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Distributed Change Detection Based on a
Consensus Algorithm

Srdjan S. Stanković, Nemanja Ilić, Miloš S. Stanković, and Karl Henrik Johansson

Abstract—In this paper a novel distributed recursive algorithm
is proposed for real time change detection using sensor networks.
The algorithm is based on a combination of geometric moving av-
erage control charts generating local statistics and a global con-
sensus strategy; it does not require any fusion center, so that the
final decision is made by testing the state of any node in the network
with respect to a given common threshold. The mean-square error
with respect to the centralized solution defined by a weighted sum
of the local statistics is analyzed in the case of constant asymmetric
consensus matrices with constant and time varying forgetting fac-
tors in the underlying recursions, assuming spatially and tempo-
rally correlated data. These results are consistently extended to
the case of time varying random consensus matrices, encompassing
asymmetric gossip schemes, lossy networks and intermittent mea-
surements, proving that the algorithm can be an efficient tool for
practice. The given simulation results illustrate the main charac-
teristics of the proposed algorithm, including the consensus matrix
design, the mean square error with respect to the centralized solu-
tion as a function of the forgetting factor, the obtained detection
quality expressed using deflection and estimation of the instant of
parameter change.

Index Terms—Consensus, distributed detection, geometric
moving average control charts, real time change detection, sensor
networks.

I. INTRODUCTION

D ISTRIBUTED sensor systems have received much atten-
tion recently, having in mind the low cost of miniature

sensor technologies and their increased capacity to collect,
analyze, and transmit environmental data. In a typical sensor
system, dispersed wireless sensor nodes gather information
about the properties or the occurrence of an event of interest,
process this information locally and exchange the obtained
results among themselves to fulfill a specific purpose. The
abstract framework consisting of a collection of geographically
dispersed sensor nodes along with a central entity aimed at de-
cision making, termed fusion center, is commonly referred to as
distributed or decentralized detection [1]–[4]. There are many
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M. S. Stanković and K. H. Johansson are with the School of Electrical En-
gineering, Royal Institute of Technology, 100-44 Stockholm, Sweden (e-mail:
milsta@kth.se; kallej@kth.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2011.2168219

levels in which the sensed data can be shared and processed
among nodes, e.g., signal level, feature level and decision level.
At each of these levels, the information content is, in principle,
reduced, and this, in turn, reduces the required amount of data
to be communicated between nodes. The decentralized nature
of distributed systems is to be contrasted with a centralized
system, in which the fusion center has access to the full collec-
tion of raw observations. The task of the fusion center is often
reduced to a classical hypothesis testing problem where the
information received from the sensor nodes is viewed as an ob-
servation vector [1], [2]. However, the detection systems based
on fusion center are prone to failures of the fusion center itself
and to communication bottlenecks that render it inoperative.

One of possible specific tasks of a distributed detection
system can be to detect abrupt changes in the environment,
requiring fast real time data processing [5]–[7]. In many appli-
cations it is desirable to eliminate the need for a fusion center,
i.e., to have a possibility to make a global decision by testing
the decision variables in real time at any node in a given sensor
network.

Consensus techniques have been studied for many years,
starting from the early 1980s, when important results were
obtained in the areas of distributed asynchronous iterations
in parallel computation and distributed optimization (e.g.,
[8]–[13]). There have been some recent attempts to apply
consensus techniques to the distributed detection problem
under the assumption that the dynamic agreement process starts
after all data had been collected, implying inapplicability to
real time change detection problems [14]–[16]. The problem
of distributed detection based on a consensus scheme (called
“diffusion”) has been treated in [17] supposing a specific
parametrization of the measurement model. In [18]–[20], al-
gorithms for distributed state and parameter estimation have
been proposed by combining local overlapping decentralized
estimation schemes with a dynamic consensus algorithm. Anal-
ogous algorithms for distributed detection based on “running
consensus” have been proposed and discussed in [21], [22],
treating only the case of symmetric consensus gain matrices,
like in [23]. An analysis of such algorithms based on the large
deviations theory has been presented in [24].

In this paper a new algorithm is proposed for distributed
change detection while monitoring the environment using a
sensor network. It is assumed that all the nodes of the network
can locally generate decision variables by recursive schemes
belonging to the geometric moving average control charts
[5], which allow fast tracking of signal properties. Assuming
that each node sends its decision variable to a selected small
number of neighboring nodes (in accordance with a given
network topology defined in the form of a directed graph), a
dynamic consensus based scheme is realized providing, under
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general conditions, nearly equal behavior of all the nodes. Con-
sequently, any node in the network can be selected for testing
its decision variable w.r.t. a prespecified common threshold,
distributing the global decision throughout the network and
eliminating the need for a fusion center. The algorithm con-
struction follows methodologically [19], [25], and can be
considered as a generalization of the algorithm discussed in
[21], [22], [24]. The results presented in the paper have been
partially presented in [26] and [27].

The theoretical analysis of the proposed algorithm is pri-
marily concerned with the relation between the set of decision
variables it generates and the centralized reference decision
variable defined as a weighted sum of the decision variables
obtained by the local recursions implemented independently
(compare with [21] and [22]). It is assumed that these weights
are selected by using any a priori given optimality criterion, as
well as that the available data are both spatially and temporally
correlated.

The cases of constant and randomly time varying communi-
cation gains (consensus matrices) are analyzed separately. For
constant matrices, it is proved that the mean-square error be-
tween the decision variables generated by the proposed algo-
rithm and the reference decision variable is bounded by

, where and is the forgetting factor of the
recursive algorithm generating the decision variables, which in-
fluences its memory length, and, thus, its tracking properties [5],
[28]. In the design phase, for any a priori given set of weights
in the reference centralized scheme, the consensus matrix is ob-
tained by solving a linear programming problem. In the case of
time varying forgetting factors tending to one when tends to
infinity, it is proved, by using the stochastic approximation ar-
guments, that the mean square error converges to zero. In the
case of randomly time varying consensus gains, which encom-
passes asymmetric gossip algorithms and random communica-
tion faults, an algorithm for the design of consensus matrices is
presented. It is proved that the mean-square error is bounded by

for constant forgetting factors, and that it converges to
zero for time varying forgetting factors tending to one, but at a
rate inferior to the one corresponding to the case of constant con-
sensus matrices. The important case of intermittent measure-
ments is also discussed (see [29]).

Simulation results are given as an illustration of the charac-
teristic properties of the proposed change detection algorithm.
They provide an insight into the consensus matrix design, mean
square error as a function of the forgetting factor, detection
quality expressed by using deflection [30], as well as the quality
of estimation of the moment of parameter change.

The outline of the paper is as follows. In Section II the novel
distributed change detection scheme based on a consensus algo-
rithm is presented. In Section III the error analysis with respect
to the centralized scheme is given, assuming constant consensus
gains for constant and time varying forgetting factors of the local
recursive schemes. Section IV treats the case of random con-
sensus gains, while Section V deals with illustrative numerical
examples.

In the paper, we use the following notation: denotes the
th component of a vector , is the transpose of a matrix

, , denotes the spectral norm of a ma-
trix , denotes the infinity norm defined as

, denotes the th eigenvalue of a square
matrix , stands for , where ,

stands for , denotes a
matrix with nonnegative elements, a positive-semidefi-
nite matrix, denotes a vector obtained by concatenating
the columns of a matrix , denotes the Kronecker’s
product, denotes the mathematical expectation,
the mathematical expectation under hypothesis and
variance under hypothesis .

II. DISTRIBUTED CHANGE DETECTION ALGORITHM

Consider a sensor network containing nodes, where each
node collects locally available measurements and generates at
each discrete time instant a scalar quantity ,
as a result of local signal processing. We shall assume that the
whole generated random vector re-
flects the environment in such a way that from until

(hypothesis ), and from
, where ,

and for some (hypothesis ). It will be
also assumed that under each of the hypotheses its covariance
satisfies

. The purpose of the whole network is the online detection
of a change in the observed environment, manifested as a change
of the mean of the vector .

According to the paradigm of distributed detection, we shall
assume first that each sensor is able to generate its local de-
cision function autonomously, using the methodology of
geometric moving average control charts (see [5] for a detailed
presentation in the context of change detection), i.e.,

(1)

where is the forgetting factor of the algorithm, influ-
encing its tracking properties. The effective memory length of
the algorithm increases when increases; the algorithm is faster
for smaller values of , but its noise immunity becomes deteri-
orated. Allowing to be time varying, it is possible to achieve
a better adaptivity to signal characteristics. When

, the algorithm essentially looses its tracking capabilities, but
allows convergence of to a steady state value in a cer-
tain sense (see the discussion below, where this case is consid-
ered separately, and, also, [28] for a general treatment of the
problem). In a completely distributed system, consisting of
independent recursions (1), the local change detection proce-
dure is based on testing with respect to an appropriately
chosen threshold , so that a change is detected when

exceeds (see, e.g., [5] and [31]). Obvi-
ously, the detection time is, in general, delayed with respect to
the real instant of change. This delay depends on the tracking
capabilities of (1), and can be analyzed using the methodology
from, e.g., [5].

Instead of having separate decisions, a global deci-
sion (related to the observed phenomenon as a whole) can
be done by introducing a fusion center, where the central-
ized decision function is formed as a weighted sum
of the local decision functions, i.e., , where

, , , is the weight vector,
satisfying, for convenience, the condition , while

. The detection procedure is now
based on testing with respect to an appropriately chosen
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threshold . Notice that the resulting system still belongs,
according to [1] and [2], to the class of distributed detection
systems, having in mind that the calculation of and
is distributed. The choice of the weight vector and the
threshold can be based on different a priori selected criteria;
this subject is out of the scope of this paper. The centralized
decision function can be written in the form of a recursion

(2)

Remark 1: The algorithm (2) with a fusion center can be con-
sidered as a representative of a large class of online change de-
tection procedures, which can be obtained for different concrete
choices of the vectors and . As an illustration, consider
the measurement model

(3)

where is a constant -vector and an i.i.d. sequence
with , where is a positive-definite matrix.
Let the problem be to detect the change from
(hypothesis ) to (hypothesis ). According to
the general detection principles (see, e.g., [5], [24], and [31]),
we can calculate the log likelihood ratio for the set containing

, and obtain the following expression:

(4)

A geometric moving average control chart for online detection
can be derived from (4) following [5] and [31]. It can be put in
the form (2), with

and . Obviously, under ,

with nonnegative components. The obtained recursion
differs from the one derived in, e.g., [31], by the in-
troduction of the normalization factor . The generated
decision variable is tested w.r.t. the threshold defined as

.
If we assume that in (3) and that

, where changes abruptly at
from one constant value to the other, it is possible to

make an algorithm for detecting the change in variance in the
form (2) by generating locally .

Supposing that the parameter jump is unknown, the applica-
tion of the generalized likelihood ratio methodology to the same
measurement model leads also to a recursion belonging to the
general form (2), with specific choices of the vectors and

for detecting both the mean and the variance changes in (3)
(see [31] and [32]).

The aim of this paper is to propose an online distributed
change detection algorithm which does not require any fusion
center, and in which the output of any preselected node can be
used as a representative of the whole network and be tested w.r.t.
one prespecified common threshold. The basic assumption for
such an algorithm is that each node of the network communi-

cates with its neighborhood in accordance with an time
varying consensus matrix , satisfying ,

and , which formally rep-
resents the weighted adjacency matrix for the underlying time
varying graph representing the network ( is the commu-
nication gain from node to node ). We shall assume, addi-
tionally, that is row stochastic for all [33]. Consequently,
we propose in this paper the following distributed algorithm for
generating decision functions at all the nodes of the network:

(5)

. Notice that the set of neighbors of the th node
(containing those indexes for which ) can be small,
and the elements themselves random (see the analysis
below). Denoting , we have the fol-
lowing compact representation of the proposed algorithm

(6)

The algorithm (5), (6) is derived from the consensus based state
and parameter estimation algorithms proposed in [18]–[20]; it
is also similar to the “running consensus” detection algorithm
based on time averaging proposed in [21], [22], and [24]. The
consensus matrix in (6) performs “convexification” of the
neighboring states for each node and, therefore, aims at en-
forcing (under appropriate conditions) consensus between all
the nodes in the network. The basic underlying idea is to achieve

, so that change detection
can be done by testing any state , with re-
spect to a given common threshold, thus eliminating the need for
a fusion center. This threshold can be chosen to be equal to the
threshold for the centralized strategy (2), provided (6) gives a
good approximation of in (2). Looking from another stand-
point, it is to be expected that the introduction of the consensus
scheme in a completely decentralized structure consisting of
independent local detectors (1) has as a consequence an increase
in the overall detection quality, having in mind ensemble aver-
aging and “denoising” intrinsic to the consensus based estima-
tion schemes (see, e.g., [18], [19], and [25]). One of the im-
portant consequences is that the algorithm is highly robust with
respect to variations of local noise characteristics. Denoising as-
pects will be covered in more detail in Section V.

The theoretical part of the paper, contained in Sections III
and IV, will be focused on the relationship between the pro-
posed algorithm and the centralized decision strategy (2) taken
as a reference. More specifically, we shall analyze the distance
between the states of the proposed algorithm (6) and the central-
ized scheme (2) as a function of the forgetting factor . A more
detailed analysis of the estimation of change time, false alarm
and detection probabilities, etc. are out of the scope of the paper.
These issues are addressed through the experimental results in
Section V.

As a prerequisite for the further analysis, we define the error
between the states of (6) and (2) as

(7)
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Iterating (6) and (2) back to the zero initial conditions, we get

(8)

where , and

(9)

from which we obtain

(10)

(compare with [21] and [22], where the special case when
is treated, in conjunction with symmetric consensus

matrices).

III. ERROR ANALYSIS: CONSTANT CONSENSUS MATRICES

When , we start from the following assumptions:
A1) has the eigenvalue 1 with algebraic multiplicity 1;
A2) .
The first assumption is related to the topology of the under-

lying multi-agent network, implying that the directed graph as-
sociated with has a spanning tree and that converges to a
nonnegative row stochastic matrix with equal rows when tends
to infinity, e.g., [9], [13]. Assumption A2) establishes a formal
connection between the algorithm (6) and the reference scheme
(2). For an a priori given , follows from the relation

(11)

known from the theory of stationary Markov chains, e.g., [34].
For an a priori given , the consensus matrix can be ob-
tained by solving the linear programming problem associated
with (11) under communication structure constraints based on
setting preselected elements of to zero (indication that there
are no communication links between the corresponding nodes).
An illustrative example is given in Section V.

A. Constant Forgetting Factor

When both and in (2) and (6) are constant, one obtains
using A2) that , and, therefore, that

. Also, in this case , so that
(10) and (8) give

(12)

where , having in mind that, under A2), we have
.

We first realize that as an estimator of is unbiased
under and, in general, biased under , since we have from
(12) that

(13)

notice that when , having
in mind that for , where is a given scalar.
The bias is, obviously, smaller when is closer to one. Namely,
in the steady state, we have

, and, consequently,

(14)

for some large enough. For close to 1, the first term in
the brackets is obviously small, and can be neglected, and the
second term is approximately equal to

.
The focus of the analysis is placed on the mean square error

matrix . Using (12) and (13), one readily
obtains

(15)

where
...

...
...

and .
Theorem 1: Let assumptions A1) and A2) hold, together

with:
A3) ,

where .
Then, under both and ,

(16)

for all , where are the elements of in (15).
Proof: Consider an arbitrary deterministic -di-

mensional vector and analyze the quadratic form
, in which

(17)

and

(18)

where and .
Starting the analysis with , we conclude that

...
...

...
(19)

where , are block matrices reflecting
spatial and temporal correlations.

In order to analyze in this general case, we introduce a
special matrix norm in the following way. Let

, be a matrix composed of blocks . We
define a norm as , where
is an matrix composed of the spectral norms of the
blocks [33]. The function of a given matrix represents
indeed a matrix norm, having in mind that we have, according to
the Conlisk observation presented in [35], the required property
that in the case of the infinity norm for two

matrices and satisfying , and
(see [35] for more details).
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Consequently, we construct a matrix ,
with the elements , so that

. By Assumption A3) we have now that

(20)

Coming back to (17), we realize further that the expression
is in the form of a sum of terms containing

. By assumptions A1) and A2) it fol-
lows that and have the same eigenvectors and that
has the same eigenvalues as , except for the eigenvalue 1 of

, which is replaced by the eigenvalue 0 of . Having in mind
that , by assumption, it follows that the
modules of all the eigenvalues of are strictly less than one
[13]. Therefore, we have , where

and , so that

(21)

where do not depend on .
Analyzing in (18) we find that under

and

(22)

under .
Consequently, by choosing , where denotes the

-vector of zeros with only the th entry equal to one, one ob-
tains that for all . Fur-
thermore, for , having in mind
elementary properties of positive-semidefinite matrices. Thus,
the result.

The meaning of the obtained result becomes clearer after re-
alizing that

(23)

under and under , having in mind
that .

Remark 2: The above given analysis shows that the mean
square error between the decision functions generated by the
proposed algorithm and the centralized decision function tends
to zero when approaches one. However, this does not imply
that high values of are always the most suitable, as such values
of do not allow fast change detection. In practice, a careful
trade off has to be done. Illustrative examples obtained by sim-
ulation, including an analysis of the change detection delay, are
presented in Section V.

B. Variable Forgetting Factor

Assuming that is time varying, tending to 1 when tends to
infinity, we obtain from (2) and (6) recursions performing essen-
tially time averaging. They are, therefore, not directly suitable
for change detection (see [21] and [22]). They can, instead, be

used for testing if the hypotheses and hold for all values
of .

Theorem 2: Let in (2) and (6) the forgetting factor be in the
form , and let the assumptions A1), A2)
and A3) be satisfied, together with:

A4) is a nonincreasing sequence satisfying ,
; .

Then, for both and , .
Proof: Starting from (6) and (8) one obtains (10). Conse-

quently, in the case of time varying gains,

(24)

where for and for
.

Similarly as in (17),

(25)

where
...

...
... .

Proceeding like in the proof of Theorem 1, we obtain

(26)
Using standard results from the theory of stochastic approxi-
mation, we conclude that ,
where and are positive-constants [36]. Therefore, it is pos-
sible to apply the Kronecker’s lemma (see, e.g., [36]), and to
conclude using A4) that

(27)

An analogous reasoning can be applied to the term
in (18).

The result of Theorem 2 can be applied, obviously, to the
special case when , which was treated in [21], [22],
under the additional assumption that ,
that the consensus matrix is symmetric and that the sequences

, are mutually independent and i.i.d..
Corollary 1: Under the assumptions of Theorem 2 and with

we have
Proof: For we have from (24) that

(28)

and the result immediately follows after applying Theorems 1
and 2.

Notice that

(29)

so that for and for .
Notice that, in general, both algorithms (2) and (6) can be

considered as stochastic approximation algorithms, e.g., [36],
so that the corresponding results from the literature may be ap-
plied. Stochastic approximation algorithms with consensus, rep-
resenting a generalization of (6) to the regression problem, have
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been analyzed in [20] and [25], starting from the basic results
presented in [8].

Remark 3: The proposed distributed detection scheme can
efficiently work also in the cases when some nodes do not have
access to measurements, i.e., when for some in-
dexes . Let be a diagonal matrix containing at the diag-
onal 0’s for the indexes for which and 1’s for the
remaining ones. Then, in (6) we have instead of ,
and the assumption A2) becomes consequently reformulated as

. In the case when A2) initially holds,
i.e., when the ideal centralized scheme is still taken as a refer-
ence, we have an increase of bias under hypothesis due to
nonavailability of measurements satisfying

.

IV. ERROR ANALYSIS: RANDOM CONSENSUS MATRICES

The results from the previous section will be generalized here
to time varying random consensus matrices. This case is of sub-
stantial importance from the point of view of applications of the
proposed algorithm in real sensor networks, since it can often
appear to be too restrictive and energy consuming to implement
all possible communications between the nodes simultaneously
at all discrete time instants. It is to be emphasized that the pre-
sented results will cover the randomized gossip algorithms con-
nected to asymmetric consensus matrices, including the case of
one directed communication at a time (only the case of sym-
metric consensus matrices requiring pairwise communications
has been treated in the literature, e.g., [21]–[23]), as well the in-
fluence of communication outages.

We shall assume in this section that the sequence
is a sequence of i.i.d. random matrices, independent of

the sequence , such that is realized at each discrete
time instant as with probability ,

, , so that we have

(30)

The realization matrices
, will be assumed to be constant nonnegative row sto-

chastic matrices, satisfying .
This setting obviously encompasses the asynchronous asym-

metric gossip algorithm with one message at a time: if the node
communicates to the node , the corresponding realization has

the form , where
is an matrix which contains zeros everywhere

except the th element, where it contains and the th
place where it contains , . Various types of syn-
chronous asymmetric gossip algorithms can also be represented
in this way by constructing the corresponding realizations
containing more nonzero off-diagonal elements located at ap-
propriate places. Communication faults can obviously be mod-
elled analogously, by forming realizations in accordance
with the faults (see, e.g., [19]). We are here not concerned with
concrete protocols for generating realizations : our conver-
gence analysis is applicable to any preselected technical setting
satisfying the adopted general model.

We shall analyze algorithm (6) starting from the following
assumptions:

B1) has the eigenvalue 1 with algebraic multiplicity 1;
B2) .
Assumptions B1) and B2) are analogous to assumptions A1)

and A2): in A1) and A2) is now replaced by . Assumption
B1) deals with the communication structure constraints, while
assumption B2) implies that the realization matrices of

, the corresponding probabilities and the weight vector
of (2) satisfy the relation

(31)

For the given sets and , (31) can be
solved for in the same way as (11). When is a priori given,
(31) becomes nonlinear in the unknown variables and .
Having now more degrees of freedom than in (11), a practical
procedure for solving (31) can consist of adopting one set of pa-
rameters (probabilities , for example) and solving the linear
programming problem for the remaining set of parameters (pa-
rameters in ), or vice versa [37]. Notice that in the case of
the asynchronous randomized gossip algorithm with one com-
munication at a time, is characterized by only one scalar
parameter; in general, is characterized by more parameters
satisfying the given constraints (see Section V for an example).

A. Constant Forgetting Factor

For the mean of , we obtain now directly from (10) that

(32)

where , which is analogous to (13).
The mean square error matrix is de-

composed as

(33)

where

(34)

and

(35)

with denoting the conditional expectation given the -al-
gebra generated by .

We obtain, in analogy with (15), that

(36)

where
...

...
... according to

(8) and

(37)

Theorem 3: Let assumptions B1), B2) and A3) hold. Then,
in the case of random consensus matrices,

(38)
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for all and both and , where are the elements of
, defined by (33), (36) and (37).
Proof: Proceeding like in the proof of Theorem 1, define

the quadratic form , where is given by (36).
As a consequence of the independence between and

, we use (20) directly and realize that we are concerned
here with the expression

(39)

where
; furthermore,

.
By adding and subtracting the term , one obtains

(40)

Furthermore,

, having in mind time invariance of the
distribution of .

Define the recursion

(41)

with ; obviously, .
Define also , with , as well

as , with ,
so that

(42)

From (41), we have further

(43)

Similarly,

(44)

and

(45)

Consequently,

(46)

The third term in the brackets at the right-hand side of (46)
can be directly analyzed using the arguments of the proof of
Theorem 1, having in mind B1) and B2). It can be, therefore,
directly concluded that its elements tend to zero exponentially
as .

The second term in the brackets has an eigenvalue at 1 of alge-
braic multiplicity 1, according to B1), and the remaining eigen-
values tend to zero as according to the assumed
properties of the diagonal terms in .

The first term in the brackets has also the property that it
has an eigenvalue at 1 of algebraic multiplicity 1, which can be

proved using the fact that this property holds if and only if the
graph associated with has a spanning tree [13].
Namely, the graph associated with is composed
of digraphs having the same structure as the graph associated
with ; these digraphs are interconnected in such a way that the
th digraph is connected with the th digraph if the th node is

connected with the th node according to the graph associated
with . These interconnections in the graph
associated with connect at least all nodes
of the th digraph with all nodes of the th digraph on the
one-to-one basis (according to an assumed ordering), having in
mind that the realizations have positive-diagonal elements
by assumption. Additional interconnection edges also exist in
accordance with the structure of . Consequently, it is easy
to conclude that the graph associated with also
possesses a spanning tree, and, therefore, has the eigenvalue at
1 with algebraic multiplicity 1. Modules of all the remaining
eigenvalues are strictly less than 1, having in mind that the di-
agonal elements of are positive.

Notice that in the limit, when , we have that
and ,

where and are nonnegative column vectors.
Therefore, coming back to (40), we obtain readily that

for all and .
Consequently,

(47)

for all , where .
The term can be analyzed analogously, starting

from (35). Using the fact that

(48)

we obtain, on the basis on the results related to , that
under

(49)

for all , where . Therefore, .
Hence, the result.

It is important to notice at this point that the result of Theorem
3, when compared to the result of Theorem 1, shows that ran-
domness of the network communications can cause an increase
of the mean square error with respect to the constant consensus
matrix case, as it could be expected. It is also intuitively clear
that its tracking capabilities can be deteriorated. Illustrations of
the efficiency of the resulting detector, which is still practically
very satisfactory, will be given in the next section.

B. Variable Forgetting Factor

The analysis of the algorithm in the case of random con-
sensus matrices and variable forgetting factor follows method-
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ologically the proof of Theorem 2 in Section III, using the re-
sults obtained in Theorem 3.

Theorem 4: Let in (2) and (6) the forgetting factor be in the
form , and let the assumptions B1), B2)
and A3) be satisfied, together with:

B3) is a nonincreasing sequence satisfying ,
and .

Then, for both and .
Proof: In the case of time varying forgetting factor, (24)

becomes

(50)
Proceeding like in the proof of Theorem 2, one obtains, after
using the results of Theorem 3, that

(51)

Having in mind that we have assumed by B3) that
, we can apply the Kronecker’s lemma

like in (26) and conclude that the expression at the right-hand
side of (51) tends to zero when . Analogously, one can
show that .

Corollary 2: Under the assumptions of Theorem 4 and with
we have .

Proof: In this case, we have from (50)

(52)

and the result immediately follows after applying the method-
ology of Theorems 3 and 4.

It is important to notice that in the case of time varying forget-
ting factor we still have convergence of the mean square error
to zero, after assuming that . Uncertainty in-
troduced by randomness of the consensus matrix influences the
rate of convergence, as it can be seen in Corollary 2 (compare
with Corollary 1).

Remark 4: In the general case of intermittent measurements,
we have in (6) instead of , where the sequence

can be modelled as an i.i.d. random sequence in which
is a diagonal binary matrix, such that

, where represent the probabilities
of getting measurements [19], [25]. Taking the corresponding
centralized scheme with intermittent measurements as a refer-
ence, we have, instead of B2), the condition

, which is equivalent to B2) when is nonsingular.
In the case when we take the ideal centralized scheme with
no missing measurements as a reference, we have an increase
of the bias due to intermittent measurements satisfying

(compare with Remark 1).

V. NUMERICAL EXAMPLES

Design of Consensus Matrices. In the case when the weight
vector in (2) is a priori selected according to Section II,
the design of the communication gains is based on either A2)
or B2). Assume that we have 10 nodes and that

. Assuming that the consensus matrix is constant, we can
solve (11) after fixing zero elements of at nonsymmetric ran-
domly selected places, and we obtain

The case of random consensus matrices is more complex.
In order to demonstrate the methodology, consider a fully con-
nected sensor network with 3 nodes, with the asymmetric
asynchronous gossip algorithm with one communication at a
time. Then, there are possible realization matrices of

: , , ,
, , and

(see the introduction of Section IV). Consequently, one obtains
that

(53)

We have now two main practical options for getting a solution
to the problem (31):

a) to adopt values of the probabilities (e.g.,
) and to solve (31) for the remaining set of pa-

rameters;
b) to adopt values of the elements of , i.e., the set of

parameters (e.g., ), and to solve (31) for the
probabilities .

Coming back to the above network with , we obtain
for the gossip algorithm with one communication at a time and
using the methodology b) with , that

One can easily verify that and that the
sum of all nondiagonal elements is equal to 0.5.

In both presented examples the columns of have equal el-
ements (excluding the diagonal ones); this has been adopted as
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Fig. 1. Estimated mean values � one standard deviation of one row of
������� � � �����; components of the weight vector � are represented by
circles.

Fig. 2. Mean square error: constant consensus matrices (top), random con-
sensus matrices (bottom); constant � (solid line), ���� � �� (dashed line).

an additional constraint in the linear programming problem, for
the sake of practical convenience.

As an illustration of the convergence properties of the algo-
rithm, the products have been
calculated using 5000 Monte Carlo runs. Fig. 1 shows that the
obtained mean value of any of the rows of matches
the weight vector ; the standard deviation decreases when the
number of agents communicating simultaneously increases.

Distance From the Centralized Statistics. In order to get an
insight into the relationship between the performance of the pro-
posed algorithm and the performance of the centralized scheme
(2), a sensor network with has been simulated, adopting
model (3); a diagonal covariance matrix has been assumed, with
diagonal elements , randomly taken from
the interval . Consensus matrices for both constant and
time varying cases have been designed as described above. In
Fig. 2 the mean square error between the decision function gen-
erated by the centralized algorithm (2) and those generated by
different versions the proposed algorithm (6) is calculated using
1000 Monte Carlo runs as a function of: 1) at
(according to Theorem 1), 2) (according to Theorem 2, with

), 3) at (according to Theorem

Fig. 3. Means � one standard deviation for decision functions of one node:
centralized strategy (dashed lines), proposed algorithm (solid lines); constant
consensus matrices (top), random consensus matrices (middle), no consensus
(bottom).

3), and 4) (according to Theorem 4, with ).
The results of the theorems are clearly justified, since all the ob-
tained curves are approximately linear.

Detection Quality. As an illustration of the typical perfor-
mance of the proposed detector, in Fig. 3 the mean one stan-
dard deviation is presented for decision functions generated by
one node of the network described in the previous example,
using: a) constant consensus matrix, b) random consensus ma-
trix (gossip algorithm with one communication at a time) and c)
zero communication gains (completely decentralized scheme);
the centralized decision function (2) is represented by dashed
lines (1000 realizations have been used). The mean vector has
been changed at from to , where

, have been randomly taken from the interval
(see Section II). The proposed algorithm is very close to

the centralized scheme in the case of the constant consensus ma-
trix. Random consensus matrices introduce an additional uncer-
tainty; however, the algorithm still remains efficient after using
an appropriate threshold. The completely decentralized scheme
using independent local detectors provides the worst quality, as
expected. Fig. 4 shows the mean one standard deviation for
decision functions analogous to those from Fig. 3 for the case
of intermittent measurements; the values of the probabilities of
getting measurements are set to . It can be
seen that the performance of the algorithm is satisfactory even
in this case of significant percentage of missing measurements,
with an expected increase of the detection delay.

Detection quality is expressed numerically in Table I using
steady state deflections (output signal-to-noise ratios), calcu-
lated for all the nodes according to

(54)

(see [30]). It is possible to observe that the proposed algorithm
provides a great overall improvement of detection quality with
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Fig. 4. Means � one standard deviation for decision functions of one node
for 50% measurements missing: centralized strategy (dashed lines), proposed
algorithm (solid lines); constant consensus matrices (top), random consensus
matrices (middle), no consensus (bottom).

TABLE I
DEFLECTIONS FOR DIFFERENT NODES IN THE NETWORK

respect to the decentralized case: average deflections are larger.
Deflections are larger for all the nodes of the network when is
close to one. In the case of constant consensus matrices detec-
tion quality is close to the one for the centralized scheme. Ob-
serve that deflections vary from node to node, having in mind
large dispersion in the local means and variances. In order to
show that we have such an agreement between the nodes which
enables selection of one common detection threshold (as ex-
posed in Section II), we give in Fig. 5 the corresponding families
of the decision function means, computed for all the nodes. The
desired behavior is obvious, especially for the higher value of .

Fig. 5. Means of decision functions for all the nodes: constant consensus ma-
trices (top), random consensus matrices (middle), no consensus (bottom).

Fig. 6. Histograms of change detection instants: centralized decision function
(top), constant consensus matrices (middle) and random consensus matrices
(bottom).

Estimation of the instant of change. Theoretical treatment of
the estimation of the instant of change (like in, e.g., [5]) has
been out of the scope of the paper. However, numerous simula-
tions have been undertaken in order to clarify properties of the
proposed algorithm in this respect. Adopting the first crossing of
the threshold (for the model (3)) as the estimate
of the instant of change, in Fig. 6 histograms (using 1000 real-
izations) giving relative frequencies of obtaining concrete time
instants are represented for: a) the centralized decision function
(top), b) constant consensus gains (middle) and c) asymmetric
asynchronous gossip algorithm (bottom); the real moment of
change was . It can be seen that the false alarms are
considerable only in the case of and random consensus
gains. Stopping rules based on testing at several consecutive
time instants can lead to more robust solutions [31].

Further, efficiency of the algorithm is analyzed in the case
of random consensus gains by calculating both the mean delay
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Fig. 7. Mean delay in change detection (left, top), mean time between false
alarms (left, bottom) and their ratio (right) for one node in the case of random
consensus gains.

in change time estimation and the mean time between false
alarms . Fig. 7 shows , and as functions of (left),
for one selected node. In practice, one has to find a good com-
promise between and .

VI. CONCLUSION

In this paper a novel method for distributed change detec-
tion in sensor networks based on a consensus algorithm is pro-
posed. The method is based on a combination of local geometric
moving average control charts and a first order linear consensus
scheme containing either constant or time varying random com-
munication gains. The algorithm does not require any fusion
center: under appropriate conditions, the state of any node in
the network can be tested in real time with respect to a common
threshold. A detailed analysis of the algorithm is done separately
for constant and random consensus gains, assuming spatially
and temporally correlated data. The analysis is focused on the
mean square error between the state of the global centralized
detector and the states of the nodes in the network generated
by the proposed algorithm. It is proved, in the case of constant
forgetting factor in the underlying recursions, that the mean
square error satisfies for constant consensus gains,
and for time varying random consensus gains, en-
compassing the asynchronous asymmetric ”gossip” algorithms
and communication faults. It is also proved that, in the case of
time varying forgetting factors tending to 1 when tends to in-
finity, the mean square error tends to zero. In the special case
when the forgetting factor behaves like , the mean square
error is asymptotically bounded by in the case of con-
stant consensus gains, and by in the case of random con-
sensus gains. The case of missing measurements has also been
discussed. Numerical examples cover several characteristic as-
pects of the algorithm and its applications, including the design
of consensus matrices and an analysis of the estimate of the in-
stant of change. Detection quality expressed using deflection
demonstrates that the proposed method can represent an effi-
cient tool for practice.

Further development of the adopted approach to distributed
change detection can immediately lead to consensus based re-
cursive detection schemes derived from the generalized likeli-
hood ratio methodology (see, e.g., [31]), in the case of unknown
jumps of either the mean value or the variance of the observed

process. The proposed algorithm can also be directly applied in
decentralized fault detection and isolation (FDI) schemes at the
stage of residual evaluation.
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