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Abstract: In this paper a new distributed time synchronization algorithm is proposed for lossy
wireless sensor networks with noisy local clock readings and inter-node communications. The
algorithm is derived in the form of two asynchronous recursions of stochastic gradient type
providing estimates of the parameters used to compensate drifts and offsets of the local clocks.
A special modification of the algorithm for drift compensation based on instrumental variables is
introduced in the case of internal measurement noise. It is proved that the proposed algorithm
provides asymptotic synchronization in the sense that all the equivalent drifts, as well as all
the equivalent offsets, converge in the mean square sense and with probability one to the same
random variables.

1. INTRODUCTION

Recently, sensor networks have emerged as an important
research area from the point of view of both theory and
practice. Wireless sensor networks (WSNs) are networks
having nodes in the form of programmable devices with
local computational and sensing capabilities, communicat-
ing with their neighbors via wireless channels. One of the
natural requirements for WSNs, very important in many
applications, is global time synchronization, i.e., all the
nodes have to share a common notion of time. The problem
of time synchronization in WSNs has attracted a great
deal of attention; it represents a challenge, having in mind
multi-hop communications, unpredictable packet losses
and high probability of node failures. There are numer-
ous approaches to time synchronization in WSNs starting
from different assumptions, e.g., Freris et al. (2011, 2009);
Carli et al. (2011); Xia and Cao (2011); Ganeriwal et al.
(1999); Elson et al. (2002). An important class of time
synchronization algorithms is based on full distribution of
functions, when there are no reference nodes and when all
the nodes run the same algorithm, such as in, e.g., Simeone
et al. (2008); Solis et al. (2006). Recently, there have been
attempts to apply distributed gradient optimization and
consensus schemes in different forms, e.g., Sommer and
Wattenhofer (2009); Schenato and Fiorentin (2011); Carli
et al. (2011); Li and Rus (2006).

In this paper we propose a distributed algorithm for time
synchronization in lossy WSNs characterized by internal
local noise and communication dropouts by using two
asynchronous recursions of stochastic gradient type. In the
noiseless case, the basic algorithm is obtained in the form
resembling to the one presented in Schenato and Fiorentin
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(2011). It is proved under general conditions related to the
communication protocol and the network topology that
the asymptotic synchronization is achieved exponentially
in the sense of having the same equivalent drifts and the
same equivalent offsets. In the case when the local time
readings are corrupted by internal noise, a synchronization
algorithm is derived in the form of two asynchronous
stochastic approximation recursions. The recursion for
drift estimation is based on the introduction of specific
instrumental variables aimed at noise decorrelation. The
recursion for offset estimation is autonomous, based on the
result of drift estimation. The proof of convergence of the
estimates in the mean square sense and with probability
one is derived using stochastic approximation arguments,
taking into account asynchronous features of the recursions
and time varying properties of the weighted Laplacian of
the underlying directed graph. It is also shown how the
proposed methodology can be extended to the case of
random communication dropouts. Illustrative simulation
results are also given.

2. NOISELESS CASE

2.1 Basic Algorithm

Assume a sensor network containing n nodes, formally rep-
resented by a directed graph G = (N , E), where N is the
set of nodes and E the set of arcs. Assume that Γa = [γaij ],
γaij = γij > 0, i 6= j, γaii = 0, is the weighted adjacency

matrix of G and Γ = −diag{
∑n
j=1 γ1j , . . . ,

∑n
j=1 γnj}+Γa

its Laplacian matrix; γij represent a priori given positive
weights. Assume also that N+

i is the out-neighborhood
and N−i the in-neighborhood of the node i, containing the
tail nodes of the arcs leaving the node i and the head nodes
of the arcs entering the node i, respectively.



Assume that the node i has its local clock providing local
time readings

τi(t) = αit+ βi, (1)

where t ∈ R is the absolute time, αi the local clock drift
and βi the local clock offset, i = 1, . . . , n. We assume that
the time readings (1) are locally transformed by an affine
transformation

τ̄i(t) = aiτi(t) + bi, (2)

where ai and bi are parameters to be determined. The
function (2) resembles the calibration function in sensor
calibration problems presented in Stanković et al. (2012b);
τ̄i(t) can also be treated as an estimate of a virtual
reference time Schenato and Fiorentin (2011). From (2)
we have

∆τ̄i(t) = τ̄i(t)− τ̄i(t−∆t) = ai∆τi(t), (3)

where ∆τi(t) = τi(t)− τi(t−∆t) = αi∆t.

Estimation of the parameters in (2) will be based on
the pseudo periodic broadcast described in Schenato and
Fiorentin (2011). Namely, we assume that each node j,
j = 1, . . . , n, transmits a packet to its neighbors at discrete
time instants tjk ∈ R, k = 0, 1, 2, . . ., defined recursively by

tjk = tjk−1 + T jk (4)

where Tmin < T jk < Tmax, Tmin, Tmax > 0, starting from a

given initial time tj0. Procedurally, at each time instant tjk,
j = 1, . . . , n, the j-th clock sends a packet to its neighbors
containing a message about its status (to be specified
below). After receiving the packet, each neighbor compares
the received data with its own status, and updates the
estimates of its own parameters in (2). According to
Schenato and Fiorentin (2011), it will be adopted in the
analysis that there is no delay in the packet reception. The
main idea is to construct an algorithm for estimating the
parameters in (2) able to achieve asymptotic consensus
about the modified time readings in the sense that all
the resulting drifts gi = aiαi and the resulting offsets
fi = aiβi + bi become equal.

Starting from the general idea presented in Stanković et al.
(2012b) in relation with sensor calibration, the estimation
algorithm for ai will be derived from the following set of
instantaneous local criteria

Jai (tjk) =
∑

j∈N−
i
(tj
k
)

γij [∆τ̄j(t
j
k)−∆τ̄i(t

j
k)]2 (5)

where ∆τ̄j(t
j
k) = τ̄j(t

j
k)−τ̄j(tjk−1) = ajαjT

j
k and ∆τ̄i(t

j
k) =

aiαiT
j
k , i, j = 1, . . . , n, N−i (tjk) is the set of nodes sending

their packets to the i-th node at tjk, while γij are positive
weights reflecting relative importance of the nodes in
N−i . After calculating the gradient w.r.t. ai, the following

updating is done at the i-th node for each tjk:

âi(t
j+
k ) = âi(t

j
k) + δi(t

j
k)

∑
j∈N−

i
(tj
k
)

γij [∆τ̂j(t
j
k)−

−∆τ̂i(t
j
k)]∆τi(t

j
k) (6)

where δi(t
j
k) are positive weights influencing convergence

of the algorithm, ∆τ̂j(t
j
k) = âj(t

j
k)∆τj(t

j
k)= âj(t

j
k)αjT

j
k

and ∆τ̂i(t
j
k) = âi(t

j
k)∆τi(t

j
k)= âi(t

j
k)αiT

j
k .

Following the same line of thought, estimation of bi starts
from

Jbi (tjk) =
∑

j∈N−
i
(tj
k
)

γij [τ̄j(t
j
k)− τ̄i(tjk)]2, (7)

resulting into the updating rule

b̂i(t
j+
k ) = b̂i(t

j
k) + δi(t

j
k)

∑
j∈N−

i
(tj
k
)

γij(τ̂j(t
j
k)− τ̂i(tjk)), (8)

where τ̂j(t
j
k) = âj(t

j
k)τj(t

j
k) + b̂j(t

j
k) and τ̂i(t

j
k) =

âi(t
j
k)τi(t

j
k) + b̂i(t

j
k).

Consequently, at each time instant tjk, j = 1, . . . , n, the
packet sent by the j-th node to its neighbors contains both
∆τ̂j(t

j
k) and τ̂j(t

j
k); after receiving the packets, the neigh-

bors calculate the corresponding ∆τ̂i(t
j
k) and τ̂i(t

j
k) and

update their parameters according to (6) and (8). Notice
that the recursion (6) is structurally different from the
corresponding recursion in Schenato and Fiorentin (2011);
its advantages will be clearly perceivable in the noisy case.
Also, the introduced weights γij allows achieving addi-
tional adaptivity to the desired network characteristics.

In order to represent the whole algorithm in a compact
form more suitable for further analysis, introduce n × n
matrix Γ[j] = −diag{γ1j , . . . , γnj} + Γ

[j]
c , where Γ

[j]
c is a

matrix containing zeros everywhere except the j-th column
which is equal to the j-th column of Γa. Defining ĝ(t) =

col{ĝ1(t), . . . , ĝn(t)} and f̂(t) = col{f̂1(t), . . . , f̂n(t)},
where ĝi(t) = âi(t)αi and f̂i(t) = âi(t)βi+ b̂i(t), we obtain

ĝ(tj+k ) = ĝ(tjk) + ∆(tjk)A
∑

j∈∪iN−i (tj
k
)

Γ[j]ĝ(tjk), (9)

where ∆(tjk) = diag{δ1(tjk), . . . , δn(tjk)}, A = (T jk )2

diag{α2
1, . . . , α

2
n} and

f̂(tj+k ) =f̂(tjk) + ∆(tjk)
∑

j∈∪iN−i (tj
k
)

[C ′(tjk))Γ[j]ĝ(tjk)

+ Γ[j]f̂(tjk)], (10)

where C ′(tjk) = diag{tjk +α1β1(T jk )2, . . . , tjk +αnβn(T jk )2}.
Let {tm}, m = 0, 1, 2, . . ., be the set of all discrete time
instants of packet sending, obtained by ordering {t1k}
∪{t2k}· · · ∪ {tnk}, k = 1, 2, . . ., i = 1, . . . , n. Then, it is
possible to represent (9) and (10) by

ρ(m+ 1) = (I +B(m))ρ(m), (11)

where ρ(m) = [g(m)T f(m)T ]T =[ĝ(tjk)T f̂(tjk)T ]T for

tm = tjk and B(m) =

[
D(m)AΓ(m) 0

D(m)C(m)Γ(m) D(m)Γ(m)

]
in

which:

• D(m) = diag{d1(m), . . . , dn(m)}, where di(m) = δi(tm)

and Γ(m) = Γ[j], with tm = tjk for some k and j;

• C(m) = diag{µ(m)m+α1β1T
2
m, . . . , µ(m)m+αnβnT

2
m},

where µ(m) is defined in such a way that µ(m)m = tm,

0 < µ(m) ≤ c <∞, while Tm = T jk .

2.2 Convergence

We start from two basic assumptions concerning the choice
of time instants {tik} and the network properties:



(A1) There exist constants pi, i = 1, . . . , n, 0 < pi < 1,∑n
i=1 pi = 1, such that it is possible to find for all indices

m in {tm} and any ε > 0 such an M0 = M0(ε) that for all
M > M0

|Ji(m,m+M)

M + 1
− pi| < ε (12)

where Ji(m,m+M) is the number of packet transmissions
of the i-th node in the interval (m,m+M);

(A2) Graph G has a spanning tree.
Assumption (A1) is a formal expression for the require-
ment about the persistency of sending messages by partic-
ular nodes, while (A2) represents a standard assumption
for networks aimed at achieving consensus (see, e.g., Ren
and Beard (2005)).

Also, we assume in this section that:

(A3) di(m) = d = const.

Lemma 1. Let (A1) hold. Let Γ̄ be a matrix obtained
from Γ in such a way that γij is replaced by γijpj . Then,
it is possible for all m and any ε > 0 to find such an
M0 = M0(ε) that for all M > M0

‖ 1

M + 1

M∑
m=0

Γ(m)− Γ̄‖ < ε. (13)

Proof: The proof follows directly from assumption (A1).
Namely, by definition, Γ̄ =

∑n
i=1 pjΓ

[j], so that

‖ 1

M + 1

M∑
m=0

Γ(m)− Γ̄‖ ≤
n∑
j=1

|Ji(m,m+M)

M + 1
− pj |‖Γ[j]‖

(14)
and the result directly follows.

Theorem 1. Under (A1)-(A3) algorithm (11) achieves syn-
chronization in the sense that there exists such a d0 > 0
that for all d ≤ d0 ρ(m) tends to ρ∗ = [g∗1T f∗1T ]T ,
where g∗ and f∗ are constants and 1 = [1 · · · 1]T .

Proof: First, we analyze the autonomous recursion in (11)
generating g(m):

g(m+ 1) = (I + dAΓ(m))g(m). (15)

Let Φ1 = [1
...Φ∗1], where span(Φ∗1) = span(AΓ̄); then, ac-

cording to (A2) and Huang and Manton (2010), Φ−11 AΓ̄Φ1

=

[
0 0
0 Γ∗g

]
, where (n− 1)× (n− 1) matrix Γ∗g is Hurwitz;

similarly, we have that Φ−11 AΓ(m)Φ1 =

[
0 ΓA1(m)∗

0 ΓA2(m)∗

]
.

Introduce g̃(m)= Φ−11 g(m) =

[
g̃(m)[1]

g̃(m)[2]

]
, where dim

(g̃(m)[1]) = 1; then, accordingly,

g̃(m+ 1)[1] = g̃(m)[1] + dΓA1(m)∗g̃(m)[2] (16)

g̃(m+ 1)[2] = g̃(m)[2] + dΓA2(m)∗g̃(m)[2]

(see Huang and Manton (2010)). Iterating the second
recursion in (16) M times backwards, one obtains

g̃(m+1)[2] = [I+dB̄2(m,M)∗+O(d2, d3, . . .)]g̃(m−M)[2]

(17)

where B̄2(m,M)∗=
∑M
k=0 ΓA2(m−k)∗, while O(d2, d3, . . .)

contains higher order terms in d. Let B̄(m,M) =∑M
k=1AΓ(m− k) = (M + 1)AΓ̄ + ∆B̄(m,M); then,

Φ−11 B̄(m,M)Φ1 = (M + 1)

[
0 0
0 Γ∗g

]
+

[
0 ∆B̄1(m,M)∗

0 ∆B̄2(m,M)∗

]
,

(18)
wherefrom it follows that B̄2(m,M)∗ = (M + 1)Γ∗g +

∆B̄2(m,M)∗.

Define the Lyapunov function V (m) = g̃(m)[2]TP ∗g g̃(m)[2],

where P ∗g > 0 satisfies the Lyapunov equation Γ∗Tg P ∗g +
P ∗g Γ∗g = −Q∗g, where Q∗g > 0, having in mind that Γ∗g
is Hurwitz. Denote ∆Qg(m,M)∗ = ∆B̄2(m,M)∗TP ∗g +

P ∗g ∆B̄2(m,M)∗. It is possible to conclude that

V (m+ 1) ≤[1− d(M + 1)λmin(Q∗g)

+ ‖∆Qg(m,M)∗‖+O(d2, d3, . . .)]V (m−M)
(19)

(see Stanković et al. (2012b)). According to (A1) and
Lemma 1, for M large enough −(M + 1)λmin(Q∗g)+
‖∆Qg(m,M)∗‖ < 0. Therefore, it is possible to find such
d0 > 0 that for all d ≤ d0 the whole multiplier of V (m −
M) at the right hand side of (19) is less than one (see
Stanković et al. (2011)). Consequently, g̃(m)[2] tends to
zero exponentially.

Coming back to the first relation in (16), one concludes
easily that g̃(m)[1] converges to some constant g∗; by
definition of g̃(m), it follows that limm→∞ g(m) = g∗1.

Consider now the second relation from (11)

f(m+ 1) = (I + dΓ(m))f(m) + dC(m)Γ(m))g(m). (20)

Let Φ2 = [1
...Φ∗2], where span(Φ∗2) = span(Γ̄); then, accord-

ing to (A2), Φ−12 Γ̄Φ2 =

[
0 0
0 Γ∗f

]
, where (n− 1)× (n− 1)

matrix Γ∗f is Hurwitz. Then, we also have Φ−12 Γ(m)Φ2 =[
0 Γ1(m)∗

0 Γ2(m)∗

]
and Φ−12 C(m)Γ(m)Φ1=

[
0 ΓC1(m)∗

0 ΓC2(m)∗

]
.

Defining f̃(m)= Φ−12 f(m) =

[
f̃(m)[1]

f̃(m)[2]

]
, we can apply

the methodology presented in relation with the analysis of
g(m). Iterating back the recursion for f̃ [2](m), one can eas-

ily conclude that under the adopted assumptions ‖f̃(m)[2]‖
tends to zero as mrm, where |r| < 1. Consequently, f̃(m)[1]

tends to a constant f∗, so that f(m) tends to f∗ 1. Thus
the result.

3. LOSSY NETWORKS

3.1 Internal Noise

Algorithm. We assume now that the clock readings
figuring in the above algorithms are corrupted by internal

noise. In this case, we have the “noisy versions” τ ξj (tjk) =

αjt
j
k+βj+ξj(t

j
k), ∆τ ξj (tjk) = αjT

j
k+∆ξj(t

j
k) and ∆τ ξi (tjk) =

αiT
j
k + ∆ξi(t

j
k) instead of τj(t

j
k), ∆τj(t

j
k) and ∆τi(t

j
k),

where {ξj(tjk)} are supposed to be zero mean white noise



sequences with constant variances σ2
j , while ∆ξi(t

j
k) =

ξi(t
j
k) − ξi(tjk−1), j = 1, . . . , n; physically, these sequences

represent all errors connected with local clock readings,
including thermal noise, signal processing noise, as well as
computation and digital representation noise.

The estimation algorithms in the noisy case can be con-
structed directly starting from (6) and (8) by introducing

∆τ̂ ξj (tjk) = âj(t
j
k)∆τ ξj (tjk), ∆τ̂ ξi (tjk) = âi(t

j
k)∆τ ξi (tjk) and

τ̂ ξj (tjk) = âj(t
j
k)τ ξj (tjk) + b̂j(t

j
k) instead of ∆τ̂j(t

j
k), ∆τ̂j(t

j
k)

and τ̂j(t
j
k). However, this leads in (6) to correlation be-

tween the noise terms in ∆τ̂ ξj (tjk) and ∆τ ξj (tjk), which
prevents the achievement of the desired consensus. In
order to circumvent this problem, we propose the following
modified version of (6)

âi(t
j+
k ) = âi(t

j
k) + δi(t

j
k)

∑
j∈N−

i
(tj
k
)

γij [∆τ̂
ξ
j (tjk)−

−∆τ̂ ξi (tjk)]∆τ ξi (tjk−2), (21)

in which ∆τ ξi (tjk−2) is an instrumental variable (see, e.g.,
Ljung and Söderström (1983)). Notice that in this case

∆ξj(t
j
k) and ∆ξj(t

j
k−2) become uncorrelated (a similar idea

has been applied in the context of sensor calibration in
Stanković et al. (2012a)). Having in mind that ∆ξj(t

j
k)

and ξj(t
j
k−1) are correlated, parameter updating in (21) is

done at . . . , tjk−4, t
j
k, t

j
k+4, . . ..

The updating scheme (8) will now be supposed to use the
final results of (21):

b̂i(t
j+
k ) = b̂i(t

j
k) + δi(t

j
k)

∑
j∈N−

i
(tj
k
)

γij(τ̂
ξ
j (tjk)∗ − τ̂ ξi (tjk)∗),

(22)

where τ̂ ξj (tjk)∗ = τ̂ ξj (tjk)|âi(tjk)=â∗i , â∗i being the value of

âi(t
j
k) at convergence.

We can put (21) and (22) in a compact form similar to (11).
The procedure is based on introducing the expressions for

∆τ̂ ξj (tjk), ∆τ ξj (tjk) and τ̂ ξj (tjk). Taking tm = tjk, one obtains

(compare with (11))

ρ(m+ 1) = (I +Bξ1(m))ρ(m) +Bξ2(m)g∗, (23)

where g∗ is the value of g(m) at convergence, Bξ1(m) =

diag{D(m)AξΓ(m) +D(m)Ξ[1](m), D(m)Γ(m)} and

Bξ2(m) =

[
0

D(m)[Ξ[1](m) + Ξ[2](m)]

]
with:

• Aξ = T jkT
j
k−2diag{α2

1, . . . , α
2
n},

• Ξ[1](m) = Ξ1(m)Ξ2(m) +AξΞ3(m), with Ξ1(m) = diag

{α1T
j
k−2+ ∆ξ1(tjk−2), . . . , αnT

j
k−2 +∆ξn(tjk−2)}, Ξ2(m) =

−∆ξ1(tjk)γ1j · · ·
α1

αj
∆ξj(t

j
k)γ1j · · · 0

0
... 0

0 · · · αn
αj

∆ξj(t
j
k)γnj · · · −∆ξn(tjk)γnj

 and

Ξ3(m) = Aξdiag{∆ξ1(tjk−2), . . . ,∆ξn(tjk−2)}Γ(m),

• Ξ[2](m) =
−ξ1(tjk)γ1j · · · ξj(tjk)γ1j · · · 0

0
... 0

0 · · · ξj(tjk)γnj · · · −ξn(tjk)γnj

.

Notice that the sequences {Ξ1(m)} and {Ξ2(m)} are
uncorrelated.

Convergence. In order to avoid centralized evidence
of the current iteration number m distributed to all
the nodes, we assume that di(m) = d(Ii(m)), where
Ii(m) represents the local index defined by the number
of updates done by the i-th node up to the instant
tm, where, for the sake of simplicity, the function d(.)
is chosen to be the same for all the nodes. In general,
such an algorithm belongs to the class of asynchronous
stochastic approximation algorithms, e.g. Borkar (1998);
Chen (2002). It is possible to simplify the analysis after
noticing that, according to (A1) and (A2), Ii(m) becomes
for m large enough close to kim, where ki is a positive
number defined by ki =

∑
j∈N−

i
pj , so that we have

di(m) ∼ d(kim). We assume further that

(A4) d(m) = k
mλ

, where 1
2 < λ ≤ 1, k > 0.

Therefore, for m large enough di(m) ∼ k′i
mλ

, k′i > 0, or

D(m) ∼ K ′ 1
mλ

, where K ′ = diag{k′1, . . . , k′n}.

Theorem 2. Let assumptions (A1), (A2) and (A4) be
satisfied. Then the algorithm (23) achieves synchronization
in the sense that g(m) tends to w∗g1 and f(m) tends to w∗f1
in the mean square sense and with probability one, where
w∗g and w∗f are random variables.

Proof: We shall first focus our attention on the recursion
for g(m) in (23). Following the methodology of the proof
of Theorem 1, we construct g̃(m) = Φ−11 g(m) and obtain
for m large enough

g̃(m+ 1)[1] =g̃(m)[1] + d(m)(ΓξA1(m)∗g̃(m)[2]

+ Ψ1(m)[1]g̃(m)[1] + Ψ1(m)[2]g̃(m)[2]),

g̃(m+ 1)[2] =g̃(m)[2] + d(m)(ΓξA2(m)∗g̃(m)[2]

+ Ψ2(m)[1]g̃(m)[1] + Ψ2(m)[2]g̃(m)[2]),
(24)

where ΓξA1(m)∗ and ΓξA2(m)∗ are obtained from Φ−11 K ′Aξ

Γ(m)Φ1 in the same way as ΓA1(m)∗ and ΓA2(m)∗ in The-

orem 1 (see (16)), while Φ−11 K ′Ξ[1](m)Φ1 =

[
Ψ1(m)[1]

Ψ2(m)[1]

]

and Φ−11 K ′Ξ[2](m)Φ1 =

[
Ψ1(m)[2]

Ψ2(m)[2]

]
are white noise terms

independent of g(m).

Define s(m) = E{(g̃(m)[1])2} and V (m) = E{g̃(m)[2]T

P ξg g̃(m)[2]}, where P ξ > 0. After iterating back the first
recursion in (24) up to the initial condition, one concludes
in a straightforward way that

s(m+ 1) ≤ C0(1 +

m∑
k=1

d(m)2V (k)), (25)



where C0 is a generic constant, having in mind (A4)
and the fact that the noise terms in (16) are mutually
independent (notice that

∑∞
i=1 d(i)2 <∞). The next step

is to iterate back the second recursion in (24) M times
backwards and to calculate V (m) under the assumption
that P ∗g > 0 satisfies the Lyapunov equation ΓξTg P ξg +

P ξgΓξg = −Qξg, whereQξg > 0, where Γξg is a matrix obtained

from B̄ξ(m,M) =
∑M
k=1K

′AξΓ(m − k) in the same way
as Γ∗g is obtained from B̄(m,M) in relation with (19) in
the proof of Theorem 1; this matrix is Hurwitz in the same
way as Γ∗g. Consequently,

V (m+ 1) ≤(1− c0d(m))V (m−M) (26)

+ C1

m∑
σ=m−M

d(σ)2(1 + s(σ) + V (σ)),

where c0 > 0 and C1 are generic constants. Relations (25)
and (26) can now be treated using Theorem 11 and Lemma
12 from Huang and Manton (2010). The conclusion is
that s(m) converges and that V (m) converges to zero.
Using again Huang and Manton (2010) one concludes that
g̃(m)[2] tends to zero and g̃(m)[1] to a random variable w∗g
in the mean square sense and w. p. 1; consequently, g(m)
tends to w∗g1 in the mean square sense and w. p. 1. Using
similar arguments, one can also derive that f(m) tends to
w∗f1 in the mean square sense and w.p. 1.

Remark 1. Recursions (21) and (22) are not coupled (like
(6) and (8)) in order to ensure convergence of offset
estimates; the rate of convergence of g(m) in the stochastic
case is insufficient for achieving convergence of f(m).

3.2 Communication Dropouts

The above proposed algorithms are applicable in the case
of random communication dropouts.

(A5) Communication gains are represented by a randomly

time varying adjacency matrix Γa(tjk) = [γaij(t
j
k)], where

γaij(t
j
k) = ζij(t

j
k)γij (the gains γij , i, j = 1, . . . , n, are

defined in Section II) and the sequences {ζij(tjk)}, j =
1, . . . , n, are stationary independent binary random se-
quences with P{ζij(tjk) = 1} = πij , 0 ≤ πij ≤ 1.

Theorem 3. Let assumptions (A1), (A2), (A4) and (A5) be

satisfied. Then the algorithm (23) with Γ(m) = Γ[j](tjk),

where Γ[j](tjk) = diag{ζ1j(tjk), . . . , ζnj(t
j
k)}Γ[j], achieves

synchronization in the same sense as in Theorem 2.

Proof: The main idea of the proof lies in treating the
recursion (23) generated under (A5) using the method-
ology of the proof of Theorem 2. Namely, defining Γ̄(m) =

E{Γ[j](tjk)} = diag{π1j , . . . , πnj}Γ[j], we can write Γ(m) =
Γ̄(m)+∆Γ(m), where {∆Γ(m)} is a zero mean white noise
sequence. After replacing the last relation into (23), the
obtained recursion can be treated in the same way as the
recursion (23) in the case of the internal noise.

Remark 2. In general, both algorithms (11) and (23) are
applicable in the case of communication dropouts which
influence only the convergence rate.
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Fig. 1. Drift and offset estimates: deterministic case

4. SIMULATIONS

Two simulation experiments are presented as illustrations
of the above theoretical results. In the first, a network
of ten nodes forming a directed graph has been simu-
lated, with αi and βi randomly chosen from the intervals
(0.95, 1.05) and (−0.05, 0.05), respectively. Values of T jk
in (4) have been randomly chosen within (0, 1). Fig. 1
gives the drift and offset estimates obtained by using the
proposed algorithm. Fig. 2 gives the results obtained at
two nodes in the noisy case, with σi = 0.1. Fig. 2.a gives
the drift estimates obtained by using (21) which incor-
porates instrumental variables, while Fig. 2.b corresponds
to (6) with decreasing sequences di(m) satisfying (A4).
It is obvious that in the latter case consensus cannot be
achieved as a result of noise correlation. Fig. 2.c gives the
corresponding offset estimates obtained by (22). In com-
parison, we have found that the algorithm from Schenato
and Fiorentin (2011) shows a similar behavior in the de-
terministic case, but possesses a very poor noise immunity.
Notice also that coupling between (21) and (22) leads to
an erratic behavior of the offset estimates, acceptable only
in the case of low noise variances.
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Fig. 2. Drift and offset estimates: stochastic case

5. CONCLUSION

In this paper an algorithm of stochastic gradient type
is proposed for distributed time synchronization in lossy
WSNs, using a pseudo periodic broadcast protocol. Start-
ing from general assumptions related to the properties of
the network and the communication protocol, it has been
proved that the proposed algorithm ensures asymptotic
consensus with respect to the equivalent drifts and offsets
of the local clocks. In the case of measurement noise a spe-
cific algorithm of instrumental variable type is proposed
for drift estimation.

One of the immediate challenges is to investigate optimiza-
tion of the algorithm with respect to the communication
gains γij and tracking time-varying drifts and offsets. It
would be also interesting to construct similar gradient
schemes which incorporate matrix gain sequences in order
to achieve higher convergence rate.
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