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Abstract—In this paper, we consider the problem of sensor fu-
sion over networks with asymmetric links, where the common goal
is linear parameter estimation. For the scenario of bandwidth-
constrained networks, existing literature shows that nonvanishing
errors always occur, which depend on the quantization scheme.
To tackle this challenging issue, we introduce the notion of vir-
tual measurements and propose a distributed solution LS-DSFS,
which is a combination of a quantized consensus algorithm and
the least squares approach. We provide detailed analysis of the
LS-DSFS on its performance in terms of unbiasedness and mean
square property. Analytical results show that the LS-DSFS is ef-
fective in smearing out the quantization errors, and achieving the
minimum mean square error (MSE) among the existing central-
ized and distributed algorithms. Moreover, we characterize its rate
of convergence in the mean square sense and that of the mean se-
quence. More importantly, we find that the LS-DSFS outperforms
the centralized approaches within a moderate number of itera-
tions in terms of MSE, and will always consume less energy and
achieve more balanced energy expenditure as the number of nodes
in the network grows. Simulation results are presented to validate
theoretical findings and highlight the improvements over existing
algorithms.

Index Terms—Distributed sensor fusion, bandwidth-
constrained network, asymmetric links, least squares approach.

I. INTRODUCTION

R ECENT advances in sensing and wireless technologies
have enabled rapid development of distributed sensor net-

works and their wide applications both in military and civil ar-
eas. A key feature of such distributed networks is that high-level
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tasks, e.g., decentralized inference and tracking and in-network
computing, can be accomplished collaboratively by nodes even
though each of them is resource limited [1]–[4]. For instance,
in a typical sensor fusion problem in a network with n homo-
geneous nodes, each node makes a snapshot observation of an
unknown parameter θ ∈ R,1 which is a noisy version given by

yi = θ + ωi, i = 1, 2, . . . , n, (1)

where ωi are zero mean, i.i.d. random noises with variance σ2 .
These data are either transmitted to a fusion center (FC) or shared
among nodes for reliable and efficient processing. We know
that the ideal sample mean estimate (ISME) θ̂ � (1/n)

∑n
i=1 yi

achieves the minimum mean square error (MSE) among all
linear estimates, which is the best in the sense of Cramér-Rao
lower bound (CRLB) if the noises are Gaussian [6]. It is worth
mentioning that θ̂ can be ensured only if all the samples are
collected at a FC ideally without any distortion.

One critical aspect of distributed sensor networks is that band-
width is limited and nodes usually have bounded energy re-
sources. To reduce the bandwidth requirement between nodes,
quantization at the node side is one necessary and efficient way.
In this case, estimator at the FC can only be formed based on
the quantized versions of {yi}ni=1 . Its performance will thus be
degraded with respect to θ̂. For instance, consider the scenario
that nodes can transmit the quantized data directly to the FC
once per data, i.e., single hop mode of communication. It was
shown that the mean square error could be increased by a factor
of (1 + Δ/(2σ))2 for the uniform quantizer [7], where Δ is the
quantization step-size, and a factor of 2 for the probabilistic
quantizer [8].

As a robust alternative, distributed information processing
techniques have received much attention due to their scalabil-
ity with respect to network size and robustness to node failure,
where nodes have access to only local information and per-
form local computation to achieve the global goal collabora-
tively [9], [10]. Consensus strategy is one of these techniques
that efficiently solve the problem of distributed sensor fusion
in the presence of infinite bandwidth. However, when consen-
sus meets quantization, the behavior of the system is too com-
plex to analyze exactly. For instance, in [12], it showed that
either a finite-time convergence or a cyclic behavior oscillating
around θ̂ was identified for the truncation and uniform quantiz-
ers, which depends on the initial conditions. This phenomenon
was also found in [11], where an ADMM strategy was devel-
oped to solve the consensus problem using finite-bit bounded

1The algorithm and analysis developed in this paper can be easily extended to
deal with the vector case θ with the linear measurement model yi = Ciθ + ωi .
The tweak is to introduce a second consensus algorithm as in [5].
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quantizer with possibly unbounded data. Ref. [13] showed that
the states achieve consensus in finite time with the truncation
quantizer, but a non-vanishing error between the ideal θ̂ and
the final state exists, which is a function of the quantization
resolution. For a general bounded quantizer, similar behaviors
were also observed in [15], where a stochastic approximation
method was used to ensure its asymptotic convergence. In [14],
the probabilistic quantizer was adopted to ensure almost sure
consensus at a random quantization level for fixed undirected
graphs, whose expectation equals θ̂. However, the deviation
of the consensus value from θ̂ is not tightly bounded. Carli
et al. in [16] elaborated on the impact of updating rules on the
performance of gossip algorithms for the uniform and proba-
bilistic quantizers, revealing that convergence can only be guar-
anteed up to a neighborhood around the ideal θ̂. Similar phenom-
ena were also observed for the logarithmic quantizer [17] and
the additive quantization model [18], where the errors between
the state and θ̂ are upper bounded by quantities depending on
the quantization resolution and initial conditions. A workaround
was proposed in [19], where it added dither to the nodes’ data
before quantization and adopted decaying link weights satisfy-
ing the persistence condition to suppress the quantization noises.
The mean square error can be made arbitrarily small by tuning
these weights, which, however, would significantly slow down
the convergence of the algorithm. We emphasize that all the
above works can produce estimates with acceptable accuracy
only for rather high resolutions. Another way to solve the prob-
lem of distributed sensor fusion is to formulate it within the
consensus+innovation framework as in [20], which mimics al-
gorithms for continuous observations by combining two time
scales in one step as in [21], [22]. Convergence to θ̂ can be es-
tablished in the case of infinite bandwidth by using techniques
from stochastic approximation. However, such formulation can-
not handle the situation with quantized transmissions.

In summary, previous work (both centralized and distributed
approaches) always assumed that the achievable precision would
have been in the order of the quantization step. In [23], [24], a
complicated dynamic quantizer was proposed to show that the
ideal θ̂ can be achieved asymptotically. Of particular note is
that each node needs n decoders at the worst case, which is ob-
viously resource prohibited. Furthermore, they assume bidirec-
tional communications between nodes for theoretical simplicity.
This is quite rare in practice since nodes typically broadcast at
different power levels and have different interference and noise
patterns. We emphasize that all these algorithms will fail when
applied to networks with asymmetric links. In particular, it was
shown in [25] that if the states are integer-valued then nodes can
only achieve an integer approximation of θ̂ for uniform quan-
tizer over gossip asymmetric networks. Even if the dynamic
quantizer [23] was adopted, there is no way to eliminate the
bias introduced into θ̂, which is intrinsic imposed by the net-
work topology [26]. In our previous work [27], we proposed a
two-stage distributed algorithm to tackle the directed nature of
communication links coupled with quantization residues, which
can achieve θ̂ both in the mean square and almost sure senses.
Extension to additive quantization model can be found in [28].

In this paper, we aim to address the above challenging issues.
Specifically, we give a positive answer to the following question:
given a certain quantization, how precise can the sensor fusion
be? We gave a partial answer to this question in the previously

published conference paper [29]. The main contributions of the
paper are summarized as follows:

� Firstly, we characterize the quantization error as additive
noise and exploit its temporal properties to propose a base-
line distributed quantized algorithm to accommodate the
constraints imposed by asymmetric links. We then intro-
duce the notion of virtual measurements to describe the
impact of quantization noise. By fusing all the virtual mea-
surements, we propose the distributed solution, termed as
LS-DSFS, which is a combination of the quantized con-
sensus algorithm and the least squares approach. Numeri-
cally, LS-DSFS is shown to have the ability of mitigating
the effect of quantization and achieve the minimum MSE
among prevailing centralized and distributed algorithms,
e.g., [7], [8], [12], [14], [16], [17], [24] (see Section III
and Table I). More importantly, we find that LS-DSFS will
always consume less energy and achieve more balanced
energy expenditure than the centralized approaches as the
number of nodes in the network grows.

� Secondly, we give a detailed analysis of the proposed LS-
DSFS for generic conditions. Convergence results of the
mean sequence as well as its mean square property are pro-
vided. Furthermore, we present the rate at which LS-DSFS
converges to quantify its convergence time theoretically.
In particular, for the special case of running average esti-
mate, we can establish its rate of almost sure convergence
by resorting to a law of iterated logarithm for independent
random vectors. The involved arguments adopt decaying
step-size as is common in the literature to suppress the
propagation of noise over networks. Unlike those in [19],
[21], [30] demanding the square-summable property, we
only require them to be non-summable (see Sections III
and IV).

The structure of the paper is as follows: Section II intro-
duces the network model and our distributed quantized algo-
rithm for asymmetric networks. In Section III, we describe the
proposed LS-DSFS and summarize the main theoretical results.
Section IV is devoted to the detailed performance analysis of
LS-DSFS. Simulation results evaluating the performance of LS-
DSFS and validating the theoretical findings are provided in
Section VI, followed by the conclusions in Section VII.

II. PROBLEM FORMULATION

In this section, we present the network model and the baseline
distributed algorithm that are adopted in subsequent analysis.

Network model: Consider a sensor network where nodes are
linked with their one-hop neighbors via asymmetric links. We
model the communication network over which nodes exchange
data as a directed graph G = (V, E), where V = {1, 2, . . . , n}
is the set of nodes, E ⊂ V × V denotes all the asymmetric links
between nodes. Each edge (j, i) ∈ E represents an unidirec-
tional link meaning that node i can receive data from node j.
In order to avoid any isolated nodes, we assume that graph G is
strongly connected, i.e., each node i can reach any other node
via a directed path (possibly multi-hop).

We define A = [aij ]n×n as the 0-1 adjacency matrix, where
aij = 1 ⇔ (j, i) ∈ E . Let N+

i � {j : aij = 1} and N−
i � {j :

aji = 1} as the in-neighbors and out-neighbors of node i, re-
spectively. Accordingly, d+

i =
∑n

j=1 aij and d−i =
∑n

i=1 aji
are called its in-degree and out-degree, respectively.
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Quantization scheme: Due to bandwidth limitations, each
node needs to quantize its data using a quantizer q(·) : R → S =
{kΔ, k ∈ Z} before transmitting to its neighbors at each step.
Widely used quantizers in the literature includes the uniform,
truncation, rounding and probabilistic quantizers, etc [8], [12],
[14], [16]. We represent the quantized message of data xi at
node i as

q(xi) = xi + wi with |wi | ≤ Δ,∀i = 1, 2, . . . , n, (2)

where wi is the quantization error, and Δ is the quantization
step-size. In this paper, we propose to characterize wi as an ad-
ditive quantization noise with zero mean and bounded variance.
One example of the schemes possessing these properties is the
probabilistic quantizer [8], [14], [16], [19], [27], [31]

q(x) =

{⌈
x
Δ

⌉
Δ, with probability px,Δ ,

⌊
x
Δ

⌋
Δ, with probability 1 − px,Δ ,

(3)

where px,Δ = x/Δ − �x/Δ	, �·	 and 
·� denote the floor and
ceiling functions, respectively. In fact, it can be shown that
E{wi} = 0 and E

{
w2
i

}
≤ Δ2/4.

Distributed quantized algorithm: In order to tackle the effect
of quantization coupled with asymmetric links, we propose to
use the following algorithm as the basis of our distributed sensor
fusion algorithm.

1) Initialization: Each node i randomly take an initial value
xi(0), and set si(0) = 0, ∀i = 1, 2, . . . , n.

2) Updates: Each node i updates its states upon receiving data
from its in-neighbors,

xi(t+ 1) = xi(t) − αd+
i q(xi(t)) + α

∑

j∈N+
i

q(xj (t)) + βsi(t),

(4)
si(t+ 1) = (1 − β)si(t) − α

[
d−i q(si(t)) − d+

i q(xi(t))
]

+ α
∑

j∈N+
i

[
q(sj (t)) − q(xj (t))

]
, (5)

where α < 1/maxi d+
i and β > 0 is a tuning parameter.

In the algorithm, each node i keeps track of the state xi(t)
along with si(t) to locally record the state changes. Of special
note is the companion variable si(t) in (4), which is incorporated
to compensate for the unidirectional effects of communication
links. This is motivated by [32]. Besides the companion vari-
able, we use both the exact and quantized information about their
own states, namely, xi(t), si(t) and q(xi(t)), q(si(t)), in (4) and
(5). To give an intuitive illustration behind these endeavors, we
note that quantized consensus algorithm preserve the initial av-
erage, i.e.,

∑n
i=1(xi(t) + si(t)) =

∑n
i=1 xi(0), ∀t > 0, which

is essential for standard average consensus algorithms. Further,
we remark that the information of out-degree d+

i is necessary
for distributed information processing over asymmetric net-
works [33].

It is worthy to note that such endeavors only work to some
extent in that the quantization operation q(·), on the other hand,
prevents the states of (4) and (5) from converging. We simu-
late the algorithm in a simple ring network with n = 4 nodes,
see Fig. 1. For one specific realization, it can be seen that fluc-
tuating behaviors of xi(t), ∀i = 1, 2, . . . , n are observed with
non-vanishing errors. This demonstrates that simply taking the
states {xi(t)}ni=1 of (4) as estimates of θ does not work in the
presence of quantized transmissions.

Fig. 1. States of (4) over a directed ring graph with n = 4 and Δ = 1.

Our goal in this paper are the following: (i) design an ap-
propriate form of estimator to mitigate the quantization effects
in (4) and (5) such that the ideal centralized estimate θ̂ can be
achieved at each node; and, (ii) provide rigorous convergence
analysis and characterize its rate of convergence. We achieve
this by adopting a least squares approach. With this approach,
the randomness incurred by quantization errors will be mitigated
gradually and finally smeared out.

To facilitate the ensuing analysis, we will be using the fol-
lowing assumptions:

(a-1) The initial values xi(0), i = 1, 2, . . . , n are random
variables with bounded variance (not necessarily in-
dependent of each other).

(a-2) The quantization error is temporally uncorre-
lated with zero mean and auto-covariance matrix
E{w(t)w(t)T } = Wt , and is also uncorrelated with
the input messages at each step and node.2

III. MITIGATING THE QUANTIZATION EFFECT: A LEAST

SQUARES FORMULATION

In this section, we will propose a novel least squares approach
to smear out the quantization errors collected from the iterative
process (4) and (5), based on which our distributed sensor fusion
scheme is proposed.

Our main idea is motivated by the following result.
Lemma 1: Consider the distributed quantized consensus al-

gorithm defined by (4) and (5) under the quantization scheme
(2), and assume that G is strongly connected. Then, under
Assumption (a-2), xi(t) converges in expected value to the av-
erage x̄(0) � 1T x(0)/n, ∀i, for sufficiently small β > 0.

Proof: For each node i = 1, 2, . . . , n, write the quantized
message of xi(t) and si(t) as q(xi(t)) = xi(t) + ui(t) and
q(si(t)) = si(t) + vi(t), where ui(t), vi(t) represent the quan-
tization errors, respectively. Stack xi(t), si(t), ui(t) and vi(t)
into column vectors x(t), s(t), v(t), respectively, and let
z(t) = [x(t)T , s(t)T ]T , w(t) = [u(t)T ,v(t)T ]T , we can ex-
press (4) and (5) in a compact form

z(t+ 1) = Pz(t) + αLaugw(t) (6)

where

P �
[
I − αL βI
αL (1 − β)I − αL−

]

,Laug �
[
−L 0
L −L−

]

,

2In [34], Sripad et al. established sufficient conditions to enable such as-
sumption for scalar quantization noise. Particularly, if the joint characteristic
function of the input message is band-limited with the upper bound 2π/Δ, then
Assumption (a-2) is satisfied. In practice, the characteristic functions are not
exactly band-limited and the above assumption holds valid in an approximate
sense. Under sufficiently large quantization rates, however, such an assump-
tion closely reflects the actual system behavior. On the other hand, introducing
dithering to the system can also lead to independent quantization errors, if the
Schuchman conditions are satisfied [14], [19], [35].
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Fig. 2. A schematic view of the least squares formulation for the case xi (0) =
yi , ∀i = 1, 2, . . . , n.

L � diag{d+
1 , . . . , d

+
n } − A and L− � diag{d−1 , . . . , d−n } −

A. By Assumption (a-2), we know that E{u(t)} = E{v(t)} =
0. One thus obtains E {z(t+ 1)} = PE {z(t)}, where the ex-
pectation E{z(t)} is taken over the initial condition x(0) and
quantization noises {w(τ)}t−1

τ=0 . Applying [32, Theorem 4]
to the above recursion shows that for small β > 0,
limt→∞ E{x(t) − x̄(0)1} = 0, and limt→∞ E{s(t)} = 0, from
which the lemma follows. �

Lemma 1 states that xi(t) at each node i does converge to
E{x̄(0)} in mean, although its realizations have a fluctuating
behavior as observed in Fig. 1. This motivates us to express the
state xi(t) as

xi(t) = E{x̄(0)} + noisei(t), ∀i = 1, 2, . . . , n, (7)

where noisei(t) is the error capturing the fluctuation of xi(t)
from E{x̄(0)}. In this way, we may regard xi(t) as a virtual
measurement of E{x̄(0)} corrupted by noisei(t) for node i.

Our objective is then to find an optimal estimator of E{x̄(0)}
for each node i by fusing the virtual measurement {xi(t)}ni=1 .
It is noted, however, that the expression (7) makes the precise
statistical characterization of noisei(t) hard to obtain except
the fact that asymptotically E{noisei(t)} tends to 0 as t→ ∞.
A natural idea is to adopt the least squares approach, which is
effective to handle the situation where the distributional knowl-
edge of noisei(t) is unavailable [6]. Although no optimality can
be ensured, the least squares approach is widely used in practice
due to its ease of implementation.

A. The Algorithm: LS-DSFS

Each node i stores the virtual measurements {xi(0),
xi(1), xi(2), . . . , xi(t)} up to time t, and does the batch least
squares estimation by minimizing the cost function

Ji(t) = min
x̂∈R

t∑

s=0

bs,i(xi(s) − x̂)2 , (8)

where {bs,i}ts=0 are weighting factors that emphasize the
contributions of the historical data {xi(s)}ts=0 (see Fig. 2).
As a standard procedure, the above batch processing can be
sequentially done in the following way

x̂i(t+ 1) = x̂i(t) + γt,i
[
xi(t+ 1) − x̂i(t)

]
, (9)

where γt,i > 0 is the gain factor determined by {bs,i}ts=0 .
In the above framework of least squares formulation, the post-

processed x̂i(t) of (9), rather than the state xi(t) of (4), is taken
as the estimate of E{x̄(0)} at node i. We summarize the pro-
posed Least Squares based Distributed Sensor Fusion Scheme
(LS-DSFS) for asymmetric bandwidth-constrained sensor net-
works in Algorithm 1, where its t-th iteration run by node i is
presented.

We discuss the communication cost of LS-DSFS. At each
iteration t, each node i transmits xi(t) and si(t) to its neighbors,
resulting in 2|E| total number of such transmissions across the
entire network. As for the memory burden, each node only needs

Algorithm 1: LS-DSFS at node i.

Input: α, β, d−i , γt,i .
Output: x̂i .

1: Initialization: arbitrary xi(0), si(0) = 0, and
x̂i(0) = xi(0).

2: Quantize the data {xi(t), si(t)} using the probabilistic
quantizer (3).

3: Receive data from the in-neighbors: q(xj (t)), q(sj (t)),
j ∈ N+

i .
4: Run the quantized consensus algorithm (4) and (5) to

update the intermediate states {xi(t), si(t)}.
5: Update the least squares estimate x̂i(t) by processing

the virtual measurements {xi(s)}ts=0 sequentially
via (9).

to store 3 quantities at each iteration, namely, xi(t), si(t) and
x̂i(t). As such, LS-DSFS is scalable with respect to network
size.

We also remark that particularly by letting its measurement
yi in (1) as the initial guess of the unknown θ for each node
i, i.e., xi(0) = yi , ∀i = 1, 2, . . . , n, we then have θ̂ = x̄(0).
In this way, the aforementioned distributed sensor fusion prob-
lem can be exactly solved by LS-DSFS.

B. Main Results

Our first result demonstrates the correctness of the least
squares method in smearing out the quantization noises for
arbitrary gain factors {γt,i}t≥0,1≤i≤n so long as they are non-
summable and the relative maximum discrepancy is bounded.

Theorem 1: Consider LS-DSFS in Algorithm 1 and assume
that G is strongly connected. Suppose the following conditions
hold:

(c-1) The sequence of gain factors {γt,i}t≥0,1≤i≤n are in the
interval (0, 1] satisfying

∑∞
t=0 γt,i = ∞, ∀i;

(c-2) There are two positive sequences {δt}t≥0 and {Γt}t≥0
such that δt ≤ γt,i ≤ Γt and Γt ≤ κδt , ∀i, ∀t, for some
constant κ ≥ 1;

then under Assumptions (a-1) and (a-2), for sufficiently small
β > 0,

lim
t→∞

E{x̂(t) − x̄(0)1} = 0,

where the expectation is taken over the initial condition x(0)
and quantization noises {w(τ)}t−1

τ=0 . If further,
(c-3) limt→∞ γt,i = 0, ∀i, then LS-DSFS also has the fol-

lowing mean square property:

lim
t→∞

E{‖x̂(t) − x̄(0)1‖2} = 0.

It is worth noting that the requirements (c-1) and (c-2) im-
posed on the gain factors {γt,i} embrace the constant case
γt,i ≡ ci ∈ (0, 1], ∀t ≥ 0, as a special case. Moreover, we re-
mark that both (c-1) and (c-3) are necessary to ensure the unbi-
asedness and mean square properties in Theorem 1.

� Necessity of (c-1): We use a contradiction argu-
ment. If

∑∞
t=0 γt,i∗ <∞, for some i∗, let exi∗(t) �

xi∗(t) − x̄(0) and êxi∗(t) � x̂i∗(t) − x̄(0), it then fol-
lows from (9) that |E{êxi∗(t+ 1)}| ≤ |E{êxi∗(0)}| +∑∞

t=1 γt−1,i∗ |E{exi∗(t)}|, which together with Lemma 1
implies that both |E{exi∗(t)}| and |E{êxi∗(t)}| are bounded.
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On the other hand, one can obtain

|E{êxi∗(t+ 1)}|

≥ |E{êxi∗(0)}| −
∞∑

t=0

γt,i∗
[
|E{êxi∗(t)}| + |E{exi∗(t+ 1)}|

]

= (1 − γ0,i∗)|E{êxi∗(0)}|

−
∞∑

t=1

[
γt,i∗ |E{êxi∗(t)}|+ γt−1,i∗ |E{exi∗(t)}|

]
> 0,

if the initial guess E{x̂i∗(0)} is far from reliable. Hence,
E{x̂i∗(t)} will never converge to E{x̄(0)} in this case.
And so does E{(x̂i∗(t) − x̄(0))2} by recalling the fact that
|E{êxi (t)}|2 ≤ E{|êxi (t)|2}, ∀t, i, in view of the Hölder
inequality [36, p.129]. This shows the necessity of (c-1).

� Necessity of (c-3): Suppose that lim inf t→∞ γt,i = γ∗ >
0, then by the Hölder inequality, we derive from (9)
that E{êxi (t+ 1)2} ≥

(
γt,i
√

E{exi (t+ 1)2} − (1 − γt,i)√
E{êxi (t)2}

)2
. Using the properties of lim sup and

lim inf , in particular, lim supt→∞(−γt,i) = − lim inf t→∞
γt,i and

lim sup
t→∞

√
E{exi (t)2} =

√
lim sup
t→∞

E{exi (t)2},

the above relation yields

γ∗
√

lim sup
t→∞

E{exi (t)2} ≤ (2 − γ∗)
√

lim sup
t→∞

E{êxi (t)2}.

In general, we have lim supt→∞ E{exi (t)2} > 0 by taking
Lemma 5 into consideration (see also Fig. 1 for an illus-
tration). As a result, it is necessary to use decaying gain
factors satisfying (c-3) in order to have the desired mean
square performance of LS-DSFS.

The choice of the parameter β depends on the network struc-
ture and the number of nodes. Such a requirement when bound-
ing some parameters in consensus algorithms can also be found
in [10], [23]. A theoretical upper bound of β is established in
[32] using matrix perturbation theory. This upper bound, how-
ever, is quite conservative, observed from the simulation results
in Section VI.

Our second result presents the convergence rate result of LS-
DSFS by establishing the rate at which x̂(t) converges to x̄(0)1
in mean and mean squares senses. The theorem formally makes
use of the matrix Q � P − P∞ that captures the coefficient
matrix of the error dynamics [x(t)T , s(t)T ]T − [x̄(0)1T ,0]T ,

where P∞ � [ 11T /n 11T /n
0 0 ].

Theorem 2: Suppose that all the assumptions of Theorem 1
hold. Then we have

‖E{x̂(t) − x̄(0)1}‖

≤

⎧
⎪⎪⎨

⎪⎪⎩

O
(
tnρtQ

)
, 1 − ρQ < inf t δt ≤ 1,

O
(
e−

∑ t−1
s= 0 δs

)
, 0 < supt δt < 1 − ρQ ,

O
(
tne−

∑ t−1
s= 0 δs

)
, 0 < inf t δt ≤ supt δt = 1 − ρQ ,

where ρQ is the spectral radius of Q. Let γt,i = ai/(t+ 1)τi ,
where ai > 0, 0 ≤ τi ≤ 1, ∀t, i, with maxi τi < 2mini τi <
mini ai + 1, then for small β > 0,

E{‖x̂(t) − x̄(0)1‖2} ≤ O
(
1/t2τ−τ̄

)
,

where τ = mini τi and τ̄ = maxi τi .
We remark that for the constant gain factor γt,i ≡ ci , ∀t,

Theorem 2 provides a complete characterization of the
rate of convergence of E{x̂(t)}. Noting, further, that
limt→∞ tnρtQ/r

t = 0, for any constant r > ρQ , it actually
shows the exponential convergence of E{x̂(t) − x̄(0)1} in this
case. As for the mean square analysis, we take the gain factor
which decays as γt,i ∼ t−τi , ∀i, in order to get a convergence
rate result. Such choice is popular in stochastic approximation
methods [30]. Theorem 2 then implies that for such kinds of gain
factors LS-DSFS converges at a rate of O(1/t2τ−τ̄ ). Moreover,
it is not surprising that the value of the rate coefficient depends
on the network structure and the quantization scheme, whose
explicit expression will be given in Section IV.

C. Comparison With Centralized Approaches

In this section, we will illustrate the efficiency of the least
squares method in solving the sensor fusion problem by compar-
ing LS-DSFS with centralized approaches. To this end, let xi(0)
be the measurement yi in (1) for each node, i.e., xi(0) = yi , ∀i.
Then one has

E{x̄(0)} =
1
n

n∑

i=1

E{yi} = θ,

since ωi , i = 1, 2, . . . , n, are zero mean. Then, under
Assumption 2, we apply Theorem 1 to conclude that x̂(t) of
LS-DSFS is asymptotically unbiased with the rate of conver-
gence

‖E{x̂(t)} − θ1‖ ≤ O
(
e−

∑ t−1
s= 0 δs

)
.

For comparison, we choose the prevailing quantized sam-
ple mean estimate (QSME) [7], the decentralized estimation
scheme (DES) [8] and the ISME as the centralized bench-
marks. The performances in terms of mean square error MSE =
E
{
(estimate − θ)2

}
are provided in Table I. As noted, there

are always degradation in the performance of QSME and DES
with respect to ISME θ̂ due to quantization, and the level of
degradation generally depends on the magnitude of quantiza-
tion step-size Δ and measurement noise variance σ2 .

Now consider the performance of the proposed LS-DSFS,
for each i, denote MSEi(θ) = E{(x̂i(t) − θ)2}, where the ex-
pectation is taken over the measurement noise ωi, 1 ≤ i ≤
n and quantization noises {wi(t), 1 ≤ i ≤ n}tτ=0 , and ω̄ =
(1/n)

∑n
i=1 ωi , respectively. We then obtain from (1) that

MSEi(θ̂) = MSEi(θ) + E
{
ω̄2}− 2E {(x̂i(t) − θ)ω̄}

(a)
≥ MSEi(θ) + E

{
ω̄2}− 2

√
MSEi(θ)E {ω̄2}

(b)
= MSEi(θ) +

σ2

n
− 2σ√

n

√
MSEi(θ),

where (a) follows from the Hölder inequality [36, p.129], and
(b) is due to the facts that {ωi}ni=1 are i.i.d. and E

{
ω̄2
}

=
1/n2 ∑n

i=1 E{ω2
i } = σ2/n. It thus follows that

(√
MSEi(θ) −

σ/
√
n
)2 ≤ MSEi(θ̂). Applying Theorem 1 to the above relation

yields limt→∞ MSEi(θ) = σ 2

n , ∀i. This means that the proposed
LS-DSFS eventually achieves the minimum MSE, demonstrat-
ing the effectiveness of the least squares formulation (9) in
mitigating the quantization effects.
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TABLE I
PERFORMANCE COMPARISON BETWEEN LS-DSFS AND THE CENTRALIZED APPROACHES

Comparison results are summarized in Table I. The statement
may seem puzzling at first, since one may think that distributed
algorithms such as LS-DSFS relying solely on localized interac-
tions could impossibly outperform the centralized counterpart
which has a FC having access to the global information. In the
case of constrained bandwidth, it is, however, reasonable. For
the centralized approaches, namely, QSME and DES, the FC
can only acquire the quantized data from the nodes once per
data with a single hop mode. Performance degradation with re-
spect to ISME θ̂ is clearly observed in Table I. The situation
becomes even worse if the data has to travel through multiple
hops until reaching the FC, since several rounds of quantiza-
tion will be done on {yi}ni=1 , making it harder to recover at
the FC side. Specifically, Ref. [37] derived an upper bound of
MSE for the multi-hop mode, which tends to be constant in-
dependent of the number of nodes n. This is much different
than QSME and DES in single hop mode. If multiple rounds
of transmissions from nodes to the FC are allowed in the single
hop mode (e.g., the multiple-round version of QSME, denoted
as M-QSME), then it is possible for the FC to reach ISME
θ̂ to arbitrary precision.3 While for LS-DSFS, it is noted that
each node keeps one perfect copy of yi locally along with the
quantized version q(yi). By exploiting this hidden information
and the temporal properties of quantization noises appropriately,
the nodes can collaboratively achieve better performance than
QSME and DES. This is what we have done in LS-DSFS by in-
troducing both quantized {q(xi(t)), q(si(t))} and unquantized
{xi(t), si(t)} in line 4 and the least squares step in line 5 of
Algorithm 1. One interesting property of the distributed LS-
DSFS is that it can achieve the improved MSE performance
level of the centralized M-QSME, by relying solely on inter-
actions with neighboring nodes without the need for a FC as
in M-QSME.

On the other hand, the centralized approaches, i.e., QSME,
DES and M-QSME, are prone to the problem of uneven energy
depletion, which can drastically reduce the network lifetime. In
the case of a single hop network, nodes located farthest from the
FC have to consume the maximum amount of energy. Whereas
for the multiple hop mode, nodes closer to the FC need to relay
more traffic and suffer much faster energy consumption, which is
apt to cause the “energy hole” problem [38]. Such phenomenon
has also been demonstrated previously in [39]. Consider a sen-
sor network with n nodes uniformly distributed over a circular
region and the FC is located at the center. For simplicity,
we divide the circular region into K concentric rings of
thickness r. Here r is the communication radius of all the nodes.
Let Ei be the energy expenditure of a node in the i-th ring. The
energy gap is thus maxi Ei − mini Ei , which measures how

3One possible strategy is brought to our attention by one of the anonymous
referees. To be specific, taking Δ = 1 as an example, each node can send the
digits of its data one by one to the FC. Upon reception, the FC can recover these
digits and thus the data from all the nodes to arbitrary precision.

uneven the energy depletion among all nodes is. It can be shown
that the energy gaps areEGsingle = μrm (Km − 1) for the sin-
gle hop mode and EGmultiple = (2l + μrm )(K2 − 1) for the
multi-hop mode, respectively, where l, μ, and m are energy-
related parameters [40]. Note that, typically, 2 ≤ m ≤ 6, and
K � 1 for large scale networks. This means that EGsingle

and EGmultiple grow at least with an order of O(K2). While
for the proposed LS-DSFS, only local communication with
neighboring nodes is permitted, its energy gap is smaller than
(maxi |Ni | − mini |Ni |)l + μrm , where |Ni | is the cardinality
of Ni . Hence, the energy expenditure is more balanced.

Let us have a closer look at the total average energyEA spent
during one round of transmission for the centralized QSME,
DES and M-QSME, and the distributed LS-DSFS. For the cen-
tralized approaches, letting ni be the number of nodes in the
i-th ring, and dj0,i be the distance between node j in the i-th
ring and the FC, we can obtain

EAcentralized =
1
n

K∑

i=1

ni∑

j=1

(l + μdmj0,i)

≥ 1
n

K∑

i=2

ni(l + μ((i− 1)r)m )

≥ l
(
1 − n1

n

)
+ μrm

K−1∑

i=1

im (2i+ 1)

> O(Km ) = O(nm/2),

where in the above steps we use the facts that n = ρπ(Kr)2 , ρ is
the density of nodes,ni = (i2 − (i− 1)2)/K2 , and

∑K
i=1 i

m >
Km+1/(m+ 1). We emphasize that this is a quite optimistic
analysis without considering the energy spent on the routing
updates, etc. In general, much more energy will be required for
the centralized approaches. On the other hand, for LS-DSFS, it
is easy to show that

EALS-DSFS =
1
n

n∑

i=1

(

l|Ni | + l + μmax
j
dmij

)

≤ l

n

n∑

i=1

|Ni | + l + μrm

< nl + μrm = O(n).

Taking the above two relations into account, and recalling that
2 ≤ m ≤ 6, we can clearly see that the distributed LS-DSFS
scales better than the centralized approaches as the number of
nodes grows.

The important implication of the above analysis regarding the
performance and energy efficiency is that cooperate locally, we
can do better!
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IV. PERFORMANCE ANALYSIS OF LS-DSFS

In the section, we focus on the proofs of our main results.
Several intermediate results will be provided to facilitate the
theoretical analysis. Proofs are relegated to the Appendix.

A. Preliminaries

We first establish two basic results regarding properties of the
power matrix Qk for arbitrary integer k ≥ 0.

Lemma 2: Assume that G is strongly connected, for suffi-
ciently small β > 0, the spectral radius of Q satisfies 0 < ρQ
< 1. And for any integer k ≥ 0, we have

‖Qk‖2 ≤
{

(η + 1)n−1ρkQ , k < n,

eη kn−1ρkQ , k ≥ n,
(10)

where η � ‖Q − QT ‖F /
(√

2ρQ
)
.

Lemma 3: Assume that G is strongly connected, and condi-
tions (c-2) and (c-3) are satisfied. Then

i) we have

lim
t→∞

t∑

s=0

φt,s‖Qt−s+1‖2 = 0, (11)

where φt,s � Γs−1
∏t

h=s maxi |1 − γh,i |.
ii) for the special form of gain factors γt,i = ai/(t+ 1)τi ,

∀t, i with ai > 0, 0 ≤ τi ≤ 1, ∀i, one further obtains

t∑

s=0

φt,s‖Qt−s+1‖2 = O
(
1/(t+ 1)min i τ i

)
. (12)

Our next tweak is to introduce an auxiliary system similar to
x̂i(t) in (9) for analysis only

ŝi(t+ 1) = ŝi(t) + γt,i [si(t+ 1) − ŝi(t)],∀i = 1, 2, . . . , n.
(13)

We will later find that the introduction of (13) greatly sim-
plifies the theoretical derivations. Denote by e(t) � [ex(t)T ,
es(t)T ]T = z(t)T − [x̄(0)1T,0]T the estimation error, and ê(t)
� [êx(t)T , ês(t)T ]T = [x̂(t)T , ŝ(t)T ]T − [x̄(0)1T ,0]T the
augmented estimation error, where ŝ(t) � [ŝ1(t), . . . , ŝn (t)]T .
The next lemma summarizes two important results of cross re-
lations between e(t) and {w(t), ê(t)}.

Lemma 4: Under Assumptions (a-1) and (a-2), we have
i) E{e(t1)w(t2)T } = 0, ∀t1 ≤ t2 .

ii) E{e(t+ 1)ê(t)T } = Qt+1E{e(0)e(0)T }Φt−1,0 +
∑t

s=1 Qt−s+1E{e(s)e(s)T }Φt−1,s , for all t ≥ 0, where
Φt,s � Λs−1

∏t
h=s(I − Λh), Λt � diag{γt,1 , . . . , γt,n}

and we denote Λ−1 =
∏s1

h=s2
(I − Λh) = I, ∀s2 > s1 .

Lemma 4 states that the quantization error w(t) at t-th iter-
ation is uncorrelated with all the historical intermediate errors
e(s), s = 0, 2, . . . , t.

B. Boundedness Results

We next have the following result regarding boundedness
of intermediate states x(t), s(t) of the distributed quantized
algorithm (4) and (5).

Lemma 5: Assume that G is strongly connected, then for
small β > 0, we have

i)

‖e(t)‖ ≤ cQ‖x(0)‖ + α
√
nΔc′Q‖Laug‖, (14)

where cQ = (η + 1)n−1 for t < n, and eη [(1 − n)/
(e log ρQ )]n−1 for t ≥ n, and c′Q � (η + 1)n−1(1 −
ρnQ )/(1 − ρQ )+eη [(1 − n)/(e log ρQ )]n−1 +eη ρnQ (n−
1)!(1 − log ρQ )n−1/(− log ρQ ).

ii) if, in addition, Assumptions (a-1) and (a-2) are satisfied,
then

lim sup
t→∞

E{‖e(t)‖2} ≤
nα2c′′Q‖Laug‖2

2 supt tr(Wt)
2

,

(15)
where the expectation is taken with respect to the initial
condition x(0) and quantization noises {w(τ)}tτ=0 ,
Wt = E{w(t)w(t)T }, c′′Q � (η + 1)2(n−1)(1 − ρ2n

Q )/
(1 − ρ2

Q ) + e2η [(1 − n)/(e log ρQ )]2(n−1) + e2η ρ2n
Q

(2n− 2)!(1 − 2 log ρQ )2(n−1)(−2 log ρQ )1−2n .
One comment on the above result is in order. The explicit

upper bound (14) together with (2) reveals that the quantized
message {q(xi(t)), q(si(t))} is bounded at each node i.

Next, we estimate the average length of quantized message
{q(xi(t)), q(si(t))} for LS-DSFS with xi(0) = yi , ∀i, where
yi is the measurement in (1). In fact, the quantized message
{q(xi(t)), q(si(t))} has the length

bi,t ≤ 2 +
⌈

log2

⌈
|xi(t)|

Δ

⌉⌉

+
⌈

log2

⌈
|si(t)|

Δ

⌉⌉

,

where the first term accounts for the sign bits of
q(xi(t)), q(si(t)), and the last two terms bound the binary
lengths of |q(xi(t))|, |q(si(t))|. Thus the average length of
{q(xi(t)), q(si(t))} is bounded as follows:

E{bi,t} ≤ 4 + E

{

log2

(

1 +
|xi(t)|

Δ

)}

+ E

{

log2

(

1 +
|si(t)|

Δ

)}

≤ 4 + 2 log2

(

1 +
E {‖z(t)‖}

Δ

)

where the last inequality follows from Jensen’s inequality.
Further, one can obtain {|xi(t)|, |si(t)|} ≤ ‖z(t)‖ ≤

(1/
√
n)‖x(0)‖1 + cQ‖x(0)‖ + α

√
nΔc′Q‖Laug‖, where ‖ · ‖1

denotes the 1-norm of vectors. It follows from (1) that
E {‖z(t)‖} ≤ (cQ + 1)

√
n(θ2 + σ2) + α

√
nΔc′Q‖Laug‖. The

upper bound is clearly not available since θ is unknown. How-
ever, we note that θ2/σ2 actually represents the signal-to-noise
ratio (SNR) of each node. It is realistic to assume that each node
could estimate SNR by simply measuring the received signal
power in the presence and absence of the incoming signal. A
more aggressive way is just to replace θ with the dynamic range
of each node [−D,D], which can be regarded as part of the
design specifications. We then obtain

E {‖z(t)‖} ≤ σ(cQ + 1)
√
n(SNR + 1) + α

√
nΔc′Q‖Laug‖

≤ (cQ + 1)
√
n(D2 + σ2) + α

√
nΔc′Q‖Laug‖.

Putting the above relations together, we know that the av-
erage message length is decided by quantization step-size Δ,
local SNR θ2/σ2 (or equivalently dynamic range of each node
D), measurement noise variance σ2 , and network topology G
through L and L−. Obviously, the bound of E{bi,t} is conserva-
tive (see Section VI for some simulations). If more information
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is available, e.g., n is known by each node, then node i could
quantize xi(t)/n, si(t)/n instead of xi(t), si(t). And the upper
bound of E{bi,t} can be reduced to 4 + 2 log2(1 + ξ/n), where
ξ � √

nσ(cQ + 1)
√

SNR (or D) + 1/Δ + α
√
nc′Q‖Laug‖.

C. Convergence: Proof of Theorem 1

With the above lemmas at hand, we are now in the position
to formally prove Theorem 1. For clarity of presentation, we
divide the proof into several steps.

Asymptotic Unbiasedness Property: Putting (9) and the aux-
iliary system (13) together and express them in matrix-vector
form, we obtain the augmented error dynamics

ê(t+ 1) = (I − Λt)ê(t) + Λte(t+ 1), (16)

where e(t) is the error of the original system (6).
Recalling that 0 < δt ≤ γt,i ≤ 1, ∀t ≥ 0, this along with

(c-2) and (16) implies

‖E{ê(t+ 1)}‖ ≤ (1 − δt)‖E{ê(t)}‖ + κδt‖E{e(t+ 1)}‖,
(17)

where the expectations E{ê(t)} and E{e(t+ 1)} are taken with
respect to the initial condition x(0) and quantization noises
{w(τ)}tτ=0 .

In view of (c-1) and (c-2), we know that
∑∞

t=0 δt = ∞.
Moreover, Lemma 1 shows that limt→∞ ‖E{e(t)}‖ = 0. Hence,
applying the Robbins-Siegmund theorem [41] to (17) yields
limt→∞ E{ê(t)} = 0. This means that x̂i(t) is asymptotically
unbiased for each node i.

Mean Square Property: Now let us turn to the mean square
property following the next three steps.

Step 1: (Error of the augmented system) It follows from the
condition (c-2) and (16) that

E{‖ê(t + 1)‖2} = E{ê(t)T (I − Λt)2 ê(t)}

+ E{e(t + 1)T Λ2
t e(t + 1)}

+ 2E{ê(t)T Λt(I − Λt)e(t + 1)}

≤ (1 − δt)2E{‖ê(t)‖2} + Γ2
t E{‖e(t + 1)‖2}
︸ ︷︷ ︸

T1

+ 2E{ê(t)T Λt(I − Λt)e(t + 1)}
︸ ︷︷ ︸

T2

, (18)

where we use condition (c-3) to obtain that for large t, say
t ≥ t1 , 0 < maxi γt,i < 1, ∀t ≥ t1 .

Step 2: (Bounding the mean square error E{‖ê(t)‖2}) We
need to estimate the bounds of the above two terms T1 and T2 ,
respectively.

i) Bound of T1: By Lemma 5, we know that E{‖e(t)‖2} is
bounded, provided that β > 0 is small enough. Hence,

T1 = O(Γ2
t ). (19)

ii) Bound of T2: Note that E{ê(t)T Λt(I − Λt)e(t+ 1)} =
trace(Λt(I − Λt)E{e(t+ 1)ê(t)T }) and Λt is diagonal, by

Lemma 4, one can obtain for all t ≥ 0,

T2 = 2trace
(
ΛtQt+1E{e(0)e(0)T }Φt,0

)

+ 2
t∑

s=1

trace
(
ΛtQt−s+1E{e(s)e(s)T }Φt,s

)

≤ 2‖Φt,0ΛtQt+1‖2E{‖ê(0)T e(0)‖}

+ 2
t∑

s=1

‖Φt,sΛtQt−s+1‖2E{‖e(s)‖2}

≤ 2Γt
t∑

s=0

φt,s‖Qt−s+1‖2ψs,

where ψs � max
{

E{‖e(0)‖2},E{‖e(s)‖2}
}

is bounded by
Lemma 5. This along with Lemma 3 implies

T2 = O
(

Γt
t∑

s=0

φt,s‖Qt−s+1‖2

)

= o(Γt), as t→ ∞. (20)

Step 3: (Convergence of E{‖x̂(t) − x̄(0)1‖2}) Combining
(19) and (20), we can derive from (18) that for all t ≥ t1 ,

E{‖ê(t+ 1)‖2} ≤ (1 − δt(2 − δt))E{‖ê(t)‖2}

+ O(Γ2
t ) + o(Γt).

Considering the above recurrent inequality, it is clear that∑∞
t=t1 δt(2 − δt) ≥

∑∞
t=t1 δt = ∞ in view of the condition

(c-1). Furthermore, we have 0 < δt(2 − δt) ≤ 1 for sufficiently
large t by recalling the condition (c-3), and thus

lim
t→∞

O(Γ2
t ) + o(Γt)

δt(2 − δt)
≤ lim

t→∞
O(κ2δt) = 0.

By the Robbins-Siegmund theorem [41], we can conclude
that limt→∞ E{‖ê(t)‖2} = 0. Since E{‖ê(t)‖2} = E{‖x̂(t) −
x̄(0)1‖2} + E{‖ŝ(t)‖2}, it follows that limt→∞ E{‖x̂(t) −
x̄(0)1‖2} ≤ limt→∞ E{‖ê(t)‖2} = 0, from which the theorem
is obtained.

D. Rate of Convergence: Proof of Theorem 2

We now turn to the proof of Theorem 2 on convergence rate
analysis for the estimate sequence {x̂(t)}t≥0 .

Convergence of {E{x̂(t)}}t≥0: The proof for the case
inf t≥0 δt = 1 is trivial. In the following, it suffices to consider
the case inf t≥0 δt < 1.

Continuing the recursion of (17) gives

‖E{ê(t)}‖ ≤
t−1∏

s=0

(1 − δs)‖E{ê(0)}‖

+
t−1∑

s=0

t−1∏

h=s+1

(1 − δh)Γs‖E{e(s+ 1)}‖

� Ξ1 + Ξ2 . (21)

Considering the first term Ξ1 , we have Ξ1 ≤ e−
∑ t−1

s= 0 δs

‖E{ê(0)}‖, where use was made of the fact that 1 − x ≤ e−x ,
for any scalar 0 ≤ x ≤ 1.

As for the second term Ξ2 , taking expectation on both
sides of (33) and applying Lemma 2 yields ‖E{e(t)}‖ ≤
eη tn−1ρtQ‖E{e(0)}‖, ∀t ≥ n. Moreover, under the conditions
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(c-1) and (c-2), we have Γt ≤ κ, ∀t. Hence, Ξ2 ≤ κ
∏t−1

s=0(1 −
δs)
∑t−1

l=0
∏l

h=0(1 − δh)−1‖E{e(l + 1)}‖ ≤ κ
∏t−1

s=0(1 − δs)
(C1 + eη‖E{e(0)}‖

∑t−1
l=n−1 bl), for certain constant C1 > 0,

where bs �
∏s

h=0(1 − δh)−1(s+ 1)n−1ρs+1
Q .

To finish the proof, we claim that

t−1∑

s=n−1

bs <

⎧
⎪⎨

⎪⎩

ρQ bt−1
ρQ −1+inf δt

, 1 − ρQ < inf δt < 1,
∞, 0 < sup δt < 1 − ρQ ,
tn −(n−1)n

n , 0 < inf δt ≤ sup δt = 1 − ρQ .
(22)

We refer the readers to the Appendix for its proof. Accord-
ingly, let us consider the next three cases:

Case I: 1 − ρQ < inf t≥0 δt < 1. In this case, we obtain Ξ2 ≤
κeη ‖E{e(0)}‖ρQ t

n −1 ρtQ
ρQ −1+inf t δt

+ o(tnρtQ ), where we use the facts that
∏t−1

s=0(1 − δs) ≤
(
1 − inf t δt

)t
and 1 − inf t δt < ρQ .

Case II: 0 < supt≥0 δt < 1 − ρQ . Note that 1 − x ≤ e−x ,
for any scalar 0 ≤ x ≤ 1. Substituting this relation shows that
Ξ2 ≤ κC2e

−
∑ t−1

s= 0 δs , for some constant C2 > C1 .
Case III: 0 < inf t≥0 δt ≤ supt≥0 δt = 1 − ρQ . Since inf t≥0

δt > 0, one has e− lim inf t→∞ δt < 1, from which we know that
∑∞

t=1 t
ne−

∑ t−1
s= 0 δs is convergent. Thus, limt→∞ tne−

∑ t−1
s= 0 δs

= 0. This together with (22) implies Ξ2 ≤ (1/n)κeη

‖E{e(0)}‖tne−
∑ t−1

s= 0 δs + o
(
tne−

∑ t−1
s= 0 δs

)
.

We substitute all the above relations to (21) to establish the
rate of convergence of ‖E{x̂(t)} − x̄(0)1‖.

Mean Square Convergence: Considering γt,i = ai/(t+ 1)τi ,
by definition, we have δt = a/(t+ 1)τ̄ , Γt = ā/(t+ 1)τ , where
a � mini ai , ā � maxi ai , τ � mini τi and τ̄ � maxi τi .

Under the condition (c-3), one can show that δt ≤ Γt < 1, for

all t ≥ t1 � (ā+ 1)
1
τ − 1 . It thus follows from (18) that for all

t ≥ t1 ,

E{‖ê(t+ 1)‖2} ≤ (1 − δt)E{‖ê(t)‖2}

+

(

Γ2
t + 2Γt

t∑

s=0

φt,s‖Qt−s+1‖2

)

ce ,

(23)

where φt,s � Γs−1
∏t

h=s maxi |1 − γh,i | and ce � supt≥0
E{‖e(t)‖2} <∞ in light of Lemma 5.

We use definitions of δt , Γt and Lemma 3 to rewrite (23) as
follows

E{‖ê(t+ 1)‖2} ≤
(

1 − a

(t+ 1)τ̄

)

E{‖ê(t)‖2}

+
ā2(2c′Q + 1)ce

(t+ 1)2τ + o

(
1

(t+ 1)2τ

)

,

where c′Q is given in Lemma 5. Remember that τ̄ < 2τ < a+ 1,
applying Chung’s lemma [42] to the above relation yields

lim sup
t→∞

(t+ 1)2τ−τ̄ E{‖ê(t)‖2} ≤

⎧
⎨

⎩

ā2 (2c ′Q +1)ce

a , τ̄ < 1,
ā2 (2c ′Q +1)ce

a+1−2τ , τ̄ = 1.

This completes the proof.

V. RUNNING AVERAGE ESTIMATE: SPECIAL

FORM OF LS-DSFS

In the previous sections, we have provided the performance
analysis of LS-DSFS and given some comparison results with
the prevailing centralized approaches. In this section, we will fo-
cus on a special form of LS-DSFS, namely, the running average
estimation.

Let xi(0) = x̂i(0) = yi and

γt,i =
1

t+ 2
, ∀i = 1, 2, . . . , n. (24)

Substituting (24) into (9) yields

x̂RA
i (t) =

t

t + 1
x̂RA
i (t− 1) +

1
t + 1

xi(t) =
1

t + 1

t∑

k=0

xi(k), ∀i.

(25)
Such x̂RA

i (t) is hereinafter referred to as running average esti-
mate. This technique is commonly used with time series data
to smooth out short-term fluctuations and highlight longer-term
trends [27], [31]. It is easy to verify that γt,i in (24) satisfies all
the conditions (c-1), (c-2) and (c-3), thus Theorem 1 still holds.
As for the rate of convergence, actually, we have an enhanced
version of Theorem 2 shown below.

Theorem 3: Consider LS-DSFS in Algorithm 1 with
{γt,i}t,1≤i≤n given in (24) and assume that G is strongly con-
nected. Then under Assumptions (a-1) and (a-2), for sufficiently
small β > 0, we have E{x̂RA(t)} = θ1 and

lim sup
t→∞

t‖E{‖x̂RA(t) − θ̂1‖2}‖

≤ α2‖(I − Q)−1‖2
2‖Laug‖2

2 sup
t

tr(Wt),

where the expectation is over the initial condition x(0) and
quantization noises {w(τ)}tτ=0 .

More important, the running average method has another ap-
pealing feature that enables a dedicate rate of convergence result
in the almost sure sense.

Theorem 4: Suppose that all the assumptions of Theorem 3
hold and the quantization noises {w(t)}t≥0 are temporally in-
dependent. Moreover, there is a positive constant d > 2 such
that supt≥0 E{‖w(t)‖d} <∞. Then for small β > 0,

lim sup
t→∞

‖x̂RA(t) − θ̂1‖
t−1

√
rt log log rt

≤ α
√

2nσw , a.s.

where rt =
∑t−1

k=0 ‖(I − Qt−k )(I − Q)−1‖2
2 and σw = supt≥0

‖W(t)‖2 .
Proof: Let Qt,k � (I − Qt−k )(I − Q)−1 . Then from the

proof of Theorem 3, one can obtain

‖ê(t)‖ ≤ 1
t+ 1

‖(I − Qt+1)(I − Q)−1 ê(0)‖

+
α

t+ 1

∥
∥
∥
∥
∥

t−1∑

k=0

Qt,kLaugw(k)

∥
∥
∥
∥
∥

� Φ1 + Φ2 . (26)

By Lemma 2, the first term Φ1 is of the order O(1/t). It re-
mains to consider the second term Φ2 . Actually, we find that Φ2
is in the form of the sum of random vectors Laugw(k) weighted
by the matrix Qt,k .
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Fig. 3. Intermediate state x(t) of (4) and the estimate x̂(t) generated by
LS-DSFS for Δ = 1.

� Firstly, we claim that the weight matrix is bounded.
To see this, we can verify that Q[x̄(0)1T ,0]T = 0.
Hence, (I − Qt−k )[x̄(0)1T ,0]T = (I − Q)[x̄(0)1T ,0]T ,
∀t > k, which shows that 1 is an eigenvalue of Qt,k . This
means that ‖Qt,k‖2 ≥ 1, ∀t > k. On the other hand, it
is obvious that ‖Qt,k‖2 ≤ (1 + ‖Qt−k‖2)‖(I − Q)−1‖2 ,
which by Lemma 2 is also upper bounded for all t ≥ k.

� Secondly, we can show that
∑∞

k=1 ‖Qk‖2
2 is a convergent

series in view of the fact that ρQ < 1. As a consequence,
for any t2 ≥ t1 , we can find a constant B > 0 such that∑t1 −1

k=0 ‖Qt2 −k − Qt1 −k‖2
2 ≤ B.

It thus follows from the law of the iterated logarithm
for weighted sums of independent random vectors [28] that

lim supt→∞
‖∑ t−1

k = 0 Q t , k Laugw (k)‖√
rt log log rt

<
√

2nσw a.s. As a result,

the second term Φ2 is in the order of O(
√
rt log log rt/t).

Substituting the above results into (26) yields ‖ê(t)‖ ≤
O(

√
rt log log rt/t). This completes the proof. �

VI. SIMULATION RESULTS

In this section, simulation results are presented to demonstrate
the efficiency and effectiveness of the proposed LS-DSFS for
solving the problem of distributed sensor fusion.

Consider a random network of n = 100 nodes to monitor
an unknown parameter θ = 8 with each observation given by
yi = θ + wi , where wi is the Gaussian noise with unit vari-
ance. To simulate certain pairs of asymmetric links between
nodes, we first generate an undirected network using the ran-
dom geometric graph model, i.e., nodes are placed uniformly at
random over [0, 1] × [0, 1] and a pair of nodes is connected by
two unidirectional links if the distance is less than

√
log n/n.

With this setting, the network topology is guaranteed to be
connected with high probability. Afterwards, 60% of the uni-
directional links are randomly removed to generate an asym-
metric network. In the following simulations, we adopt the
probabilistic quantization scheme (3). The parameters are set
as follows: α = 1/(0.1 + maxi d+

i ) and β = 0.1 for (4), and
γt =

√
0.5 log log(t+ 10)/t for (9). It is easy to check that

such γt satisfies the conditions of Theorem 1.
Fig. 3 depicts the intermediate state x(t) of (4), and the es-

timate x̂(t) generated by LS-DSFS for Δ = 1. It is clear that
LS-DSFS can smooth out fluctuations exhibited in the inter-
mediate state x(t). On the other hand, the centralized ISME
θ̂ is asymptotically approached, which is only possible for es-
timation with infinite bandwidth, showing that LS-DSFS has

Fig. 4. Comparison results of emse between different algorithms for Δ = 1.

Fig. 5. Comparison results of ensemble average of emae and emse between
different algorithms for Δ = 1. An average of the last 200 iterations is taken
for each bar to avoid transient periods.

the ability of mitigating the quantization effect on distributed
sensor fusion. This corroborates the theoretical result given in
Theorem 1.

Performances of the algorithms are measured by compar-
ing with the true parameter θ in terms of mean absolute error
emae(t) = (1/n)

∑n
i=1 |estimatei(t) − θ| and mean square error

emse(t) = (1/n)
∑n

i=1(estimatei(t) − θ)2 , where emae(t) is in-
troduced to measure unbiasedness of the estimate. The following
simulation results are for 200 realizations of initial values x(0),
averaged over 200 runs of the algorithms. Fig. 4 depicts emse(t)’s
of LS-DSFS, from which we find that there is a continuous de-
crease in the mean square error down to a low level within a
few steps, approaching the CRLB = σ2/n = 0.01. Also plot-
ted are the centralized approaches QSME [7] and DES [8], and
five distributed algorithms [12], [14], [26], [28], [31], for com-
parison purpose. We can easily identify that our LS-DSFS not
only achieves a superior estimation performance to other dis-
tributed algorithms, but also outperforms the centralized QSME
and DES within a moderate number of iterations. This is a direct
implication of Theorem 1 and is consistent with the theoretical
comparison results given in Table I. More comparison results
can be found in Fig. 5, where 2000 iterations are performed for
each algorithm and the averages over the last 200 iterations of
emae(t) and emse(t) are presented. From the figure, we can see
that LS-DSFS attains both the smallest mean absolute error and
mean square error. This corroborates the convergence results
given in Theorems 1 and 2. It should also be noted that the dis-
tributed algorithms proposed for symmetric networks [12], [14],
[31] fail in the network with asymmetric links, where emse(t)’s
remain almost unchanged after several steps. Moreover, the
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Fig. 6. Comparison results of emse between different algorithms for a sym-
metric network with n = 100 and Δ = 1.

dynamic encoder-decoder scheme designed for asymmetric net-
works [26] can not solve the problem of sensor fusion either as
can be noticed in Figs. 4 and 5. We also note that the two-stage
algorithm [27], [28] can solve the sensor fusion problem over
asymmetric networks as well, but its performance heavily de-
pends on convergence of the first stage. In general, it should
wait for several iterations before triggering the second stage. In
the simulation, we let the first stage run for 500 iterations and
then start the second stage. The averaging operation of the sec-
ond stage starts at 500 + t0 . It is observed that the convergence
is still quite slow when t0 = 100. In practice, these parameters
should be carefully tuned for better performance. As a com-
parison, the proposed LS-DSFS adopts the static probabilistic
quantizer and does not need to choose such parameters while
achieving the CRLB asymptotically. These simulation results
validate the effectiveness of the least squares approach of our
LS-DSFS in solving the distributed sensor fusion problem in
asymmetric networks with bandwidth constraints.

Fig. 6 depicts the comparison results between LS-DSFS and
those in [12], [14], [31] for symmetric networks, from which we
can see that both LS-DSFS and the algorithm in [31] approach
the CRLB 0.01, although LS-DSFS converges with a little bit
slower rate. The reason is due to the introduction of a second
variable si(t) in (5) of LS-DSFS, and the parameter β > 0 in
(4) which should be small to ensure the convergence. Actually,
si(t) is introduced to handle the case of asymmetric networks.
For symmetric networks, we find that si(t) is not needed, and
(4) and (5) become

xi(t+ 1) = xi(t) − αd+
i q(xi(t)) + α

∑

j∈N+
i

q(xj (t)). (4’)

Theoretical analysis can still be enforced in this case, and LS-
DSFS reduces to a weighted version of the algorithm in [37].

Next, we compare LS-DSFS with other algorithms with re-
spect to emae(t) and emse(t) for different quantization step-sizes
Δ ∈ {0.1, 0.5, 1, 5, 10}. We simulate the LS-DSFS with differ-
ent initial guesses, all the results show averages of 200 runs.
And the results are averaged over the last 200 iterations of total
2000 iterations to avoid transient periods, respectively. From
Fig. 7, we observe that the proposed LS-DSFS works quite
well for all quantization step-sizes even for the relatively coarse
quantization Δ = 10. For smaller quantization step-sizes, the
improvements of the performance by using LS-DSFS compared
with other distributed algorithms is obvious. To look further
into the effect of quantization step-size on the convergence,
we run LS-DSFS for different Δ ∈ {0.1, 0.5, 1, 5, 10} and col-

Fig. 7. Average emae’s and emse’s of five distributed algorithms for Δ ∈
{0.1, 0.5, 1, 5, 10}. Results are for 200 realizations of initial guesses xi (0), ∀i,
averaged over 200 independent runs of LS-DSFS.

Fig. 8. Average number of iterations to get to emse(t) of 2*CRLB along with
the graph density and effective diameter with the number of nodes n varying
from 50 to 500.

lect the number of iterations such that emse(t) gets to 2*CRLB
= 0.02. Note that 2*CRLB is the upper bound for MSE of the
centralized DES [8]. Averaged over 200 independent runs, we
obtain the respective average number of iterations as follows:
{285.18, 304.87, 456.45, 781.67, 1452.60}. It is noted that the
average number of iterations increases with Δ, and more it-
erations are needed to achieve the same level of performance
for larger quantization step-sizes. This is intuitively true, since
larger quantization step-sizes introduce bigger volume of quan-
tization noises into the system, and thus more iterations are
needed to smear out these noises.

We also investigate the effects of network topology on
the convergence rate of LS-DSFS, which is characterized by
the average number of iterations to get to specific accuracy.
To this end, several asymmetric networks are randomly gen-
erated using the random geometric graph model mentioned
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Fig. 9. Scatter plots and residuals of average number of iterations to get to emse(t) of 2*CRLB versus graph density and effective diameter, respectively, where
200 asymmetric networks with n = 100 are generated randomly.

Fig. 10. Mean square error emse of the proposed LS-DSFS for a truncated
probabilistic quantizer with 2 bits, 4 bits, and 6 bits.

earlier. Fig. 8 depicts the average number of iterations to get
to emse(t) of 2*CRLB against the number of nodes varying
from n = 50 to 500. The impacts of network topology are mea-
sured by two widely used indexes, namely, the graph densities
gd = #links/[n(n− 1)/2] and the effective diameters d. In
the simulations, we take the effective diameter as the minimum
value d such that at least 80% of the connected node pairs are at
distance at most d. The plots suggest that as the network tends to
larger and sparser, the number of iterations taken by LS-DSFS
to achieve the same level of performance increases, and that the
number of iterations is directly related with the effective diame-
ter d. To further investigate their impacts, we fix the number of
nodes n = 100 and randomly generate 200 asymmetric graphs.
The scatter plots and corresponding residuals of average number
of iterations to get to emse(t) of 2*CRLB versus graph density
and effective diameter are presented in Fig. 9. The results illus-
trate that the average number of iterations is related with graph
density roughly in a negative manner, while is positively re-
lated with effective diameter. This is consistent with the results
shown in Fig. 8. All these simulation results show that gd and d
have a coupled influence on the convergence time of LS-DSFS.
We emphasize that the impact of the network topology on the
performance of LS-DSFS has been recognized theoretically in
Theorem 2 and the remarks followed.

To see the performance of the proposed LS-DSFS under
finite-bit quantizers, we implement a truncated version of the
probabilistic quantizer (3), i.e., projecting the transmitted mes-
sage into [−maxi |xi(0)|,maxi |xi(0)|]. This range is divided
into intervals of length Δ = 2maxi |xi(0)|/(2b − 1), where b
denotes the number of bits for quantization. Fig. 10 depicts

simulation results for 200 realizations of initial values x(0),
each being averaged over 200 runs. Of note that the proposed
LS-DSFS also performs quite well for the above finite-bit quan-
tizer. Moreover, it is observed that a few number of bits suffice
to produce acceptable mean square errors, i.e., LS-DSFS is re-
silient to truncation errors of the probabilistic quantizer (3). This
in turn reveals that the boundedness results of Lemma 5 and the
discussions followed are quite conservative. A rigorous analy-
sis of the proposed LS-DSFS with finite-bit quantizer, however,
deserves further investigation.

VII. CONCLUSION

We proposed a least squares approach for distributed consen-
sus algorithm in bandwidth-constrained and asymmetric sensor
networks with applications to distributed sensor fusion, termed
LS-DSFS. In LS-DSFS, we first introduced a surplus variable
to keep track of local states in order to account for asymmetric
links, and then adopted a compensating updating rule, resulting
in a quantized consensus algorithm. A least squares reformula-
tion of these local states was then performed to generate local
estimates. It was shown that all such estimates converge to the
ideal centralized estimate in mean and mean square senses, out-
performing prevailing centralized and distributed algorithms.
Furthermore, we found that the LS-DSFS will always consume
less energy and achieve more balanced energy expenditure as
the number of nodes in the network grows. Rate of convergence
of LS-DSFS was also established. Finally, we provided some
simulation studies to validate the theoretical results.

APPENDIX

A. Proof of Lemma 2

Firstly, for sufficiently small β > 0, we can show that
limk→∞ Pk = P∞, i.e., limk→∞ Qk = 0, and thus ρQ < 1.

To prove the second assertion, for each integer k ≥ 0, we
apply [43, Theorem 2] to the matrix Qk so that

‖Qk‖2 ≤
min{k,n−1}∑

i=0

(
k

i

)

ρk−iQ dn2(Q)i

≤ ρkQ

min{k,n−1}∑

i=0

(
k

i

)(
‖Q − QT ‖F√

2ρQ

)i

, (27)
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where dn2(Q) is the departure from normality in spectral
norm, and the last step follows from an inequality in [44] that
dn2(Q) ≤ ‖Q − QT ‖F /

√
2.

Let η � ‖Q − QT ‖F /(
√

2ρQ ). We have two cases. (i)
For k < n, one has

∑k
i=0

(
k
i

)
ηi = (η + 1)k ≤ (η + 1)n−1 ;

(ii) While for k ≥ n, it follows from Taylor expansion that∑n−1
i=0

(
k
i

)
ηi ≤ kn−1 ∑n−1

i=0 η
i/i! ≤ eη kn−1 . Substituting the

previous two inequalities into (27) completes the proof.

B. Proof of Lemma 3

i) By Lemma 2, we have limt→∞ ‖Qt‖2 = 0. Moreover,
limt→∞ γt,i = 0, ∀i by condition (c-3). In consequence, for ar-
bitrary ε > 0, there are t2 > t1 such that 0 < maxi γt,i < 1,
∀t ≥ t1 and ‖Qt‖2 ≤ ε, ∀t ≥ t2 , and thus supt≥0 ‖Qt‖2 ≤ c∗
for some constant c∗ > 0. This yields

t∑

s=0

φt,s‖Qt−s+1‖2 ≤ c∗

t∑

s=t−t2 +2

φt,s + ε

t−t2 +1∑

s=0

φt,s . (28)

For the first term of the right-hand side of (28), we use the
fact that 0 < maxi γt,i < 1, ∀t ≥ t1 to obtain

lim
t→∞

t∑

s=t−t2 +2

φt,s ≤ lim
t→∞

t2 −1∑

s=1

Γt−s = 0. (29)

As for the second term of the right-hand side, one has

t−t2 +1∑

s=0

φt,s
(a)
≤

t1∑

s=0

φt1 ,s +
t−t2∑

s=t1

Γs
t∏

h=s+1

(1 − δh)

(b)
≤

t1∑

s=0

φt1 ,s + κ
t∑

s=t1

δs

t∏

h=s+1

(1 − δh)

(c)
=

t1∑

s=0

φt1 ,s + κ

(

1 −
t∏

h=t1

(1 − δh)

)

<∞, (30)

where (a) is obtained by the fact that 0 < maxi γt,i < 1,
∀t ≥ t1 ; (b) is due to (c-2) and (c-3); (c) follows from
the identity

∏t
h=t1 (1 − δh) +

∑t
s=t1 δs

∏t
h=s+1(1 − δh) = 1,

∀t ≥ t1 , which can be easily checked by induction on t. Substi-
tuting (29) and (30) into (28) shows that

∑t
s=0 φt,s‖Qt−s+1‖2

can be arbitrarily small for large t. This proves (11).
ii) For γt,i = ai/(t+ 1)τi , ∀t, i, we can simply choose δt =

a/(t+ 1)τ̄ , Γt = ā/(t+ 1)τ , ∀t ≥ 0, where a � mini ai , ā �
maxi ai , τ � mini τi and τ̄ � maxi τi . Hence, similar to (28),
one can show that

t∑

s=0

φt,s‖Qt−s+1‖2 ≤ max
0≤k≤t1

φt1 ,k

t+1∑

s=t−t1 +1

‖Qs‖2

+
t−1∑

s=t1

Γs
t∏

h=s+1

(1 − δh)‖Qt−s‖2

� Φ1 + Φ2 . (31)

For the first term Φ1 , taking t2 � t1 − 1 + max{n, (1 −
n)/ log ρQ}, and noting that sn−1ρsQ is an increasing

function of s in the interval [(1 − n)/ log ρQ ,∞), we obtain
from Lemma 2 that

Φ1 ≤ eη max
0≤k≤t1

φt1 ,k

t+1∑

s=t−t1 +1

sn−1ρsQ

≤ (t1 + 1)eη max
0≤k≤t1

φt1 ,k (t+ 1)n−1ρt−t1 +1
Q ,∀t ≥ t2 .

(32)

Regarding the second term Φ2 , we have
∏t

h=s+1(1 − δh) ≤
e−

∑ t
h = s+ 1 δh ≤ e

−
∫ t+ 1
s+ 1

a

(h + 1 ) τ̄
dh = e−

a

1−τ̄ [(t+2)1−τ̄ −(s+2)1−τ̄ ],
where use was made of the fact that 1 − x ≤ e−x , for any
scalar 0 ≤ x ≤ 1. Moreover, it is straightforward to verify that
f(s) � (s+ 1)−τ e

a

1−τ̄ (s+2)1−τ̄
is an increasing function of s in

the interval [(2τ/a)
1

1−τ̄ − 2,∞). It then follows from Lemma 2
that for all t1 ≥ (2τ/a)

1
1−τ̄ − 2,

Φ2 ≤ āe−
a

1−τ̄ (t+2)1−τ̄
t−1∑

s=t1

f(s)‖Qt−s‖2

≤ ā

(t+ 1)τ

(

(η + 1)n−1
n−1∑

s=1

ρsQ + eη
t−t1∑

s=n

sn−1ρsQ

)

,

= O
(

1
(t+ 1)τ

)

,

where in the last step we use [27, Lemma D.1] to show that the
series

∑∞
s=n s

n−1ρsQ is bounded.
Since ρQ < 1, we know that limt→∞(t+ 1)n+τ ρtQ = 0. This

reveals that Φ1 will be dominated by Φ2 for large t. Combining
this with (31) completes the proof.

C. Proof of Lemma 4

i) First, we derive from Assumption (a-2) that
E{e(0)w(0)T } = (I − P∞)E{z(0)w(0)T } = 0. Moreover,
noting that 1T (x(t) + s(t)) = 1T x(0), ∀t ≥ 0, we have e(t+
1) = z(t+ 1) − P∞z(t). This, coupled with (6) and the fact
that Q[x̄(0)1T ,0]T = 0, yields

e(t+ 1) = Qe(t) + αLaugw(t), (33)

where we use the facts that L1 = 0 = 1T L−. Hence,
e(t) = Qtz(0) + α

∑t−1
k=0 Qt−1−kLaugw(k), ∀t > 0. By

Assumption (a-2) again, we then can obtain E{e(t)w(t)T } = 0.
Using the induction argument on t, we can complete the proof.

ii) We use induction on t to prove this lemma. First, consid-
ering t = 0, we use (33) and Assumption (a-2) to derive that
E{e(1)ê(0)T } = QE{e(0)e(0)T }, since e(0) = ê(0). That
is, statement ii) is true for t = 0. Next, assume that statement
ii) holds for some t > 0, and consider the case for t+ 1.
Now applying statement i) to (16) and (33) yields E{e(t+ 2)
ê(t+ 1)T } = QE{e(t+ 1)ê(t+ 1)T }=QE{e(t+ 1)ê(t)T }
(I − Λt) + QE{e(t+ 1)e(t+ 1)T }Λt =Qt+2E{e(0)e(0)T }
Φt,0 +

∑t+1
s=1 Qt−s+2E{e(s)e(s)T }Φt−1,s , where the last

equality follows by the inductive hypothesis.
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D. Proof of Lemma 5

i) It follows from (2) and (33) that for all t > 0,

‖e(t)‖ ≤ ‖Qt‖‖z(0)‖ + α
√
nΔ‖Laug‖

t−1∑

k=0

‖Qk‖. (34)

By Lemma 2, we can show that ‖Qt‖ ≤ (η + 1)n−1 for
t < n, and ≤ eη [(1 − n)/(e log ρQ )]n−1 , for t ≥ n. More-
over, following a similar argument as in the proof of
[27, Lemma D.1], one can show that

∑∞
k=n k

n−1ρkQ ≤
( 1−n
e log ρQ

)n−1 +
∑n−1

k=0
(n−1)!nk ρnQ

k !(− log ρQ )n −k −1 . Noting that
∑n−1

k=0 ‖Qk‖
≤ (η + 1)n−1 1−ρnQ

1−ρQ
, we then use Lemma 2 to derive (14).

ii) Let us consider (15). By Lemma 4-i), and recalling that
z(0) = [x(0)T ,0]T , we get

E{‖e(t)‖2} = E
{∥
∥Qtz(0)

∥
∥2
}

+ α2
t−1∑

k=0

E
{∥
∥Qt−1−kLaugw(k)

∥
∥2
}

≤
∥
∥Qt

∥
∥2

2 E{‖x(0)‖2}

+
nα2‖Laug‖2

2 supt tr(Wt)
2

t−1∑

k=0

‖Qk‖2
2 .

Since ρQ < 1 by Lemma 2, by taking limits on both sides of
the previous relation, we can show that (15) holds.

E. Proof of Claim (22)

We consider three cases:
Case I: 1 − ρQ < inf t≥0 δt < 1. In this case, we have

bs = (ρQ/(1 − δs))(1 + 1/s)n−1bs−1 , ∀s ≥ 1. Obviously,
we have lims→∞ bs = ∞. Hence, one can obtain

∑t−1
s=n−1 bs

≥
∑t−1

s=n−1
ρQ

1−δs bs−1 + bn−1 ≥ ρQ

1−inf t δt
(
∑t−1

s=n−1 bs − bt−1)
+ bn−1 . After rearranging the terms, we have
∑t−1

s=n−1 bs ≤
ρQ bt−1 −(1−inf t δt )bn −1

ρQ −1+inf t δt
≤ ρQ bt−1

ρQ −1+inf t δt
, since 1 <

ρQ/(1 − inf t δt) <∞.
Case II: 0 < supt≥0 δt < 1 − ρQ . It is easy to check that

lim sups→∞
bs+ 1
bs

= ρQ lim sups→∞
1

1−δs == ρQ

1−lim sups→∞ δs

< 1. The above relation shows that the series
∑t−1

s=n−1 bs is
convergent, i.e.,

∑∞
s=n−1 bs <∞.

Case III: 0 < inf t≥0 δt ≤ supt≥0 δt = 1 − ρQ . In this case,
we use the monotone property of sn over the interval (0,∞)
to get

∑t−1
s=n−1 bs ≤

∑t
s=n−1(s+ 1)n−1 ≤

∫ t
n−1 s

n−1ds ≤
(1/n)

(
tn − (n− 1)n

)
.

Combining the above three cases, we complete the proof.

F. Proof of Theorem 3

We start the relation (4) recursively to obtain

ê(t) =
1

t+ 1

t∑

k=0

Qke(0) +
α

t+ 1

t∑

k=0

k−1∑

h=0

Qk−1−hLaugw(k).

(35)

By Lemma 2, we know that I − Q is nonsingular. Taking ex-
pectation on both sides of (35), and noting that E{w(t)} =
0 by Assumption 2, one obtains ‖E{ê(t)}‖ = (1/(t+
1))‖(I − Qt+1)(I − Q)−1E{ê(0)}‖ = O(1/t), for arbitrary
ê(0). Specifically, forxi(0) = x̂i(0) = yi ,∀i, one has x̄(0) = θ̂.
The fact that E{θ̂} = θ then implies E{ê(0)} = 0. This show
that x̂RA

i is unbiased for each node i.
To show the mean square performance, we use similar ar-

guments as in [27] to obtain that lim supt→∞ t‖E{‖ê(t)‖2}‖ ≤
α2‖(I − Q)−1‖2

2‖Laug‖2
2 supt tr(Wt). Note that E{‖ê(t)‖2} =

E{‖x̂(t) − θ̂1‖2} + E{‖ŝ(t)‖2}, the theorem thus follows.
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