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On the regularization of Zeno hybrid automata
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Abstract

Fundamental properties of hybrid automata, such as existence and uniqueness of executions, are studied. Particular attention
is devoted to Zeno hybrid automata, which are hybrid automata that take in�nitely many discrete transitions in �nite time.
It is shown that regularization techniques can be used to extend the Zeno executions of these automata to times beyond the
Zeno time. Di�erent types of regularization may, however, lead to di�erent extensions. A water tank control problem and a
bouncing ball system are used to illustrate the results. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite considerable recent advances in the area
of hybrid systems, fundamental issues, such as ex-
istence and uniqueness of executions of hybrid
automata, are still the topic of intense research activity
[19]. To derive existence and uniqueness conditions
for hybrid systems, one needs to consider issues such
as blocking and non-determinism associated with the
discrete dynamics, in addition to the usual condi-
tions associated with the existence and uniqueness of
trajectories for conventional, continuous dynamical
systems. Moreover, to ensure that the executions can
be extended over arbitrarily long time horizons, one
also needs to show that an in�nite number of discrete
transitions cannot take place in a �nite amount of
time. Executions that fail to satisfy this property are
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referred to as Zeno executions, and hybrid automata
that accept such executions are referred to as Zeno
hybrid automata. 1

The Zeno phenomenon is fundamentally a hybrid
phenomenon, since it requires the interaction of con-
tinuous dynamics (in the form of time) and discrete
dynamics (in the form of discrete transitions). Even
though it seems like a mathematical curiosity, the
Zeno phenomenon turns out to be an important con-
sideration when modeling, analyzing, controlling, and
simulating hybrid systems. Zeno hybrid automata typ-
ically arise due to modeling abstractions, employed
by control engineers in an attempt to derive models
that are simpler to analyze and control. However, the
presence of Zeno executions may cast aspersions on
the validity of most techniques typically employed
for the analysis of hybrid systems. Most of these

1 The name Zeno refers to the philosopher Zeno of Elea (ca.
500–400 B.C.), whose major work consisted of a number of
paradoxes, designed to support his view that the concepts of motion
and evolution lead to contradictions. An example is Zeno’s Second
Paradox of Motion, in which Achilles is racing against a tortoise.
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techniques (including Lyapunov, model checking,
and deductive methods) rely on arguments about the
system behavior along an execution. Though mathe-
matically correct, these arguments provide no guaran-
tee about the evolution of the system beyond the limit
of the transition times. If this limit is �nite (as in the
case of Zeno executions) the subsequent evolution
may be an important part of the physical process being
modeled.
Zeno executions may also arise as the result of cer-

tain control policies. Chattering and relaxed controls,
common in the optimal control of continuous [20] and
hybrid [5] systems, can be intuitively thought of as in-
volving in�nitely fast switching among di�erent con-
trol actions, and can therefore be modeled by Zeno
executions. Similar behavior appears in variable struc-
ture control systems [18] and in relay control systems
[11]. Perhaps more importantly, Zeno executions may
also arise in controllers designed to satisfy reachabil-
ity speci�cations. Here, unless special care is taken,
the controller may try to prevent the system from
reaching an undesirable state by forcing it to take an
in�nite number of transitions in a �nite amount of
time [17].
Finally, Zeno type behavior may also a�ect the e�-

ciency and accuracy of simulations. Several packages
have recently been developed for simulating hybrid
dynamical systems, for example, Dymola [7], OmSim
[16], SHIFT [6], and a Simulink toolbox [14]. None
of these packages, however, makes special provisions
for the case of fast switching; as the time intervals be-
tween discrete transitions get smaller, either the simu-
lation slows down or its accuracy decreases. In some
cases, the simulation may even give erroneous results
or error messages. For the purpose of analysis and
controller synthesis, theoretical methods for detecting
and eliminating the Zeno phenomenon may be neces-
sary. For the purpose of simulation it may be possi-
ble to detect the Zeno phenomenon “on the 
y”, and
therefore circumvent it by appropriately de�ning the
execution of the system beyond the limit time of the
discrete transitions. For certain classes of hybrid sys-
tems, in cases when the switching is closely related to
sliding modes, this possibility was recently explored
in [15,13], where an e�cient and accurate simula-
tion method was proposed that made use of the con-
cept of Filippov solutions. Here we propose to extend
the approach to more general classes of Zeno hybrid
systems.
Despite its importance, the Zeno phenomenon is

still not completely understood. Timed automata with

Zeno properties have been analyzed to some extent
in [1–3,9]. For more general hybrid automata, how-
ever, subtleties in the continuous dynamics make the
analysis more challenging. The main contribution
of this paper is to illustrate properties of Zeno hy-
brid automata through examples, and to propose a
method for extending Zeno executions beyond the
limit of the transition times using regularization tech-
niques. Formal de�nitions of hybrid automata and
their executions are given in Section 2. Based on
these de�nitions, results on existence and unique-
ness of executions are derived for a special class
of hybrid automata, referred to as automata with
transverse invariants. These results are then used in
Section 3, where examples of Zeno hybrid automata
in this class are analyzed to highlight the di�erent
manifestations of the Zeno phenomenon. Section 4
discusses regularization of Zeno hybrid automata.
Using the examples of Section 3, it is shown that
di�erent regularizations of a Zeno execution may
suggest di�erent extensions. This indicates that, even
though regularization may be used to extend Zeno
executions beyond the limit of the transition times,
additional information about the underlying physi-
cal process may be needed to select a meaningful
extension.

2. Hybrid automata

Consider a �nite collection V of variables and let
V denote the set of valuations (possible assignments)
of these variables. We use lower case letters to denote
both a variable and its valuation. We refer to vari-
ables whose set of valuations is countable as discrete
and to variables whose set of valuations is a subset
of a Euclidean space as continuous. We assume that
Euclidean spaces,Rn for n¿0, are given the Euclidean
metric topology, whereas countable and �nite sets are
given the discrete topology (all subsets are open). For
a subset U of a topological space we use 2U to denote
the set of all subsets of U . We use ∧ to denote the
logical “and” and ∨ to denote “or”.

2.1. Hybrid automata and executions

The following de�nitions are based on [12]. A hy-
brid system will involve continuous evolution as well
as instantaneous transitions. To distinguish the times
at which discrete transitions take place we introduce
the notion of a hybrid time trajectory.
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De�nition 1 (Hybrid time trajectory). Ahybrid time
trajectory � = {Ii}Ni=0 is a �nite or in�nite sequence
of intervals of the real line, such that
• for all 06i¡N; Ii = [�i; �′i] with �i6�

′
i = �i+1;

• if N ¡∞, either IN = [�N ; �′N ] with �N6�′N ¡∞,
or IN = [�N ; �′N ) with �N ¡�′N6∞.

The interpretation is that �i are the times at which
discrete transitions take place; notice that multiple
transitions may take place at the same time (if �i =
�′i = �i+1). Hybrid time trajectories can extend to in-
�nity either if � is an in�nite sequence, or if it is a
�nite sequence ending with an interval of the form
[�N ;∞). We denote by T the set of all hybrid time
trajectories. Each �∈T is fully ordered by the rela-
tion ≺, which for t ∈ [�i; �′i]∈ � and t′ ∈ [�j; �′j]∈ � is
de�ned as t≺ t′ if either i¡ j or i= j and t ¡ t′. For
t ∈R and �∈T we use t ∈ � as a shorthand notation
for “there exists a j such that t ∈ [�i; �′j]∈ �”. For a
topological space K and a �∈T, we use k : � → K
as a shorthand notation for a map assigning values
from K to all t ∈ �. We say �={Ii}Ni=0 ∈T is a pre�x
of �̂ = {Ji}Mi=0 ∈T and write �6�̂ if either they are
identical or � is �nite, M¿N; Ii = Ji for all i = 0;
: : : ; N − 1, and IN ⊆ JN . The pre�x relation is a par-
tial order on T. Let 2X denote the set of all subsets
of X.

De�nition 2 (Hybrid automaton). A hybrid automa-
ton H is a collection H = (Q; X; Init; f; I; E; G; R),
where
• Q is a �nite collection of discrete variables;
• X is a �nite collection of continuous variables with
X = Rn;

• Init⊆Q× X is a set of initial states;
• f : Q × X → TX is a vector �eld, assumed to be
Lipchitz continuous in its second argument;

• I : Q→ 2X assigns to each q∈Q an invariant set;
• E⊂Q×Q is a collection of edges;
• G : E → 2X assigns to each edge e = (q; q′)∈E a
guard; and

• R : E×X→ 2X assigns to each edge e=(q; q′)∈E
and x∈X a reset relation.

We refer to (q; x)∈Q×X as the state of H . Picto-
rially, a hybrid automaton can be represented by a di-
rected graph, with vertices Q and edges E. With each
vertex q∈Q, we associate a vector �eld f(q; x) and
an invariant I(q). With each edge e∈E, we associate
a guard G(e) and a reset relation R(e; x).

De�nition 3 (Execution). An execution � of a hybrid
automatonH is a collection �=(�; q; x) with �∈T; q :
�→ Q, and x : �→ X, satisfying
• (q(�0); x(�0))∈ Init (initial condition);
• for all i such that �i ¡ �′i ; x(t) is continuously dif-
ferentiable and q(t) is constant for t ∈ [�i; �′i], and
x(t)∈ I(q(t)) and dx(t)=dt = f(q(t); x(t)) for all
t ∈ [�i; �′i) (continuous evolution); and

• for all i; e = (q(�′i); q(�i+1))∈E; x(�′i)∈G(e), and
x(�i+1)∈R(e; x(�′i)) (discrete evolution).

For an execution � = (�; q; x) we use (q0; x0) =
(q(�0); x(�0)) to denote the initial state of �. We say
�=(�; q; x) is a pre�x of �′=(r′; q′; x′) (write �6�′)
if �6�′ and (q(t); x(t))=(q′(t); x′(t)) for all t ∈ �. We
say � is a strict pre�x of �′ (write �¡�′) if �6�′ and
� 6= �′. It is easy to show that the set of executions
of a hybrid automaton is pre�x closed and partially
ordered by the pre�x relation.
Unlike conventional continuous dynamical systems,

the interpretation is that an automaton H accepts an
execution �=(�; q; x) (as opposed to generates). This
conceptual di�erence allows one to consider hybrid
automata that accept no executions for some initial
states, accept multiple executions for the same initial
states, or do not accept executions over arbitrarily
long time horizons. An execution �=(�; q; x) is called
�nite if � is a �nite sequence ending with a closed
interval, in�nite if � is an in�nite sequence or if∑

i (�
′
i − �i) =∞, Zeno if it is in�nite but ∑i (�

′
i −

�i)¡∞, and maximal if it is not a strict pre�x of
any other execution of H . For an in�nite execu-
tion we de�ne the Zeno time as �∞ =

∑
i (�

′
i − �i).

Clearly, �∞¡∞ if the execution is Zeno and
�∞ = ∞ otherwise. We use H(q0 ;x0) to denote the
set of all executions of H with initial condition
(q0; x0)∈ Init; HM

(q0 ;x0) to denote the correspond-
ing maximal executions, and H∞

(q0 ;x0) to denote the
in�nite executions. For all (q0; x0)∈ Init, we have
H∞

(q0 ;x0)⊆HM
(q0 ;x0)⊆H(q0 ;x0), since in�nite execu-

tions cannot be extended (so they must be maximal)
and maximal executions may be blocking (so they
need not be in�nite). These sets may be empty or
may contain multiple executions.

De�nition 4 (Non-blocking and deterministic auto-
maton). A hybrid automaton H is called non-blocking
if H∞

(q0 ;x0) is non-empty for all (q0; x0)∈ Init. It is
called deterministic if HM

(q0 ;x0) contains at most one
element for all (q0; x0)∈ Init.



144 K.H. Johansson et al. / Systems & Control Letters 38 (1999) 141–150

2.2. Existence and uniqueness of executions

Next, we derive some simple conditions to char-
acterize deterministic and non-blocking automata.
We restrict our attention to a special class of hybrid
automata, where the vector �eld is, in a sense, trans-
verse to the boundary of the invariant set. Assume
f is analytic in its second argument. For a function
� : Q × X → R, also analytic in its second argu-
ment, recursively de�ne the Lie derivative of � along
f; Lmf� : Q× X→ R, by

Lmf�(q; x) =



�(q; x); m= 0;(
@
@x
Lm−1f �(q; x)

)
f(q; x); m¿ 0:

De�nition 5 (Transverse invariants). A hybrid au-
tomaton H is said to have transverse invariants if f
is analytic in its second argument and there exists a
function � : Q × X → R, also analytic in its second
argument, such that
• I(q) = {x∈X: �(q; x)¿0} for all q∈Q; and
• for all (q; x)∈Q × X, there exists a �nite m∈N
such that Lmf�(q; x) 6= 0.

For a hybrid automaton with transverse invariants
we de�ne pointwise the relative degree as a function
n : Q× X→ N with

n(q; x) :=min{m∈N: Lmf�(q; x) 6= 0}:
For all q∈Q we also de�ne
Out(q) := {x∈X: Ln(q;x)f �(q; x)¡ 0}:
For each discrete state q∈Q, the set Out(q) contains
the continuous states from which it is impossible to
remain in q by continuous evolution.
The following lemma indicates that a hybrid auto-

maton with transverse invariants in non-blocking if
transitions with non-empty reset relations are enabled
along the boundary of the invariant sets.

Lemma 1. A hybrid automaton H with transverse
invariants is non-blocking, if for all q∈Q and for
all x∈Out(q) there exists (q; q′)∈E such that
x∈G(q; q′) and R((q; q′); x) 6= ∅.

The following lemma states that a hybrid automaton
is deterministic if (1) discrete transitions are forced
by the continuous 
ow exiting the invariant whenever
they are enabled by the corresponding guard, (2) no
two discrete transitions are enabled simultaneously,

and (3) no point can be mapped onto two di�erent
points by the reset map.

Lemma 2. A hybrid automaton H with transverse
invariants is deterministic if
(1) x∈⋃

(q;q′)∈E G(q; q
′) implies x∈Out(q);

(2) (q; q′)∈E and (q; q′′)∈E with q′ 6= q′′ imply
G(q; q′) ∩ G(q; q′′) = ∅; and

(3) (q; q′)∈E and x∈G(q; q′) imply |R(q; q′; x)|61.

The proofs of Lemmas 1 and 2 are given in [10].
Summarizing, we have that if a hybrid automaton
with transverse invariants satis�es the conditions of
Lemmas 1 and 2, then it accepts a unique in�nite
execution for all (q0; x0)∈ Init.

3. Zeno hybrid automata

De�nition 6 (Zeno hybrid automaton). A hybrid
automaton H is called Zeno if there exists (q0; x0)∈
Init such that all executions in H∞

(q0 ;x0) are Zeno
executions. 2

We illustrate the Zeno property through examples:
an automaton modeling a water tank system and an
automaton modeling a bouncing ball. First, however,
a hybrid automaton that does not have transverse
invariants is discussed.

3.1. Non-analytic automaton

Consider the smooth, but non-analytic, scalar func-
tion, s, given by s(x)=exp(−1=|x|)sin(1=|x|) if x 6= 0
and s(0) = 0. We de�ne a hybrid automaton by
• Q= {q1; q2} and X = R;
• Init =Q× X;
• f(q; x) = 1 for all (q; x)∈Q× X;
• I(q1)={x∈X: s(x)60} and I(q2)={x∈X: s(x)
¿0};

• E = {(q1; q2); (q2; q1)};
• G(q1; q2)= {x∈X: s(x)¿0} and G(q2; q1)= {x∈
X: s(x)60}; and

• R((q1; q2); x) = R((q2; q1); x) = {x}.
It is easy to see that the in�nite execution of this
automaton with initial state (q1;−1) exhibits an in�-

2 An alternative de�nition is that a Zeno automaton requires
at least one execution in H∞

(q0 ;x0)
to be Zeno. For deterministic

hybrid automata, such as the ones discussed in the subsequent
examples, the two de�nitions coincide.
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Fig. 1. Water tank system and corresponding hybrid automaton.

nite number of discrete transitions by �∞=1. The rea-
son is that the non-analytic function s has an in�nite
number of zeros in the bounded interval (−1; 0).

3.2. Water tank automaton

Consider the water tank system of Alur and
Henzinger [2] shown in Fig. 1. For i = 1; 2, let xi
denote the volume of water in Tank i, and vi ¿ 0
denote the (constant) 
ow of water out of Tank i. Let
w denote the constant 
ow of water into the system,
directed exclusively to either Tank 1 or Tank 2 at
each point in time. The objective is to keep the water
volumes above r1 and r2, respectively (assuming that
x1(0)¿r1 and x2(0)¿r2). This is to be achieved by
a switched control strategy that switches the in
ow
to Tank 1 whenever x16r1 and to Tank 2 whenever
x26r2. More formally, the water tank automaton is a
hybrid automaton, denoted by WT, with
• Q= {q1; q2} and X = R2;
• Init=Q×{x∈X: (x1¿r1)∧ (x2¿r2)}; r1; r2¿ 0;
• f(q1; x)=(w−v1;−v2) andf(q2; x)=(−v1; w−v2);
v1; v2; w¿ 0;

• I(q1) = {x∈X: x2¿r2} and I(q2) = {x∈X: x1¿
r1};

• E = {(q1; q2); (q2; q1)};
• G(q1; q2) = {x∈X: x26r2} and G(q2; q1) =
{x∈X: x16r1}; and

• R= ((q1; q2); x) = R((q2; q1); x) = {x}.
It is straightforward to show that WT accepts a unique
in�nite execution for each initial state [10]. Moreover,
if max{v1; v2}¡w¡v1 + v2, then WT is Zeno with
Zeno time �∞= (x1(0) + x2(0)− r1− r2)=(v1 + v2−
w), where (x1(0); x2(0)) is the continuous part of the
initial state.

Fig. 2. Hybrid automaton for a simple model of a bouncing ball.

3.3. Bouncing ball automaton

Consider a simple model of an elastic ball bouncing
on the ground, losing a fraction of its energy with each
bounce. Let x1 denote the altitude of the ball and x2
its vertical speed. A hybrid automaton, BB, describing
this system is shown in Fig. 2 and is de�ned by
• Q= {q} and X = R2;
• Init = {q} × {x∈X: x1¿0};
• f(q; x) = (x2;−g) with g¿ 0;
• I(q) = {x∈X: x1¿0};
• E = {(q; q)};
• G(q; q)={x∈X: [x1¡ 0]∨ [(x1 =0)∧ (x260)]};
and

• R((q; q); x) = {(x1;−x2=c)} with c¿1.
We can again show that BB accepts a unique execution
for each initial state [10]. Moreover, if c¿ 1, then BB
is Zeno with Zeno time

�∞ =
x2(0)
g

+
(c + 1)

√
x2(0)2 + 2gx1(0)
g(c − 1) ;

where (x1(0); x2(0)) is the continuous part of the
initial state.

3.4. Discussion

The three examples introduced above have some
similar properties but shed light on di�erent aspects
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of the Zeno phenomenon. The type of Zeno execution
observed in the �rst example cannot occur in hybrid
systems with transverse invariants. However, in many
cases the invariants cannot be described as I(q) =
{x∈X: �(q; x)¿0}, for some � analytic in x. This is,
for example, the case with polygonal invariant sets.
Zeno executions related to these types of systems are
the topic of current research, but will not be discussed
further here.
The water tank automaton and the bouncing ball

automaton both have transverse invariants. In these
examples, the Zeno phenomenon is due to modeling
simpli�cations. In the water tank example the dynam-
ics of switching the input 
ow from one tank to the
other are abstracted away, while in the bouncing ball
example the bounce dynamics are replaced by a simple
reset map. A way of resolving the Zeno phenomenon
by reintroducing some of these physical considera-
tions through the process of regularization is discussed
in the next section. The bouncing ball example is the
only one with a non-trivial reset map, which leads
to discontinuities in the evolution of the continuous
state. The water tank automaton, on the other hand,
demonstrates a situation where analysis and controller
synthesis techniques may fail in the presence of Zeno
executions. It is easy to show (for example, by in-
duction) that along all executions of the water tank
automaton the water in both tanks remains above the
desired levels. Clearly, this is not the case for the phys-
ical system the automaton is supposed to model.
In all of the above examples, an in�nite number of

transitions takes place in the time interval (�∞−�; �∞)
for any �¿ 0. There are, however, also Zeno hybrid
automata for which there exists an interval (�∞ −
�; �∞) in which no transitions take place, while an in-
�nite number of transitions takes place at �∞. One
such example is the obvious hybrid automaton that de-
scribes the evolution of the discontinuous di�erential
equation dx=dt=−sgn x. More generally, di�erential
equations of the form dx=dt=F(x), where F is piece-
wise continuous, tend to exhibit this kind of Zeno be-
havior. The classical way of analyzing such systems
is by introducing the notion of sliding modes [8,18].

4. Regularization

Regularization is a standard technique for dealing
with di�erential equations whose solutions are not well
de�ned.We propose a similar approach to extend Zeno
executions beyond the Zeno time, primarily for the

purpose of simulation. The formal treatment of how to
regularize general Zeno hybrid automata is the topic
of current research. Here we limit ourselves to speci�c
regularizations of the water tank and bouncing ball
automata introduced above. All regularizations are
motivated by physical considerations of the underly-
ing systems. For the water tank automaton, it is inter-
esting to notice that di�erent regularizations suggest
di�erent extensions of the executions. For the bounc-
ing ball automaton, all extensions considered here are
consistent with one another and physical intuition.
The regularizations are only presented graphically in
this section; see [10] for formal de�nitions.
Consider a non-blocking and deterministic hybrid

automaton H and assume that for every (q0; x0)∈ Init
the execution �∈H∞

(q0 ; x0) is Zeno. Regularization
of H involves constructing a family of determin-
istic, non-blocking, and non-Zeno automata H�,
parameterized by a real-valued parameter, �¿ 0, and
a continuous map, � :Q� × X� → Q × X, relating
the state of each H� to the state of H . Given an exe-
cution �� = (��; q�; x�), we use �(��) as a shorthand
notation for the collection (�; q; x) with � = ��, and
(q(t); x(t)) = �(q�(t); x�(t)) for all t ∈ �. Note that in
general �(��) will not be an execution of H . How-
ever, the construction of the family H� should be such
that H� tends to H as � tends to zero, in the sense that
if (q�0 ; x�0 )∈ Init�, then �(q�0 ; x�0 )∈ Init, and if �� is
the execution of H� with initial condition (q�0 ; x�0 ),
then �(��) converges to �∈H∞

�(q�0 ;x�0 )
over all com-

pact subintervals of [�0; �∞), where the convergence
is taken in the Skorohod metric [4]. 3

4.1. Water tank automaton

We �rst study temporal and spatial regularizations
of the water tank automaton. Throughout, we as-
sume that max{v1; v2}¡w¡v1 + v2, so that WT is
Zeno.
Physically, temporal regularization represents a sit-

uation where there is a delay, �¿ 0, between the time
the in
ow is commanded to switch from one tank to
the other and the time the switch actually takes place.
The temporal regularization of the water tank automa-
ton, WTT� , is shown in Fig. 3. It is easy to show that
WTT� accepts a unique non-Zeno execution for each
initial state. Overloading the notation somewhat, we

3 Formally, we need to eliminate all “inert” transitions from �,
that is, replace all [�i; �′i ][�i+1; �

′
i+1] for which �(q�(�

′
i ); x�(�

′
i )) =

�(q�(�i+1); x�(�i+1)) by a single interval [�i; �′i+1].
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Fig. 3. Temporal regularization of the water tank automaton.

Fig. 4. Simulation of temporally regularized water tank automaton WTT� .

can express the relation between the states of WTT� and
the states of WT through the map �(qi; (x1; x2; x3))=
�(q′i ; (x1; x2; x3))=(qi; (x1; x2)), for i=1; 2. If we set
r1 = r2 =1; v1 =2; v2 =3, and w=4, and assume that
initially x1(0)=x2(0)=2 and q(0)=q1, then �∞=2.
Fig. 4 shows simulation results for WTT� ; x1 and x2
are plotted as functions of time for two values of �; 0:1
and 0:01. Notice that as � decreases, the execution of
WTT� converges over the interval [�0; �∞) = [0; 2) to
the execution of WT, in the sense discussed above.
For t ¿ �∞, the continuous part of the execution of
WTT� tends to (x1(t); x2(t)) = (1; 1− (t − �∞)). Fig. 5. Spatially regularized water tank automaton WTS� .
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Fig. 6. Simulation of the spatially regularized water tank automaton WTS� .

The spatial regularization of the water tank automa-
ton corresponds to a situation where the measurement
of x1 and x2 is based on 
oats, which have to move
a certain distance � to register a change. It can be im-
plemented by introducing a minimum deviation in the
continuous state variables between the discrete transi-
tions. The regularized automaton, WTS� , is presented
in Fig. 5. Again one can show that WTS� accepts a
unique non-Zeno execution for each initial state. We
can relate the state of WTS� to the state of WT through
�(qi; (x1; x2; x3; x4))=(qi; (x1; x2)), for i=1; 2. Fig. 6
shows simulation results for WTS� with � = 0:1 and
0:01 and the parameters given above. As for the tem-
poral regularization, the execution of WTS� converges
to the execution of WT over the interval [�0; �∞). For
t ¿ �∞, however, the execution converges to x1(t) =
x2(t) =−(t − �∞)=2 + 1, which is di�erent from the
limit in the case of temporal regularization.

4.2. Bouncing ball automaton

Next, we consider temporal and dynamic regular-
izations of the bouncing ball automaton. Throughout
we assume c¿ 1 so that BB is Zeno.
Temporal regularization corresponds to a situ-

ation where each bounce of the ball takes time
�¿ 0. The temporally regularized automaton, BBT� ,
is given in Fig. 7. One can show that BBT� accepts
a unique non-Zeno execution for each initial state.
The state of BBT� is related to the state of BB by
�(q; (x1; x2; x3)) = �(q′; (x1; x2; x3)) = (q; (x1; x2)).

Fig. 7. Temporal regularization of the bouncing ball automaton.

If we set g = 10 and c = 2 and assume that initially
x1(0) = 0 and x2(0) = 10, then �∞ = 4. Fig. 8 shows
simulation results for BBT� ; x1 and x2 are plotted as a
function of a time for �=0:1 and 0:01. As � decreases,
the execution of BBT� converges to the execution of
BB for t ∈ [0; �∞). For t ¿ �∞ the execution of BBT�
converges to the constant x1(t) = x2(t) = 0, which is
physically intuitive.
Finally, consider a dynamic regularization of the

bouncing ball automaton, where the ground is mod-
eled as a sti� spring with spring constant 1=� and no
damping. The dynamic regularization of the bounc-
ing ball automaton, BBD� , is shown in Fig. 9. One
can show that BBD� is deterministic, non-blocking, and
non-Zeno. The state of BBD� is related to the state of
BB by �(q; (x1; x2)) = �(q′; (x1; x2)) = (q; (x1; x2)).
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Fig. 8. Simulation of the temporal regularization of the bouncing ball.

Fig. 9. Dynamic regularization of the bouncing ball.

Fig. 10 shows simulation results for BBD� with �=0:01
and 0:0001, and the parameter values given above. As
� decreases, the execution of BBD� converges to the ex-
ecution of BB before �∞, and to (x1(t); x2(t))=(0; 0)
after �∞. Notice that the limiting behaviors of the tem-
poral and dynamic regularizations for the bouncing
ball are consistent with one another and with physical
intuition.

5. Conclusions

We gave an introductory discussion on Zeno hybrid
automata. We showed how Zeno executions can arise
as a result of modeling over-abstraction, and discussed
their importance for the analysis, controller synthesis,
and simulation of hybrid automata.

Fig. 10. Simulation of the dynamic regularization of the bouncing
ball.

In some cases (for example, in simulation) it may
be desirable to extend a Zeno execution beyond the
Zeno time. If the Zeno execution is a result of mod-
eling over-abstraction, the extension should be moti-
vated by intuition about what a more detailed model
of the underlying physical process may involve. We
proposed a method for performing such extensions
using regularization techniques. Unfortunately, our
examples indicated that in some cases the extension
obtained through regularization may be non-unique,
and may depend on the speci�c assumptions made
about the detailed model. This is, however, not sur-
prising, since it is well-known that variable structure
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systems need not have a unique (Filippov) solution
[18].
The work presented here is just a �rst step

towards a more complete understanding of the Zeno
phenomenon. Current research focuses on deriving
conditions to determine when an automaton is Zeno,
and classifying di�erent types of Zeno executions.
In parallel we are working towards formalizing the
notion of an extension and investigating di�erent ap-
proaches to perform extensions for simulation, includ-
ing regularization, averaging, and Filippov solutions.
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