Hull Algorithm in Feature Space
Input: set V, = {x;} and V = ¢, arbitrarily picked x; € X
Initialize: X*=X-Y),

Until X* is empty,
Get x € X*, update X* = X* — {x}
If CheckPoint(x, V,) = False, V =V, U {x}
Until V, is empty,
Get y € V,, update V, =V, — {y}
If CheckPoint(y, V — {y}) = True, ¥V =V — {y}
Vo=V
Output: the extreme point set of X, £(X) =V,

The above lemma and remark imply that a compact convex
subset of X is the closed convex hull of its extreme points. The
Krein—Milman theorem [12] also supports this lemma. Even
if X is a subset of kernel space, we can compute the extreme
point set of the convex hull of X which can be of an arbitrary
dimension [5] according to [15]. The following is a simple
procedure for finding the extreme points of a convex hull in
the feature space:

For the computation of £(X) in Algorithm 1, suppose that
we have the function CheckPoint(z, X) returning True if z
belongs to the interior of C(X). However, in [15], the func-
tion CheckPoint(z, X) employs quadratic programming, whose
computation complexity is NP-hard. Furthermore, another
important issue is that the complexity of the convex hull and
the number of extreme points depend on the dimensionality of
the feature space, and this can be resolved by the concept of
naive convex hull which will be introduced in Section IV-C.

Considering the computational limitations of a sensor node,
we propose to use a sufficient condition for the function to
return False, which is simple and has low computational load,
rather than solving the quadratic programming directly, as
described in the following lemma.

Lemma 2: Suppose X C R is a compact data set and

zeRY X = {x1,x2, ..., xx} Let dmax = supllxj — x,
dpin = inf ||z — x;||. If

| 4 e~dnar/20% o =i/ 20” 5)
holds, then CheckPoint(z, X) returns False in Gaussian feature

space.

Proof:2 Gziven the Gaussian kernel, k (x,y) = ¢ ()T p(y) =
e~ IF=¥1720%) \where ¢(-) denotes the mapping to the fea-
ture space, if the distance in the feature space from

¢(z) to the C({e(x1),d(x2),...,P(xx)}) is strictly big-
ger than zero, then ¢(z) does not lie in the interior of
C{op(x1), ¢(x2), ..., ¢(xx))}) in the feature space. The dis-
tance in feature space is calculated as follows:

2
X

b — > Xe (1)
j=1
X T/ ix
=p@"0@ + [ D me ()| | D4 ()
j=1 j=1
1X]
- 20" [ D x¢ (%) (©6)

J=1
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Fig. 1. Computation of extreme points in feature space using (a) convex hull

algorithm with quadratic programming described in [15] and (b) sufficient
condition (5).

where A;s are the coefficients of the convex combination, sat-
isfying > A; = 1 and A; > 0. From (6), we can obtain the
sufficient condition for positiveness of the distance between
#() and C{p(x1), d(x2), ..., P (xx))}). Since ¢(-) is the
Gaussian mapping, the first term of the right hand side of (6)
is ¢(z)T¢ (z) = k(z,z) = 1. The second and third terms satisfy
the following inequalities:

T
X X

Z A (%)) Z Ao ()

I 2
=1- ka + ijkke : L > e% (7
J#k J#k
and likewise
X1
> —2¢ 27, (8)

=207 | D x¢ (%)
j=1

Thus, we have

X

¢ — > X (x))

J=1

> 1 + e_dzmax/zd2 — Ze_d%in/zaz. (9)

If1+ e~ dnax/207 5 D= dnin/ 2"2, then ¢ (z) does not belong
to the interior of C({¢(x1), ¢ (x2), ..., ¢ (xx)}) in Gaussian
feature space. |

Since the sufficient condition (5) is a simple mathemat-
ical computation, we can solve Algorithm 1 in polynomial
time. However, because (5) only provides the sufficient con-
dition for a new point not to belong to the interior of convex
hull in Gaussian feature space, we need careful observa-
tion for validating applicability of the sufficient condition
in (5) instead of the function CheckPoint. Figs. 1 and 2
illustrate computation of extreme points using (5) versus
CheckPoint.

Fig. 1 shows an example of computing extreme points
in feature space with about 200 data points using the two
approaches. Fig. 1(b) is the result when we use Lemma 2,
which shows a similar selection of extreme points (red cir-
cle markers) with a few missing extreme points compared
to the result when we use quadratic programming shown in
Fig. 1(a). Since we are interested in the distance parameter
from the convex hull to solve SVM problem, we compare the
hyper-dimensional distance pattern between Fig. 1(a) and (b).
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* data points
—| C=>> distance pattern
o ) extreme points

. * data points
~| C=> distance pattern

Fig. 2. Computation of extreme points of complex data points in feature
space using (a) convex hull algorithm with quadratic programming described
in [15] and (b) sufficient condition (5).

As shown in the contour plots of Fig. 1, they have almost
the same distance patterns because the missing extreme points
are located very close to the convex hull within the distance
of (1+ e dmax/20% _ Ze_drznin/z"z)l/2 according to (9), and do
not change the distance pattern significantly. Moreover, the
computation time of the proposed approach in this example
is 0.2001 s, about 100 times faster than that of quadratic
programming approach (21.24 s).

Fig. 2 shows a more complicated example of comput-
ing extreme points in feature space. When we use quadratic
programming shown in Fig. 2(a), all the data points are
included in the extreme point set, while Fig. 2(b) shows
a similar selection of extreme points with a few missing
points. In this complicated case, both approaches yield almost
same distance patterns. These results support that the suffi-
cient condition (5) is reasonable and provides computational
efficiency.

To avoid the notational complexity, we express the convex
hull of X in Gaussian feature space as simply C(® (X)) instead
of C({¢p(x1), ¢ (x2), ..., ¢ (xx))}) in the remaining parts of this

paper.

B. Nonseparable Case

For the nonseparable case, the convex hulls of each class
overlap and the previous procedure does not make sense,
because there are the infinite number of the points in the over-
lapped area and all these points are the closest points to the
convex hulls with zero distance. So, instead of the concept of
a convex hull, the reduced convex hull R(X, u) of a set X is
defined as follows [19].

Definition 4 (Reduced Convex Hull): The reduced convex
hull R(X, ) of data set X C R is the set of all convex
combinations of points in X, with the additional constraint that

each coefficient A; is upper-bounded by a nonnegative number

o< L RX, 1) = {zle = Y, Y i = L € X.0 <

ri<pli=1,...,X]

The difference between the convex hull and the reduced
convex hull is that the coefficient A is restricted by u < 1
and if © = 1, R(X, n) is equivalent to C(X). With the con-
cept of a reduced convex hull, we can extend the scenario of
the previous geometric SVM to nonseparable cases with the
assumption that the parameter u has been selected properly so
that R(X™, u) N R(X™, ) = ¢. Similar to the separable case,
we can obtain a geometric interpretation of SVM that finds
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the closest points between the reduced convex hulls generated
by Xt and X~ as follows:

: T
n}in Z ViViAikiX; Xj

i.j
such that Zy,-ki =0, ZA; =2
i i

O<hi=mp, i,j=1,...,1X|. (10)

The optimal problem (10) is identical to the Wolfe dual
formulation of a modified formulation of SVM which is a
scaled version of the v-SVM [18], [19]. From these setting,
we can incorporate projection method such as Theodoridis’s
algorithm [29] to find the nearest points between the reduced
convex hulls. By using that, the decision function can be
obtained as (11). For nonlinear cases, the inner product terms
in (10) can be replaced by a kernel function. Similar to (3),
the data sets X and X~ can be reduced to £(XT) and £(X7),
respectively.

C. Geometric SVM Training and the Decision Function

In the geometric form of the SVM training, we can incor-
porate the projection method to find the nearest points such
as Gilbert’s algorithm [27] and Schlesinger—Kozinec’s algo-
rithm [28]. Even though the nonseparable case can be handled
by the reduced convex hull, Theodoridis’s algorithm does not
need the reduced convex hull explicitly [29]. Therefore, we can
simply use the conventional convex hull instead of the explicit
form of the reduced convex hull. By using those algorithms,
the decision function can be obtained as follows:

f@ = > ryixix+b

ieX, 20

(1)

T T
b= 3 Z Z Aikjx; Xj — Z Z Aikix; xj ).
iyi=1jiyj=1 iyi=—1jyj=—1
The sign of the decision function f(x) determines whether

x lies on the positive or negative side, and f(x) = 0 represents
the border line in the test phase.

IV. DISTRIBUTED SVM

Consider data generated by a sensor network as input-
output pairs {(x, y)} for SVM training, for example, such that
x = [¢7,1]" in some input space X C R¥*! consisting of
the position measurement ¢ € R? and a timestamp 7, and
y € {—1,1} (label) is the measurement corresponding to x
or some function of the measurement. For example, in a haz-
ardous area detection scenario, y can be a binary value whether
it is hazardous or not on the position g at time z. We assume
that all the nodes are synchronized with the time history z. Of
course, this restriction is not necessary for monitoring a static
quantity.

In a centralized setting, a sensor network has its own
fusion center which gathers information from all the nodes
and performs massive computation to obtain the global SVM
solution. This may incur a heavy communication load, which
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can cause packet loss, communication delay, and much
energy consumption, deteriorating the performance of object
localization [30].

In this section, the SVM training is described in a fully
distributed fashion. We consider a situation where the central-
ized fusion is not allowed since we want to comply with the
important properties of WSNs such as: low communication
complexity, scalability, flexibility, and redundancy. Our goal
of distributed SVM training is as follows.

1) Considering the communication complexity, message

exchange is allowed only between one-hop neighbors.

2) The exchanged messages should be short enough to

reduce the communication costs and battery usage.

3) All nodes keep their local estimate at each time slot and

they all converge to a common global estimate.

4) The common global estimate is the same as the result

of the centralized training.

In order to satisfy the above goals, we propose a gossip
algorithm to solve distributed SVM in the context of geometric
SVM as described in Section III. The idea is that if the new
data measured by the sensor node lies in the convex hull of
its labeled class, that data does not affect the global solution,
thus it does not need to be transmitted.

This section is organized as follows. First, the main idea of
the gossip process for distributed SVM learning is described
in Section IV-A. The scalability analysis in Section IV-B sug-
gests that there may exist the worst case where the message
length grows to infinity. To handle this, the concept of the
naive convex hull is proposed and its characteristics are ana-
lyzed in Section IV-C. From Section IV-D, we find that the
convergence time is equivalent to the average path length of
the network. To analyze the convergence time in terms of the
network topology, the small-world network concept is adopted
in Section IV-E.

A. Gossiping Extreme Points for Distributed
SVM Training

In order to obtain the global optimum with low energy con-
sumption for solving distributed SVM, we propose to gossip
the extreme points with neighboring nodes. Let us suppose that
there are n sensor nodes in the connected WSN and each sen-
sor node j has data set X; = Xf UXf forj=1,...,n, where
Xj+ and X;~ are sets of points of positive and negative classes,
respectively. The following is the brief description of the pro-
posed gossiping process, where B3; is the one-hop-neighbor set
of node j.

The final step of the algorithm is performed only when the
decision function is actually needed. In static situations, this is
done only once after the gossip process converges. The con-
vergence of the gossip process will be discussed in Theorem 1
and Sections IV-D and IV-E.

The above algorithm shows three of the important charac-
teristics.

1) The algorithm is fully distributed. There is no govern-
ing fusion center to control the whole network and no
matter how complex the network is, the algorithm at
each node only uses simple one-hop communication
with neighbors only.
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Algorithm 2 Gossip Process for Distributed SVM Training

Data: Given the initial data set X; = X;r U X]f for each
sensor node j=1,---n
Compute initial extreme point sets £ (Xj+) and £ (Xj_)
Replace xj+ = E(XJ.*), X, =EX;)
for r+=0,1,2,---
forallj=1,...,n
Transmit X* and X~ to 5;
forallj=1,...,n
Update X; as X; = X; U (Uyes, Xi)
forallj=1,...,n
Compute £ (Xj+) and &£ (Xj_) with X;
Replace X" = E(X;), X; = E(X))
Output: The decision function f(x) by solving the geomet-
ric SVM problem (10) with current data set X; = X;r UXj_
for each node.

2) Node j communicates only the extreme points with one-
hop-neighbors B; where the transmitted message is as

follows:
message; = {8 (Xj+), & (Xj_)}
The extreme point set for each node £ (X; ) is the small-

est set to represent the convex hull C(st) according to
Lemma 1. In general, |5(X;)| < |X;|, for s € {+, —}
and exchanging only extreme points is efficient in terms
of energy consumption.

3) Each node keeps only the extreme points at every time
slot, so this algorithm is also efficient in terms of
memory requirements.

In order to prove the convergence of the gossip process, the
join operation is defined and its related property is introduced
as follows.

Definition 5 (Join Operations of Convex Hulls): We define
the join operation of the two convex set C(X) and C(Y) as the
convex hull of the union of two sets X U Y as follows:

CX)VC(Y)2CXxUY).

Lemma 3 (The Property of the Join Operations): For two
data sets X; and X} with i # j, the following join operation is
equivalent to the convex hull of the union of two convex sets,
for s € {4, —}:

c(x)vem) =c(c(x)uc)).
Proof: See the Appendix. |

Furthermore, (12) can be directly extended to the case of
n > 2 data sets as follows:

12)

() =€ () =€ (e (). as

Remark 2: Lemma 3 still holds in the feature space as
c(e(x))ve(@E)=c(c(e(x))uc(ex).

For notational simplicity, we will denote QJ(X;) and @ (X?)
with st and X} respectively. Then, we have

c (c ()(j) uc (X;‘))

c(¥)ve) =

which is equivalent to (12).
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1 2 3 4
® L L ®
(a)
Node 1 Node 2 Node 3 Node 4
(1) @) Cc3) C(4)
_ c12) | C@2.13)  CG24 | C@43)
Gossip
Process
C(1,23) | C(2,1.34)  C(B3.241) C(C(43.2)
C(1,2,34) | C(2,1,34) | C(3,2,4,1) | C(43,2,1)
where C(i, j) := C(X; U X))
(b)
Fig. 3.  Example of the gossip process (a) network connected in finite time

with simple topology and (b) gossip process with join operation, where the
cells with gray background indicate the convergence.

The interactions among the sensor nodes are represented as
a graph G = (V, £) such that V is a set of nodes and an edge
(t,r) € L if node t can communicate with node r # t, where
t,r € V. When we allow L to be time-varying (or random),
we can define the connectedness in finite time of G as follows.

Definition 6: A network topology G is said to be connected
in finite time when G has a finite-time path from each node
to every other node.

Fig. 3(a) is a simple example of a network connected in
finite time, with the maximum path length 3. According to
Algorithm 2, the gossip process will be performed as shown
in Fig. 3(b), which will be over in three time steps.

The following theorem deals with the finite-time conver-
gence of the proposed algorithm.

Theorem 1: If C (st) denotes the convex hull of the data set
st of node j, and the network is connected in finite time, then,
by using the proposed gossip process (Algorithm 2) for ¢ large

enough, the following holds: C(X}) = --- = C(X;)) = C(X¥),
where X = UijS, for s € {+, —}.
Proof: Consider any two nodes jo and j; both in {1, ..., n}.

Since the network is connected in finite time, there exists a
finite-time path {joj; - - - jk—1jx} of length at least one, which
connects nodes jo and ji. Because ji;1 € Bj, which is the
one-hop-neighbor set of node j;, for / = 0,...,k — 1, it is
obvious that C(X}) = C(X}) = --- = C(X}) = VI_(C(X}),
after enough iterations of the gossip process from Lemma 3.
Since jo and j; can be picked arbitrarily, it follows readily that

CA)=--=Cx;) = \/J'?:lC(é\,’f) = C(U;.;l/'\ff = C(X*)
after enough iterations of the gossip process from (14). |

Remark 3: The above gossip process is globally optimal;
that is, the agreement achieved by exchanging only the extreme
points with neighboring nodes guarantees the convergence to
the global convex hull identically for each sensor node in a
connected network.

Remark 4: Because of the finite-time convergence, it is pos-
sible to apply the proposed algorithm and obtain the optimal
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/'{ra‘*- N,

(a) (b)

Fig. 4. Extreme points of the convex hull (a) general case of convex hull and
(b) worst case of convex hull. The black points indicate the extreme points
and the red points indicate the nonextreme points.

solution in a distributed manner, even if the training data sets
are time-varying. As long as the collected data varies “slow
enough” compared to the convergence time of the algorithm,
the above analysis still holds.

B. Scalability Analysis on the Amount of Exchanged
Information

The scalability on the amount of exchanged information
is important since it is heavily related to the message length
of intercommunication which affects the communication per-
formance and energy efficiency. The exchanged information
in our proposed gossip algorithm is the extreme point set of
data for each node. In general, the cardinality of the extreme
point set is finite as shown in Fig. 4(a). If additional points
are added in a convex hull or on its boundary, the number of
extreme points is not changed as shown using the red dots in
the boxed area of Fig. 4(a). However, in the worst case, when
the additional points lie on a round convex curve, the number
of extreme points increases. In this case, if the number of the
additional points lying on the round convex curve increases
to infinity, then the number of extreme points, i.e., the mes-
sage length, will also grow to infinity, as shown in the boxed
area of Fig. 4(b). To overcome this scalability problem of the
gossip algorithm, we propose the naive convex hull algorithm
modifying the convex hull algorithm described in Algorithm 1.

C. Naive Convex Hull Algorithm

According to Algorithm 1, we can obtain the return of the
function CheckPoint(z, X') by checking the sufficient condi-
tion (5). When the condition is satisfied, i.e., | +e~ ax /207 _

D¢~ min/207 < 0, CheckPoint(z, X) returns False, which indi-
cates that z belongs to the exterior of C(X) in the feature
space. However, since testing the criterion 1 + e~ %mun/20” —
2¢=%min/27% = 0 can make the message length overlong as
mentioned in the previous section, we propose to relax it by
introducing a margin of ¢ > 0, i.e., we test the condition
1 + e~dnn/20% Dehmin/20% 5 g2, Fig. 5 shows the geomet-
ric interpretation of the naive convex hull algorithm. When
we use the strict criterion 1 + ¢~ %ma/20° — 2ehmin/20% 5
for CheckPoint(z, X), the number of extreme points is large
in the worst case as shown in Fig. 5(a). On the other hand,
using the relaxed criterion 1 + e man/200 _ 0p=dnin/20% 5 g2
shown in Fig. 5(b), the points near to the convex hull C(&)
are also included in the interior of C(X’). This naive approach
reduces the number of extreme points at the expense of intro-
ducing a predefined error tolerance & which is independent of
the number of the training data points.
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(a) (b)

Fig. 5. Comparison between (a) convex hull algorithm and (b) naive convex
hull algorithm. The black points indicate the extreme points and the red points
indicate the nonextreme points.

Fig. 6. Join operation of the two naive convex hulls. The black points indicate
the extreme points and the red points indicate the nonextreme points.

Remark 5: The naive convex hull algorithm generates a
convex hull with an error smaller than ¢ and this error is
independent of the amount of data.

Therefore, by using the naive algorithm, we can find the
naive convex hull Cy,,(X’) and reduce the amount of exchanged
information. ¢ is a design parameter, which controls a trade-
off relationship between the error of the solution and the
exchanged information. In general, we can significantly reduce
the length of communication packets by allowing only a small
positive error ¢. Fig. 6 shows the join operation of two naive
convex hulls, i.e., Cp, (X) Vv Gy, (V). Since the relaxed criterion
affects only the edge points of the convex hulls, the joined con-
vex hull still has an error smaller than ¢. However, it is very
hard to derive the upper bounds of final error analytically after
multiple join operations of naive convex hulls have converged.
In order to check whether the result of join operations of &-
naive convex hull maintains the error bound of & or not, we
perform Monte Carlo simulation. On workspace whose size is
2 x 2, we randomly deploy 50 sensor nodes which measure
data points and exchange the extreme points of the e-naive
convex hulls with one-hop neighbors. With various values of
& (100 times for each ¢), we figure out what happens in terms
of error and exchanged data length with simulation. Fig. 7
shows the results of Monte Carlo simulation. In Fig. 7(a), the
numerical error data are plotted in the form of a box plot. The
error of naive convex hull is defined as the difference between
the conventional convex hull and the naive convex hull. The
exact definition is the following:

max min
72€C(X)=Cp(X) Zmy €Cpy (X

€ny =

: o) —@@u)ll. (14)
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Fig. 7. Results of Monte Carlo simulation of join operations of naive convex
hulls with varying €. (a) Box plots of errors. (b) Average of exchanged data
length corresponding to the margin ¢.

In Fig. 7, the red circled markers are ¢ values and all the
error values are upper-bounded by the value of e. Also, in
Fig. 7(b), the exchanged data length decreases as ¢ increases,
where the blue bars are the average data length when we
use conventional convex hull and the red bars are the aver-
age data length when we use naive convex hull. Furthermore,
since the worst-case error grows abruptly while data length
goes down slowly from ¢ = 0.3, the trade-off between the
error and data length is more efficient when ¢ is under 0.3.
Considering the workspace is sized by 2 x 2, 0.3 is not a
very small value. Simply, the parameter ¢ controls the trade-
off relationship between the communicated data length and
the error of the naive convex hull. We selected the value of ¢,
by comparing the validation performance with different value
of ¢. A small positive value of ¢ (rather than ¢ = 0) can
resolve the scalability problem brought up in Section IV-B.
From the above simulation results, we can conclude that the
naive convex hull algorithm has an error smaller than ¢ in the
computation of the gossip process, introduced as \/j’.’=1 Cuy (st).

D. Convergence Time of the Gossip Process

For a connected network topology G = (V, £), we define
the path from node i to node j as path;; = {i, b, ..., ln—1,j},
whose length is |pathj|, where i,j,{lk} € V, i # j and
@, 1), (1, 1), -, (Iy—1,)) € L. By defining the shortest path
as m;; = ming, |path;;|, the average convergence time of the
gossip process is denoted by 74,,(G) as follows:

1
T = 2
ijeV,i#j

where n is the total number of sensor nodes. From (15), we
know that the average convergence time of the gossip process
is equivalent to the average path length of the network, which
is dependent on the network topology G. In order to analyze
the performance of the proposed algorithm over sensor net-
works with random characteristics of the network topology,
the small-world network concept is adopted.

5)

E. Small-World Network Analysis

The mathematical model of the small-world network intro-
duced by Watts and Strogatz [24] deals with a class of
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networks which interpolates between two extremes of the con-
nection topology: completely static or completely random. The
representative study of the small-world network is a rewired
topology. For n vertices, each vertex is connected to its k near-
est neighbors, which we call the degree of the network. Now,
each connection is reconnected to another randomly chosen
vertex with probability p. This construction of the small-world
network introduces occasional long-range connections [1].

According to [24], for the case of a completely static net-
work, i.e., p = 0, the average path length of the network
L(n, k, p = 0) is proportional to n/k, and for the case of a com-
pletely random network, i.e.,p = 1, L(n, k,p = 1) oc Inn/Ink.
These properties indicate that the average path length is
reduced as p increases for large n. The path length of a net-
work directly indicates the convergence performance by (15).
For fast convergence of the gossip process, a completely ran-
dom topology, i.e., p = 1, will be the best choice. However,
as mentioned before, rewiring connections causes long range
connections which can be a disadvantage in wireless commu-
nications.

The range of connections in a graph affects directly the
power consumption which is an important issue in wireless
sensor networks. The following is a basic power consump-
tion model with respect to distance in wireless communica-
tions [22]:

y x D
§

where P is the power of transmitting, Prq is a constant com-
ponent which does not depend on the transmission range D, y
is a constant determined by characteristics of antennas and the
minimum required received power determined by the receiver,
& is called the drain efficiency, and « is the path loss exponent
which is about two for free space and will increase in the pres-
ence of obstacles. Equation (16) shows that the transmitting
energy consumption of each node grows to the power of « as
the receiving node location recedes from the transmitting node.
From the path length analysis on topology and the power
consumption model (16), we find an interesting trade-off
relationship between energy efficiency and convergence per-
formance on the network topology. For a small rewiring
probability p, the frequency of the long range communica-
tion is low and vice versa. However, for the small-world
network, as p grows from 0, the average path length L(n, k, p)
rapidly drops to the average path length of random networks,
L(n, k, 1). From this property, we can improve the conver-
gence performance to a similar level as the completely random
networks with only a small increase in power consumption.

Pr(D) = Pro + (16)

V. SIMULATION RESULTS

In this section, simulation results are presented to validate
the proposed algorithm. We perform the simulations to ver-
ify the join operation of convex hulls and convergence of the
gossip process which guarantees global optimality. We also
check the small-world phenomenon of the example to dis-
cover a potential methodology that improves the performance
while maintaining the energy consumption level.
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Fig. 8. Result of the join operation of convex hulls in (a) linearly separable
case and (b) linearly nonseparable case: for the positive (square) and negative
(triangle) datasets obtained by node 1 (red) and node 2 (blue), the local convex
hulls and SVM solutions of nodes 1 and 2 are represented as the red-dashed
(node 1) and blue dash-dotted (node 2) polygons and lines, before exchanging
data. Then, nodes 1 and 2 exchange the extreme point sets with each other
to obtain the global (reduced) convex hull and SVM solution (the black solid
polygon and line).

A. Linear Example: Join Operation of Convex Hulls

In this example, we simulate and test the join operation of
convex hulls using the Ripley data set [16] which consists of
two classes where the data for each class have been gener-
ated by a mixture of two Gaussian distributions. We assume
that there are two nodes with a 2-D data set of two classes,
and they deliver only the extreme point set to each other to
get the global SVM solution. Fig. 8(a) shows the result of
the join operation of convex hulls, which are linearly sepa-
rable. As a result of performing the join operation on two
classes separately, we obtain a pair of global convex hulls and
also a linear discriminant function that is the solution of the
global SVM. Similarly, the process above is also applicable
to linearly nonseparable cases. The Ripley data set shown in
Fig. 8(b) is densely distributed, such that there is no linear
solution which separates the two classes completely. As men-
tioned in Section III-B, for this linearly nonseparable case, we
employ the reduced convex hull (1 = 0.2) instead of the con-
vex hull. In Fig. 8(b), important results are represented such
as the global convex hull, the global reduced convex hull, the
local convex hulls, and the local reduced convex hulls. As
shown in the results, the reduced convex hulls do not satisfy
the join operation. However, after obtaining a pair of convex
hulls in the same manner as in the linearly separable case,
we can have the SVM solution of the linearly nonseparable
case. Note that the reduced convex hull does not have to be
calculated explicitly because the information about it does not
show up in the middle of the communication process.

B. Example: Centralized and Distributed SVM Training
Over WSNs

In this example, we perform centralized and distributed
SVM training over wireless sensor networks. We assume that
each node has a binary sensor and the goal of the SVM training
is to divide the workspace into two regions, one for positive
and one for negative values. We also assume that the commu-
nication topology is directed and has n vertices with a degree
of six, i.e., k = 6. This intercommunication topology is utilized
for the distributed SVM training.

2607

Fig. 9. Result of the centralized geometric SVM: the contour of the dis-
criminant value is plotted over the workspace. The zero-valued contour is the
discriminant function of the SVM.
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Fig. 10.  Result of the distributed SVM: evolution of the contour of the
discriminant value for node 1 is plotted over the workspace. The zero-valued
contour is the discriminant function of the SVM.

1) Centralized SVM Training: In order to check the per-
formance of geometric SVM training and set up the global
reference results for the distributed SVM, we perform the
centralized SVM training first. Since the data distribution
is nonlinear, we apply the convex hull algorithm with the
Gaussian kernel and geometric SVM to obtain the solution.
Fig. 9 shows the result of the centralized SVM training
and it shows the well-separated solution of the centralized
geometric SVM.

2) Distributed SVM Training: In this simulation, we test
the proposed gossip-based distributed SVM training over the
wireless sensor network setup in the same manner as the
centralized one, but with the intercommunication topology
described in the beginning of Section V-B. The result of
the distributed SVM training is shown in Fig. 10. As time
advances, node 1 collects more data from its neighbors to
converge to the global solution. At t = 4, node 1 obtains the
same solution as the global solution from the centralized SVM
training described in Fig. 9, and maintains the global solution
at + = 5. The important thing is that the proposed algorithm
yields the identical global solution of the SVM at every node.
Fig. 11 shows the agreement of SVM training results of nodes
5, 10, 15, 20, 25, and 30. They show identical contour patterns
that are the same as the centralized SVM in Fig. 9. We can
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Fig. 11. Agreements of the distributed SVM for nodes 5, 10, 15, 20, 25,
and 30: the contour of the discriminant value is plotted over the workspace.
The zero-valued contour is the discriminant function of the SVM.
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Fig. 12. (a) Average path length. (b) Power consumption analysis for various
rewiring probabilities: a logarithmic horizontal scale has been used to resolve
the rapid changes in L(p) and Pr.

also confirm the agreement of SVM training results for the
other nodes.

C. Small-World Properties in Wireless Sensor Networks

In Section IV-E, we discuss the small-world network prop-
erties to enhance the convergence performance with only a
small loss of energy. The key issues of this topic are the aver-
age path length depending on the rewiring probability and the
power consumption by the long-range communications. In this
section, the path length analysis and the power consumption
analysis are performed using the same setup and process as in
Section V-B.

Fig. 12(a) shows the average path length L(n, k, p) for the
randomly rewired graphs during the distributed SVM simu-
lation performed in Section V-B, where n = 30 and k = 6.
The plot of L(n, k, p) shown in Fig. 12(a) is the average over
30 random realizations of the rewiring process, and has been
normalized by the value of L(n, k, 0). As shown in the figure,
L(n, k, p) drops rapidly as the rewiring probability p increases.

On the other hand, Fig. 12(b) shows the estimated aver-
age transmitting power of the distributed SVM simulations
performed in Section V-B. The estimation has been achieved
using the transmitting power model (16). Because Prop, y and
n are constants in the (16), the data plotted in the figure has
been calculated by

n(Pr —Pro) /y = d* 7)
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Fig. 13.  Environment of the indoor experiment and the results: the blue
squares indicate nodes detecting a low temperature and the red squares indi-
cate nodes detecting a high temperature. Part (a) and (b) show the results of
independent trials.

and we set « = 2 by assuming that the environment of wireless
communication is a free space. As shown in the figure, the
average transmission power Pr maintains a low level in the
small probability region, but drastically increases in the high
probability region.

Comparing Fig. 12(a) and (b), there is a region where both
the average path length and the estimated power consump-
tion are small. In this region, we can substantially improve
the performance of our proposed algorithm in terms of the
convergence speed with only a negligible increase in energy
consumption.

VI. EXPERIMENTAL RESULTS

In this section, we describe the experimental results for
analyzing the proposed algorithm and testing its feasibility
in practical environment. As shown in Fig. 13, we try to
determine the actual cooling region of an air conditioner
located at the corner of an office using the proposed algo-
rithm over the wireless sensor network. A total of 26 sensor
nodes are deployed in the indoor environment. For these
experiments, each sensor node employs TinyOS with TelosB
platform and communicates using the IEEE 802.15.4 standard.
Furthermore, the network topology is implemented such that
each node has a degree of six, i.e., a node receives radio pack-
ets from six neighbors, with rewiring probability which we
can control.

The radio transmission power also can be controlled by the
geometric interpretation. In Table I, there are seven different
output powers and their corresponding current consumptions
for a single transmission, provided by the manual of the
CC2420 radio chip installed in the sensor nodes. Through the
prestudy with theses values, we obtain the minimum trans-
mission power for the communication ranges with 95 percent
reliability (the success rate of the communication) as written
in the first column of Table 1.
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TABLE I
RADIO TRANSMISSION POWER

Range (m) | Output Power (dBm) | Current Consumption (mA)
0~1 -25 8.5
1~2 -15 9.9
2~3 -10 11.2
3~v4 -7 12.5
4~6 -3 15.2
6~10 -1 16.5
10~ 0 17.4
56
0.95 54
0.9 g &2
E 50
S 085 k-
= S 48
= 08 &
’i 46
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(a) (b)
Fig. 14.  Experimental results of (a) average path length and (b) power

consumption for various rewiring probabilities: a logarithmic horizontal scale
has been used to resolve the rapid changes in L(p) and Pr.

The contour plot described in Fig. 13 shows the distributed
SVM results of the experiment. The blue squares indicate
nodes detecting a low temperature and the red squares indi-
cate nodes detecting a high temperature. The results of the
distributed SVM training show well-separated solutions.

We also analyze the small-world effects with the various
rewiring probabilities. Fig. 14 shows the experimental results
of L(p) and Pr for various rewiring probabilities. The path
length L(p) can be obtained from the convergence time and
the transmission power Pr is calculated based on the data
in Table I.

The results have a similar pattern to the simulation results
in Fig. 12; there exists a region around p = 10~! where both
the average path length and the power consumption are small.
According to this, the wireless sensor network can have its
best performance with the rewiring probability p = 107!
terms of the convergence speed and energy consumption.

VII. CONCLUSION

In this paper, we propose a distributed SVM training algo-
rithm. Based on geometric SVM, we propose to gossip only
the extreme point sets with neighboring nodes. The proposed
algorithm has a simple communication mechanism and guar-
antees to converge to a common global solution. In order to
prove the global optimality by exchanging only the extreme
points with neighboring nodes, we utilize the join operation of
the convex hulls and show that the gossip process can achieve
the agreement.

Furthermore, we analyze the scalability in terms of the
amount of exchanged information and the convergence time.
The exchanged information of the proposed algorithm is the
extreme point set and in general, the number of extreme points
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is finite. However, in the worst case where the extreme points
lie on a round convex curve, it is possible that the number
of extreme points grows to infinity. To resolve this possibility,
we propose the naive convex hull algorithm which bounds the
number of the extreme points.

The convergence time is strongly related to the average path
length of the network topology. In order to analyze the per-
formance of the proposed algorithm over sensor networks, we
adopt the concept of the small-world network. From the anal-
ysis of the path length and the power consumption, we find
a trade-off between energy efficiency and convergence perfor-
mance. Moreover, due to the small-world phenomenon, the
average path length is reduced by using long-range rewiring
with a small probability, which gives an opportunity to dras-
tically improve the convergence performance of the algorithm
with only a small increase in power consumption.

APPENDIX

Proof of Lemma 1

For any z € C(X), z = Zi)»,-x,', with x; € X, Zi A= 1,
and A;, > 0,7 = 1,...,N, where N = |X|. If there is an
element x; of X = {xi}f’: ; Which can be represented as a
convex combination of any other distinct points in X, we can
substitute x; = Zj#k Bjx; where, x; # x; € X, Z#k Bi=1,
B;j = 0. Then, the point z in C(X) can be formulated as follows:

Z Bixi

i=k+1

N
Z Aixi + Ak Z.tht+

k—

N
D i+ B

1
(Ai + AeBi)xi +
1 i=k+1

=

and the coefficients are obviously nonnegative, furthermore,
their sum is 1 as follows:

k—1

> i+ B + Z(x + MeBi)

i=1 lk+1
Z i+ Z ﬂl—l—zk—l
i=1,i#k i=1,i#k

Let X’ be a new convex set defined as X’ = X\x; which
still holds that C(X) = C(X’) and |X'| < |X|. Same as above,
we can continue setting X’ to a new X iteratively until all
the elements of X’ cannot be a convex combination of any
other distinct points in X’. Then, by definition, the final X’ is
the extreme point set £(X) which has the minimum size to
represent C(X).

Proof of Lemma 3
From the definition of a convex hull, we can set z €
C(C(st) UCX?)) as 2= D AXk, where Ax >0, " Ax =1,
and x; € C(X;) U C(X?). Let x; € C(X;) for k =1,---Kj,
and x; € C(X7i) — C(st) for k = Ky + 1,..., K>, where
= |Xf| and Kp = |X;qu|, then z € C(C(Xf) UC(X])) can
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be represented using the definition of a convex hull as follows:

K K>
z=Y M| Do P+ DD | DD BYam
k=1

n:pneX; k=K1+1 m:qmeX;
K>
k k
= X Zkka“ ED DR ED DR
n: p,,eXJ?' k=1 m: gmeX; \k=Kj+1

where, o > 0 and B > 0 with > alP = >om B =
and the superscnpt (k) denotes that the convex comb1nat10n

k
coefficients a; () n=1,..., |X;|) and /3,51) (m=1, X3
construct x;. Here, it is obvious that Zk Aka(k) > 0 and

ZkKiKIH )"k,Br(r{( ) > 0. Moreover

K K>
S (T ore®) 4 T aep®
n k=1 m k=K1+1

= Z/\k Zoz(k) + Z M| DB

k=K;+1 m
K K>
=Zkk+ Z )»kZZ)ukzl.
k=1 k=K+1 k

The above properties show that z € C (X; U X?), and that
means (12) holds.
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