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Consensus Based Distributed Change Detection Using Generalized 
Likelihood Ratio Methodology 

Nemanja Hie, Srdjan S. Stankovie, Milos S. Stankovie and Karl Henrik Johansson 

Abstract- In this paper a novel distributed recursive algo­
rithm based on the Generalized Likelihood Ratio methodology 
is proposed for real time change detection using sensor net­
works. The algorithm is based on a combination of recursively 
generated local statistics and a global consensus strategy, and 
does not require any fusion center, so that the state of any 
node can be tested w.r.t. a given common threshold. Two 
different problems are discussed: detection of an unknown 
change in the mean and in the variance of an observed random 
process. Performance of the algorithm for change detection 
in the mean is analyzed in the sense of a measure of the 
error with respect to the corresponding centralized algorithm. 
The analysis encompasses constant and randomly time varying 
matrices describing communications in the network. Simulation 
results illustrate characteristic properties of the algorithms. 

Index Terms- Sensor networks, Distributed change detec­
tion, Generalized Likelihood Ratio, Consensus, Convergence. 

I. INTRODUCT ION 

Decision making in large scale systems consisting of 
multiple decision makers is a very challenging problem in 
many real world situations, such as air-traffic control, oil 
exploration, military command and control, electric power 
networks, control of complex industrial systems, fault de­
tection and isolation, etc. One of typical tasks of sensor 

networks, which is in the focus of many researchers, is 
distributed detection (e.g., [1], [2], [3]). The classical multi­
sensor detection schemes require the existence of a fusion 

center, where the final decision is made. Such a topology 
has been found to be too restrictive for many applications. 
Distribution of functions has been found to have, in principle, 
many advantages, consisting of increased reliability, reduced 
communication bandwidth requirements and reduced overall 
cost, leading, at the same time, to a certain loss of perfor­
mance with respect to the optimal centralized system. 

There have been some recent attempts to apply consensus 

techniques to the distributed detection problem [4] but they 
introduce the dynamic agreement process after all data had 

been collected, implying inapplicability to real time change 
detection problems. In [5], [6], [7] algorithms for distributed 
real time state and parameter estimation have been proposed 
by combining local estimation schemes with a dynamic 
consensus algorithm. An analogous combination of recursive 
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geometric moving average control charts with a consensus 
algorithm has lead to a novel distributed consensus-based 
change detection algorithm proposed in [8], [9]. Similar al­
gorithms based on "running consensus" have been proposed 
and discussed in [10], [11]. 

In this paper two new algorithms are proposed for dis­

tributed detection of unknown changes in: a) the mean and 
b) the variance of a piecewise stationary random process. 
Both algorithms are derived using the Generalized Likeli­
hood Ratio (GLR) methodology, so that all the nodes in 
the network can generate local decision variables using the 
corresponding recursions. By applying a dynamic consensus 
scheme, one obtains an algorithm which asymptotically 
provides nearly equal behavior of all the nodes, i.e., any 

node can be selected for testing the decision variable w.r.t. a 
pre-specified threshold. The algorithm for change detection 
in the mean is analyzed for both constant and randomly time 
varying asymmetric consensus matrices characterizing the 
network. It is shown that the ratio of the mean square error 
between the proposed decision variables and the centralized 
decision variable and the mean square value of the central­
ized decision variable is bounded in the case of constant 
consensus matrices by K(l - a ) 2, where 0 < a < 1 
is the forgetting factor of the algorithm, while in the case 
of random consensus gains it is bounded by K(l - a ) . A 
number of simulation results are given as an illustration of 
the characteristic properties of the proposed algorithm. They 
also show that the results of the analysis connected to the 
change in the mean hold also for the detection of the change 
in the variance. 

The outline of the paper is as follows. In Section II local 
recursive algorithms are derived using the GLR methodology 
for detecting changes in the mean and in the variance 
of piecewise stationary random processes. In Section III 
a novel distributed change detection scheme based on a 
consensus algorithm is presented. In Section IV analysis of 
the error with respect to the centralized algorithm is given, 
while Section V finalizes the paper with some illustrative 
simulation results. 

II. RECURSIVE DETECT ION ALGORITHMS 

A. Change in the Mean 

Assume that we have a sensor network containing n nodes, 
in which the measurement signal of the i-th node is given 
by 

(1) 
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where Ei(t) '" N(O, an, i = 1, ... , n, are mutually inde­
pendent iid processes. We shall assume further that until an 
unknown time t = to we have ()i = ()? = 0 (hypothesis H6), 
and from t = to, ()i = ()t -=I- 0 (hypothesis Hi). In the case 
when ()t, i = 1, ... , n ,  is not a priori known, it is possible 
to apply the GLR methodology and to obtain the following 
local statistics based on N successive measurements [12] 

where fMN) = -k E!l Yi(t). 

(2) 

Calculation of s�(N) can be performed on-line, recur­
sively. Introducing t for current time, we obtain, using [12], 
the following basic local recursion for the local decision 
function 

After replacing t!l by a constant a close to one, which acts 
as a forgetting factor, and after neglecting the second term 
in the brackets at the right hand side, the following recursive 
algorithm is obtained [12] 

where fh is also generated recursively by 

fh(t + 1) = afh(t) + (1 -a)Yi(t + 1), fh(O) = O. (5) 

B. Change in the Variance 

Assume, without loss of generality, that we have the 
following zero-mean system model 

(6) 

where the hypothesis H6 is that Ei(t) '" N(O, (a?)2) and 
the hypothesis Ht that Ei(t) '" N(O, (at)\ {Ei(t)} under 
each hypothesis are supposed to be mutually independent iid 
processes. We shall assume further that until an unknown 
time t = to we have hypothesis H6, and from t = to 
hypothesis Ht. In the case when ( at) 2 is not a priori 
known, the application of the GLR methodology leads to 
the following statistics based on N successive measurements 
[12] 

I
(N) ;-" 1 Pat (Yi(t)) s· =max � og = , at t=l Pa?(Yi(t)) 

a? 1 ;-" 2 N = Nlog
if.(N) + -( 0)2 � Yi(t) -2' (7) 

, 2 ai t=l 

where ifi(N)2 = -k E!l Yi(t)2. 
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Introducing t for current time, we derive, similarly as in 
(3), the following basic local recursions for calculating sHt): 

For t sufficiently large, we introduce the approximations 

t�l « 1 and t!l � 1 connected to all the terms at the 
right hand side except the first (which includes s� (t) , and, 
after replacing t!l by a close to 1, we finally obtain the 
following recursion analogous to (4) 

(9) 

where ifi(t + 1)2 is generated recursively by 

(10) 

Denoting the terms at the right hand side of the recursions 
not including si (t) in both derived detection algorithms (4) 
and (9) as Xi (t + 1), we obtain the following general form of 
local recursive algorithms based on the GLR methodology 
which can be used on-line for change detection purposes 

s�(t + 1) = as�(t) + Xi(t + 1), s�(O) = o. (11) 

These algorithms obviously belong to the class of geometric 
moving average control charts [13], [14]. 

Complexity of the expression for Xi (t + 1) in the case 
of detecting change in the variance (recursively generated 
ifi(t + 1)2 in the denominator, correlated with Yi(t + 1)2, 
plus the logarithmic term) makes any analysis regarding 
statistical properties of Xi (t) very difficult. An analysis con­
nected to the corresponding recursively generated statistics 
is even more difficult so that properties of the change in the 
variance detection algorithm will be analyzed in Section V 
by means of simulation. 

One can simplify calculation in the recursions by replacing 

Xi(t) with xi(t) = 10ga�lt) + �(ah2 - a)t)2)Yi(t)2. As it 

can be seen from Fig. 1, where mathematical expectations of 
the two terms are represented w.r.t. at (assuming that a is 
sufficiently close to 1, so that if i (t) 2 has converged to at), 
xi(t) has the same sign as Xi(t), but with smaller ordinates. 
It will be shown in Section V that the resulting detection 
scheme is also efficient, provided an adequate threshold is 
selected. 
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Fig. 1. Mean values of the terms Xi(t) (solid line) and xi(t) (dashed 
line); value of u? is 2. 

III. DISTRIBUTED CHANGE DETECTION ALGORITHM 

Assuming independence of the local measurements, the 
global statistics for the whole sensor network are defined as 
a sum of the statistics given in either (2) or (7). According 
to the previous section, the centralized decision variable is 
generated by 

n 
sc(t + 1) = asc(t) + L WiXi(t + 1), 

i=1 
sc(O) = 0 (12) 

where Wi are the weight vector components all equal to 
1. For the sake of convenience, we shall adopt that the 
weights are normalized, leading to Wi = �. Moreover, we 
shall generalize this setting by assuming that the weight 
vector W = [WI '" WnV in (12) is arbitrarily selected, but 
satisfying Wi � 0 and L�=I Wi = 1. For example, in 
the case of (4) we can have Xi(t) = rJi(t)Yi(t) instead 
of Xi(t) = lJi2rJi(t)Yi(t), so that the normalized weights 
become Wi = lJi2(L�=llJi2)-I. The global detection 
procedure is based on testing the decision function sc(t) with 
respect to an appropriately chosen threshold .Ac > 0, so that 
a change is detected when, e.g., Isc(t)1 > .Ac. Notice that the 
algorithm requires a fusion center. 

The aim of this paper is to propose a distributed change de­
tection algorithm which does not require a fusion center and 
in which the output of any preselected node can be used as 
a representative of the whole network and tested w.r.t. a pre­
specified common threshold. The basic assumption for this 
algorithm is that the nodes of the network are connected in 
accordance with an n x n  time varying matrix C(t) = [Cij(t)] 
satisfying Cij(t) � 0, i #j and Cii(t) > 0, i,j = 1, ... , n ,  
which formally represents the weighted adjacency matrix for 
the underlying time varying graph representing the network 
(Cij(t) represents the communication gain from the node j 
to the node i), and that C(t) is row stochastic for each t. We 
shall assume, additionally, that matrices C(t) are random, iid 
and statistically independent from the sequences Xi(t), i = 

1, ... , n. We propose the following algorithm for generating 
the vector decision function s(t) = [SI(t)··· sn(t)]T: 

s(t + 1) = aC(t)s(t) + C(t)x(t + 1), s(O) = 0 (13) 
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where x(t) = [XI(t)·· ,xn(t)]T. Notice that the consensus 
matrix C(t) performs for each node "convexification" of the 
neighboring states and enforces in such a way consensus 
between the nodes, according to the general principle of 
consensus schemes. After achieving Si(t) � Sj(t), i,j = 

1, ... , n, change detection can be done by testing lSi (t) I 
for any i with respect to the same .Ac as in the case of 
(12), provided (13) achieves a good approximation of sc(t) 
generated by (12). 

In order to implement the proposed algorithm it is nec­
essary to set the network communication gains C(t) in 
accordance with the communication structure constraints 
resulting from the availability of communication links. We 
shall assume, in general, that the sequence {C (t) }, t = 

0,1, ... , is a sequence of mutually independent identically 
distributed random matrices independent from the sequence 
{x(t)}, such that C(t) is realized at each discrete time instant 
t as C(k) with probability Pk. k = 1, ... , N, N < 00, 
L�=I Pk = 1 (the case of constant gains simply follows 

as a special case). The realization matrices C(k) = [c��)], 
k = 1, ... ,N, i, j = 1, ... , n ,  will be assumed to be constant 
nonnegative row stochastic matrices, satisfying C%) > 0, i = 

1, ... , n, so that we have C = E{C(t)} = Lk=1 C(k)Pk' 
This formal setting obviously encompasses the asynchronous 
asymmetric gossip algorithm with one message at a time, 
various types of synchronous asymmetric gossip algorithms, 
as well as communication faults. 

We shall assume further that: 

AI) C has the eigenvalue I with algebraic multiplicity I; 

A2) limi-+oo Ci 
= lwT. 

The first assumption is related to the a priori given 
topology of the underlying multi-agent network, implying 
that the graph associated with C has a spanning tree and 
that Ci converges to a nonnegative row stochastic matrix 
with equal rows when i tends to infinity, e.g., [15], [16]. 
Assumption A2) establishes a formal connection between the 
algorithm (13) and the centralized scheme (12), implying that 
the realization matrices C(k), the corresponding probabilities 
Pk and the weight vector w are connected by the relation 

N 

wTC = wT L C(k)Pk = wT. 
k=1 

(14) 

For an a priori given vector w, according to the requirements 
resulting from the selected centralized detector (12), equation 
(14) should be solved for C(k) and Pk. It is a nonlinear 
equation, which can be solved in practice by adopting one 
set of parameters (probabilities Pk, for example) and solving 
the linear programming problem for the remaining set of 
parameters (parameters in C(k)), or vice versa [17]. It is to be 
emphasized that solving (14) in the case when all Wi = n-I 
results in symmetric average consensus matrices C when the 
communication links allow such a structure; otherwise, we 
have an asymmetric C, satisfying (14). The related literature 
covers only the symmetric case [10], [18]; the asymmetric 
case has been treated in [8], [9], [17]. 
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IV. ANALYSIS OF THE ALGORITHM 

The theoretical analysis given in this section will be con­
cerned with the relationship between the proposed consensus 
based algorithm (13) and the centralized scheme (12) taken 
as a reference, assuming that assumption A2) holds. The 
error vector between the corresponding states is defined as 

e(t) = s(t) -ISc(t), (15) 

where I = [1 ... 1V. Iterating (13) and (12) back to the 
zero initial conditions, we get s(t) = L�:6 o-.icp(t -1, t -
i -l)x(t -i), where cp(i,j) = C(i)··· C(j), i � j, and 
sc(t) = L�:6 aiwT x(t -i), wherefrom 

t-l 
e(t) = L ai[cp(t -1, t -i-I) -IwT]x(t -i). (16) 

i=O 

From (16) we obtain directly 

t-l t-l 
E{e(tn = L ai(6 _lwT)i+lm = L aiCi+lm, (17) 

i=O i=O 

where m = E{x(tn and C = 6-lwT, having in mind that, 
under A2), we have (6 -IwT)i = 6i -IwT. Obviously, 
s(t) is a biased estimator of lsc(t) when m -=I- JLI, where JL 
is a given scalar. 

By assumptions AI) and A2), it follows that 6 and IwT 
have the same eigenvectors. Therefore, 6 has the same 
eigenvalues as C, except for the eigenvalue 1 of 6 which 
is replaced by the eigenvalue 0 of C. Having in mind that 
Cii > 0, i = 1, ... , n ,  it follows that the modules of all the 
eigenvalues of C are strictly less than 1 [15]. We denote 

IA(C)lmax = AM < 1. Now we can see that 

t-l 
IIE{e(tnll :-:; "aiIICi+lll llmll :-:; kAM11m11 < 

kAMllmll , � 1 -aAM 1 -AM 
>=0 

(18) 
having in mind that IICil1 :-:; kXk for any matrix norm, 
where k is an appropriately chosen constant, and that AM < 
1. A comparison with the properties of an analogous algo­
rithm presented in [9] shows that in the case of (13) the 
upper limit of IIE{e(tnll does not depend on a. 

However, the obtained quality of approximating the cen­
tralized solution can be more adequately expressed by a 
normalized criterion, defined as the ratio of the norm of 
mathematical expectation of the error (18) and mathematical 
expectation of the centralized decision variable. In this case 
we readily obtain that 

IIE{e(tnll < K(l-a). E{sc(tn - (19) 

where K < 00, having in mind that E{sc(tn = wTmll-=-� . 
A more complete insight into the quality of approximation 

can be obtained from an analysis of the mean square error 
matrix 

Q(t) = E{e(t)e(tf}. (20) 

The following lemma serves as a prerequisite. 
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Lemma 1. The covariance function Ti(r) = E{(Xi(t) -
mi)(xi(t + r) -min for algorithm (4) satisfies 

00 
L h(r)1 :-:; K1; i = 1, ... , n , 0 < Kl < 00. (21) 
T=O 

Proof: For (4) we have Xi(t) = a;:2tJi(t)Yi(t), fJi(t) = 
(1 -a) L�:� ajy(t -i) and Yi(t) = Bi + Ei (t) ), so that 

Ti(r) = E{(Yi( t)�i( t) -mi)(Yi( t+T)�i( t+T) -min = Ui O"i 
= E{ l;;t L�:� ajBi(Ei(t) + Ei(t -j)) 

1
:Jt
0 L���-1 akBi(Ei(t + r) + Ei(t + r -k)n. (22) 

Since Ti(r) = Ti(-r) we can see that for r > 0 we have 
non-zero terms in (22) in the cases when k = rand k = 
r + j, so that we obtain the following expression for Ti(r) 

(1 0)2 t 1 . 2 2 Ti(r) = �E{Lj:o aJOi aT(Ei (t)+ 

+ajE�(t-j)n=(1-a)2*el-=-� + �-=-�22t )aT. (23) 

Therefore, (21) is satisfied, since Ti( r) rv (1-a)aT• Q.E.D. 

Theorem 1. Let assumptions AI) and A2) hold. Then, 
under hypothesis HI, in the case of constant consensus 
matrices 

IIQ(t)lloo < K(l _ a)2 E{ sc(t)2} -
, 

while in the case of random consensus matrices 

IIQ(t)lloo < K(l -a) E{sc(t)2} -
, 

where K < 00 is a constant that does not depend on a and 

IIAlloo = maXi Lj laijl , where A = [aij ] is a given matrix. 
Proof: First we obtain a lower bound for the variance of 

the centralized statistics: 

var{sc(tn = 
= E{(L�:� ajwT x(t _ j) _ �::)2} = 
= E{(L�:� ajwT(x(t -j) -m))2} � 

� E{L�:�(ajwT(x(t -j) -m))2} = 
= L�:� a2jwT diag{var(xinw = 

= 11-=-�22t wTdiag{var(xinw � ml(l-a)-I, (24) 

where ml < 00 does not depend on a. Having in mind that 
E{sc(tn = wTm\-=-� we obtain 

E{sc(t)2} = var{sc(tn + E{sc(tn2 � m2(1 -a)-2, 
(25) 

where m2 < 00 does not depend on a. 
Further, consider an arbitrary deterministic n-vector Y and 

analyze the quadratic form yTQ(t)y. 
In the case of constant consensus gains we have that 

Q(t) = Ql(t) + Q2(t), in which 

and 

Ql (t) = <p(t)T R(t)<P(t) (26) 

Q2(t) = <p(tf mx(t)mx(tf<P(t), (27) 
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where <I>(t) = [o:t-ICt:o:t-2Ct-I: ... :o:ocV, R(t) = 

R(t) -mx(t)mx(tf, R(t) = E{X(t)X(tf}, X(t) = 

[x(I)T ... x(tfV and mx(t) = E{X(t)}. Following the 
results in [8] it can be easily shown that 

(28) 

where kl < 00 does not depend on 0:, while analyzing Q2(t) 
we find that 

yTQ2(t)y ::; (L�:� o:iIICi+Ill llmll)21IyI12 ::; 
::; k'( l�r,J21IYI12 ::; k211y112, (29) 

where k2 < 00 does not depend on 0:, having in mind that 

IICil1 ::; kA�, where k < 00 and that modules of all the 
eigenvalues of C are strictly less than 1. 

In the case of random consensus gains the mean square 
error matrix is decomposed as Q(t) = Q3(t) +Q4(t), where 

Q3(t) = E{Ex{e(t)e(t)T} -Ex {e(t)}Ex {e(t)}T} (30) 
and 

Ex{.} denoting the conditional expectation given the (Y­
algebra generated by {C ( t)} . 

We obtain, in analogy with (26) and (27), that 

Q3(t) = E{ <I>(tf R(t)<I>(t)}, (32) 

where <I>(t) = [o:t-I(cp(t -1, 0) -lwT): o:t-2(cp(t -1, 1)­
lwT): ... : 0:0 (cp(t -1, t -1) -lwT)V and 

Q4(t) = E{<I>(tfmx (t)mx (tf<I>(t)}}. (33) 

Following the results in [9] it can be shown that 

yTQ3(t)y::; k311Y112(1 -0:)-\ (34) 

where k3 < 00 does not depend on 0:, while the term 

yT Q 4 (t)y can be analyzed analogously. We use the fact that 
E{<I>(t)Tmx(t)mx(t)T<I>(t)} ::; 20:2( t-I)E{(cp(t -1,0)­
lwT)mmT(cp(t -1,0) -lwT)T} + ... + 20:2.oE{(cp(t-
1, t -1) -lwT)mmT(cp(t -1, t -1) -lwTf} and obtain 
that 

t-I 
yTQ4(t)y::; m'llyl12 :L0:2i ::; k41IYI12(1-0:)-\ (35) 

i=O 
where k4 < 00 does not depend on 0:, based on the result 
from [9] that norm of the matrices D(t -1,j) = E{(cp(t­
l,j) -lwT)(cp(t -1,j) _lwT)T}, where j = 0, ... , t-l 
has a finite upper bound that does not depend on 0:. 

Consequently, by choosing y = ei, where ei denotes the 
n-vector of zeros with only the i-th entry equal to one, 
one obtains that in the case of constant consensus gains 
Qii(t) ::; k12, where kI2 < 00, i = 1, ... ,no Further­
more, IQij(t)1 ::; maxiQii(t), having in mind elementary 
properties of positive semidefinite matrices. In the case of 
random consensus matrices, we have that maxi,jQij(t) ::; 
k341�a' where k34 < 00. Thus, dividing the mean square 
error matrices with the mean square value of the centralized 
decision variable (25) gives the result. Q.E.D. 
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V. SIMULATION RESULTS 

Change in the mean. Let us consider a sensor network 
with n = 10 nodes, where the means 0; (unknown to 
the designer of the detection scheme) are randomly taken 
from the interval (0,1] and the variances (Y� randomly taken 
from the interval [0.5, 1.5]; it is assumed that O? = 0 in 
the case of no change, i = 1, ... , n. Communication gains 
are obtained by solving the equation (14) for both constant 
and time varying cases under the constraints that the con­
sensus matrices are row stochastic and possess a predefined 
structure (places of zeros). The assumed network topology 
corresponds to the Geometric Random Graphs in which the 
nodes represent, e.g., randomly spatially distributed agents 
within a square area and they are connected if their distance 
is less than some predetermined threshold (in this case 
half of the side of the square, see, e.g., [18]). The weight 
vector components are chosen as Wi = (Yi2(L�=1 (Yi2)-1 
(see Section III). In the case of random consensus gains 
the asymmetric asynchronous "gossip" algorithm with one 
communication at a time is assumed; values of the elements 
of the realizations of the consensus matrices corresponding 
to communicating nodes are taken to be 0.5, and (14) is 
solved for the probabilities of individual realizations, see 
[17]. Fig. 2 contains, for comparison, one typical realization 
of the centralized decision function (12) for 0: = 0.9 and 
0: = 0.9 9, together with the corresponding realizations 
obtained at one randomly selected node in the network for 
constant and random consensus gains (one component of 
(13)). The moment of change is chosen to be t = 200. Fig. 3 
illustrates the dependence of the error on the forgetting factor 
0:, according to Section IV. For the above network with 10 
nodes, the ratio of the mean square error for one randomly 
selected node and the mean square value of the centralized 
statistics at t= 1000 is calculated using 1000 Monte Carlo runs 
as a function of (1 -0:)2 in the case of constant consensus 
gains and of (1-0:) in the case of random consensus gains. 
The results of Theorem 1 are clearly justified. 

Change in the variance. A similar network as the one 
described above is used, where (a-})2 (unknown to the de­
signer of the detection scheme) are randomly taken from the 
interval (0.5,1] and ((y?)2 randomly taken from the interval 
(0,0.5]. Communication gains are obtained by solving the 
equation (14) similarly as above, with the weight vector 
components Wi = �. Fig. 4 contains, for comparison, the 
mean ± one standard deviation of the centralized decision 
function for 0: = 0.9 9, together with the corresponding 
decentralized statistics obtained at one randomly selected 
node in the network for constant and random consensus 
gains and for two different choices of the terms used in 
recursive schemes (Xi(t) and xi(t), see Section II). As can 
be seen, both mentioned choices can be used, since they 
result in statistics with similar behavior. In addition, similarly 
as above, analysis of the error is given in Fig. 3 (dashed 
lines), confirming that all the theoretical results from Section 
IV connected to the change in the mean hold also for the 
detection algorithm of the change in the variance. Fig. 2 
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Fig. 2. Realizations of decision functions: centralized strategy (top), 
constant consensus gains (middle), random consensus gains (bottom) 
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Fig. 3. Ratio of the mean square error and mean square value of the 
centralized statistics: constant consensus gains (top), random C (bottom); 
change in the mean (solid line), change in the variance (dashed line) 

and Fig. 4 also show that the detection efficiency of our 
distributed detection scheme is satisfactory even in the case 
of random consensus gains since the mean square value of 
the statistics is very small under the hypothesis Ho (it can be 
shown that it is I�Q times smaller than corresponding ones 
under HI)' 
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