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Abstract

Zeno hybrid automata are hybrid systems that can ex-
hibit in�nitely many discrete transitions in a �nite time
interval. Such automata arise due to modeling simpli-
�cations and may deteriorate simulation e�ciency and
accuracy considerably. Some basic properties of Zeno
hybrid automata are explored. Possible ways to extend
a simulation beyond the Zeno time are suggested.

1 Introduction

Design evaluation through simulation remains an in-
valuable tool in hybrid system design, despite recent
progress in the development of formal controller synthe-
sis and analysis methods [5, 13]. Simulation of hybrid
systems poses a number of theoretical and computa-
tional problems, not encountered in conventional con-
tinuous systems. These problems include guard cross-
ing, lack of existence of solutions for certain initial con-
ditions, lack of uniqueness of solutions, and a situa-
tion where the system being simulated takes an in�-
nite number of discrete transitions in a �nite amount
of time. The latter is referred to as Zeno. The prob-
lems of blocking and non-determinism [18, 8, 12] as
well as Zeno [1, 9, 4, 2, 10] have only been studied to
some extent. The Zeno phenomenon can make hybrid
simulation imprecise and time-consuming. Simulation
packages, such as Dymola [7], Omola [16], and SHIFT
[6], have been developed for hybrid systems. The sim-
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ulation problem is generically di�cult for these when
there is fast switching between the discrete states. The
reason for this is that numerical solvers divide the hy-
brid simulation problem into sequences of regular con-
tinuous simulations and instances of solving algebraic
equations for the discrete transition times [3]. There-
fore the simulation get stuck, when a large number of
transitions appear in a short time interval. An extreme
case is a Zeno execution.

The main contribution of this paper is to show some
basic properties of Zeno hybrid automata together with
possible methods to resolve Zenoness. A number of
Zeno systems is presented that illustrate several in-
teresting phenomena. The outline of the paper is as
follows. In Section 2 the formal notation of hybrid au-
tomata is presented. Zeno hybrid automata are intro-
duced in Section 3. Section 4 presents some conver-
gence results for Zeno executions. We propose methods
in Section 5 for extending Zeno executions beyond the
Zeno time. Some conclusions are given in Section 6.

2 Hybrid Automata

The following de�nitions are based on [13, 10]. See [12]
for notations.

De�nition 1 (Hybrid Automaton)
A hybrid automatonH is a collection H = (Q, X, Init,
f , I, E, G, R), where

� Q is a �nite set of discrete variables;

� X is a �nite set of continuous variables;

� Init � Q�X is a set of initial states;

� f : Q�X 7! TX is a vector �eld;

� I : Q 7! 2X is an invariant set for each q 2 Q;

� E � Q�Q is a collection of edges;

� G : E 7! 2X is a guard for each edge; and

� R : E �X 7! 2X is a reset map for each edge.

p. 1



We refer to (q; x) 2 Q � X as the state of H and as-
sume X = Rn. A hybrid automaton can be represented
by a directed graph, (Q; E), with vertices Q and edges
E. With each vertex q 2 Q, we associate a set of con-
tinuous initial states Initq = fx 2 X : (q; x) 2 Initg,
a vector �eld fq(x) = f(q; x), assumed to be globally
Lipschitz, and an invariant set I(q). With each edge
e 2 E, a guard G(e) and a reset relation R(e; x) are
associated.

De�nition 2 (Hybrid Time Trajectory)
A hybrid time trajectory � = fIig

N
i=0 is a �nite or in-

�nite sequence of intervals, such that Ii = [�i; �
0

i ] for
i < N and either IN = [�N ; �

0

N ] or IN = [�N ; �
0

N ) if

N <1, where �i � � 0i = �i+1.

The interpretation is that the discrete transitions take
place at �i and the continuous evolution on non-
vanishing intervals [�i; � 0i ]. We denote by T the set of
all hybrid time trajectories.

De�nition 3 (Execution)
An execution � of a hybrid automaton is a collection

� = (�; q; x) with � 2 T , q : � 7! Q, and x : � 7! X,

satisfying

�
�
q(�0); x(�0)

�
2 Init;

� for all i with �i < � 0i , q(�) is constant and x(�) is
a solution1 to the di�erential equation dx=dt =
f(q; x) over [�i; � 0i ], and for all t 2 [�i; � 0i), x(t) 2
I
�
q(t)

�
; and

� for all i, e =
�
q(� 0i); q(�i+1)

�
2 E, x(� 0i ) 2 G(e),

and x(�i+1) 2 R
�
e; x(� 0i)

�
.

We say a hybrid automaton H accepts an execution �,
if H and � satisfy the conditions in De�nition 3. The
initial state of � is denoted (q0; x0) =

�
q(�0); x(�0)

�
. An

execution is �nite if � is a �nite sequence ending with
a closed interval, it is in�nite if � is either an in�nite
sequence or if

P
i(�

0

i � �i) =1, and it is maximal if it
is not a strict pre�x of any other execution of H [12].
We use H(q0;x0) to denote the set of all executions of
H with initial condition (q0; x0) 2 Init, HM

(q0;x0)
the set

of all maximal executions, and H1(q0;x0) the set of all
in�nite executions. A hybrid automaton is called non-
blocking if H1(q0;x0) is non-empty for all (q0; x0) 2 Init,

and it is called deterministic ifHM
(q0;x0)

contains at most

one element for all (q0; x0) 2 Init. See [12] for some
results on when a hybrid automaton is non-blocking
and deterministic.

De�nition 4 (Reachable State)
A state (bq; bx) 2 Q � X is called reachable by H,

if there exists a �nite execution � = (�; q; x) 2
H(q0;x0) and (q0; x0) 2 Init with � = f[�i; � 0i ]g

N
i=0 and�

q(� 0N ); x(�
0

N )
�
= (bq; bx).

1\Solution" is interpreted in the sense of Caratheodory.
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Figure 1: Chattering system automaton in Example 1.
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Figure 2: Water tank system and hybrid automaton.

The set of states reachable by H is denoted
Reach(H) � Q�X.

3 Zeno Hybrid Automata

Three examples are introduced in this section to illus-
trate various aspects of Zeno hybrid automata. Some
properties of Zenoness are explored in next section.

De�nition 5 (Zeno Hybrid Automaton)
An execution in H1(q0;x0) is called Zeno if

P
1

i=0(�
0

i � �i)

is bounded. The time �1 =
P1

i=0(�
0

i � �i) is the Zeno

time. A hybrid automaton is Zeno if all executions in

H1(q0;x0) are Zeno for some (q0; x0) 2 Init.

Example 1 (Chattering System)
Consider the hybrid automaton shown in Figure 1 with
Init = Q � X. One can show that this automaton is
non-blocking and deterministic, and therefore accepts
a unique in�nite execution for all initial states. It is also
easy to show that the executions are Zeno. In particu-
lar, an execution starting in x0 at �0 reaches x = 0 in
�nite time � 00 = �0 + jx0j and takes an in�nite number
of transitions from then on, without any time progress.
The Zeno time is thus equal to �1 = � 00.

Example 2 (Water Tank System [2])
Consider the water tank system in Figure 2. Let xi
denote the volume of water in Tank i, and vi > 0 de-
note the constant 
ow of water out of Tank i. Let w
denote the constant 
ow of water into the system, ded-
icated exclusively to either Tank 1 or Tank 2 at each
point in time. The control task is to keep the water
volumes above r1 and r2, respectively, assuming that
x1(0) > r1 and x2(0) > r2. This is to be achieved by
a switched control strategy that switches the in
ow to
Tank 1 whenever x1 � r1 and to Tank 2 whenever
x2 � r2. The hybrid automaton describing this system
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Figure 3: Simulation of Zeno water tank system. The tank
levels given by the continuous states x1 (solid)
and x2 (dashed) are shown. The simulation gets
stuck at the Zeno time �1 = 2.

_x = f1(x)

x1 � bh1 ^ x3 � bw1

_x = fN+1(x)

x1 � bhN+1

x 2 G1 x 2 GN+1x2 := �cx2 x2 := �cx2

x3 � bw1 x3 � bwN

Figure 4: Bouncing ball automaton in Example 3.

is given in Figure 2, where Init = Q � fx 2 X : x1 >
r1 ^ x2 > r2g. One can show that the water tank au-
tomaton is non-blocking and deterministic, and there-
fore accepts a unique in�nite execution for each initial
state. This execution is Zeno if w < v1 + v2. Figure 3
shows a simulation of the system with r1 = r2 = 1,
v1 = 2, v2 = 3, and w = 4. The Zeno time is equal to
�1 = 2.

Example 3 (Ball Bouncing on a Staircase)
Consider a ball bouncing down on a N -step staircase.
Assume step k = 1; : : : ; N has width wk > 0 and height
hk > 0, and de�ne bwm =

Pm

k=1wk with bwN+1 = 1

and bhm =
PN

k=m hk. Furthermore, assume that the
ball loses a proportional amount of its vertical velocity
each bounce and that the ball has constant horizontal
speed. A hybrid automaton for this system is shown in
Figure 4. Here f`(x) = (x2;�g; v)

T and Init = fq 2 Q :

q = q`g � fx 2 X : x1 > bhN�`+1 ^ x3 2 ( bw`�1; bw`)g
for ` = 1; : : : ; N + 1, Gk = f(x1 < bhk) _ (x1 = bhk ^
x2 � 0 ^ x3 � bwk)g for k = 1; : : : ; N , and GN+1 =
f(x1 < 0) _ (x1 = 0 ^ x2 � 0)g. This automaton is
non-blocking and deterministic. It can also be shown
to be Zeno, if c 2 [0; 1). The Zeno time depends on the
dimensions of the steps. Figure 5 shows an example
with N = 4 steps. The dimensions of the steps are
given by wk = 1 and hk = k for k = 1; : : : ; 4. The other
parameters are g = 10, v = 1, and c = 0:4. The steps
are su�ciently narrow in this case to let the automaton
accept Zeno executions with in�nitely many discrete
transitions only in the last state.
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Figure 5: Simulation of hybrid automaton describing a
simplistic model for a ball bouncing down a
staircase. The position of the ball is given by
the solid line (x1 versus x3). For this particu-
lar choice of parameters and initial state, the
execution has Zeno time �1 � 6:2.

Examples 1{3 illustrate di�erent aspects of Zeno exe-
cutions. The �rst example is an instance of a piecewise
smooth system [8]. For this class of systems, an in�nite
number of transitions typically takes place at the same
point in time. The second example illustrates the anal-
ysis problems that can arise due to Zeno executions.
One can easily show that along all executions of the
automaton the water level in the two tanks will never
go bellow r1 and r2, respectively, even if w < v1 + v2.
This is clearly not the case for the real system. Finally,
the bouncing ball example illustrates the fact that if a
Zeno system is simulated straightforwardly by sequen-
tially integrating the vector �eld in each state, then the
simulation will not pass the Zeno time. Such a simu-
lation is in many cases not acceptable, because it does
not give any idea about the dynamical behavior of the
real system beyond the Zeno time. For the bouncing
ball example, if the �rst step of the staircase is wide
enough for the Zeno time to be reached without falling
o� the edge, the simulation may never reveal the fact
that the ball will eventually fall to the next step and
will start bouncing again.

4 Properties of Zeno Executions

In this section we present some particular features of
Zeno executions. First, we make two straightforward
observations.

Proposition 1
A hybrid automaton is Zeno only if (Q;E) is a cyclic

graph.

Proposition 2
If there exists a �nite collection of states f(qi; xi)gNi=1
such that

� (q1; x1) = (qN ; xN );

� (qi; xi) 2 Reach(H) for some i = 1; : : : ; N ; and
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� (qi; qi+1) 2 E, xi 2 G(qi; qi+1), and xi+1 2
R(qi; qi+1; xi) for all i = 1; : : : ; N ;

then there exists a Zeno execution.

Next, we study convergence of Zeno executions and
therefore introduce the notion of Zeno state.

De�nition 6 (Zeno State)
A state (bq; bx) 2 Q � X is called a Zeno state of a

Zeno execution � = (�; q; x), if there exists a sequence

f�ig1i=0, �i 2 [�i; � 0i ], such that for all N > 0 and all

� > 0, q(�i) = bq and kx(�i)� bxk < � for some i > N .

The discrete part of the Zeno state consists of a discrete
state that is visited in�nitely often by a Zeno execution.
The set of all Zeno states of a Zeno execution is denoted
Z1 � Q � X. For the chattering system in Exam-
ple 1, we have Z1 = fq1; q2g�f0g. For the water tank
automaton in Example 2, Z1 = fq1; q2g � f(r1; r2)g.
The Zeno state of the bouncing ball system is Z1 =
f(qk;bhk)g, where k 2 f1; : : : ; N + 1g depends on the
dimensions of the steps. For the particular case shown
in Figure 5, we have k = N+1 = 5 and Z1 = f(q5; 0)g.
The next three propositions describe the structure of
the Zeno state for two classes of Zeno hybrid automata.
Proofs are given in [19].

Proposition 3
Consider a Zeno hybrid automaton with R(q; q0; x) =
fxg for all (q; q0) 2 E. For every Zeno execution it then

holds that Z1 = Q1 � fbxg for some Q1 � Q andbx 2 X.

This result hence give a condition for when the contin-
uous part of the Zeno states is a singleton. Examples 1
and 2 satisfy the conditions of Proposition 3 and as
expected the continuous part of the Zeno state is a sin-
gleton in both cases. The proposition does not apply
to the bouncing ball system, however. Zeno hybrid au-
tomaton with non-identity reset maps can have more
involved Zeno state [19]. If the reset map, however, is a
contraction, then the continuous part of the Zeno state
is a singleton as stated next.

Proposition 4
Consider a Zeno execution with Z1 = fbqg � X1 for

some bq 2 Q, X1 � X. If R(bq; bq; x) is a contracting

function, then Z1 = fbqg � fbxg for some bx 2 X.

Proposition 4 indicates that all executions of the bounc-
ing ball automaton in Example 3 with c 2 [0; 1) will
have a Zeno state consisting of only one element. Note
that in Example 3 the only cycles are loops, so by
Proposition 1 it follows that if Z1 is non-empty it must
be of the form Z1 = fbqg�X1. If the structure of Z1

is not known, but all reset maps are contracting the
following result holds.

Proposition 5
Consider a Zeno hybrid automaton with R(q; q0; �)
a contracting function and R(q; q0; 0) = f0g for all

(q; q0) 2 E. For every Zeno execution it then holds that

Z1 = Q1 � f0g for some Q1 � Q.

5 Extension of Zeno Executions

Imagine trying to simulate a hybrid automaton along
a Zeno execution. At some point the fast switching is
bound to stall the simulation, provided the simulation
is accurate enough. One can infer the occurrence of this
phenomenon, either o�-line by theoretical analysis or
on-line by detecting the increasing switching rate, and
choose to stop the simulation at some time instant close
to the Zeno time �1. The question then becomes, can
one continue the simulation beyond �1 in a way that is
consistent with the dynamics of the hybrid automaton.
Such continuations of a Zeno execution are discussed
in this section. Three methods based on regularization,
averaging, and Filippov solutions, respectively, are de-
scribed.

To allow us to capture possible continuations of a Zeno
execution � beyond the Zeno time, we introduce the
notion of an extension. An extension is a family of hy-
brid automata, each one of which can be used to simu-
late a possible continuation of the Zeno execution. We
only consider Zeno hybrid automata with identity reset
maps R(�; �; x) = fxg and Zeno states Z1 = Q1�fbxg.
The family of hybrid automata is a collection, denoted
H�, similarly de�ned as a hybrid automaton, but with
discrete states given by Q [ q1 nQ1, dx=dt = f(q; x)
replaced by a di�erential inclusion dx=dt 2 F (q; x) with

F (q; x) =

(
f(q; x); if q 6= q1

co
�S

q2Q1
f(q; x)

	
; if q = q1;

and suitable changes in the de�nitions of invariant sets,
guards, reset maps etc. Figure 6 illustrates how the dis-
crete part of Z1 is collected in one state denoted q1.
A continuation of a Zeno execution � is now any ex-
ecution, with initial condition (q1; bx), accepted by a
hybrid automaton in the extension H�. The intuition
is that since the Zeno phenomena are primarily due to
modeling simpli�cations, the extension should capture
the uncertainty in the model by considering all exe-
cutions that satisfy a di�erential inclusion, instead of
the vector �elds of each individual discrete state of the
Zeno state for the original Zeno automaton.

Once the extension has been �xed, the question now
becomes how to select an automaton out of the exten-
sion in order to simulate beyond the Zeno time. Here we
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q4 q3
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Figure 6: Zeno hybrid automaton with discrete part of the
set of Zeno states Z1 equal to fq1; q2g. A Zeno
execution can be continued by introducing a
discrete state q1 with vector �eld belonging to
the convex hull of the vector �elds in q1 and q2.
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Figure 7: Simulation of spatial regularized water tanks.
The upper plot corresponds to hysteresis � =
0:1 and the lower to � = 0:01. The solid line is
x1 and the dashed x2.

propose three di�erent methods for doing the selection:
using regularization, averaging, or Filippov solution.

5.1 Continuation by Regularization
Regularization involves modifying the original Zeno
automaton by adding regularization parameters that
force the executions to be non-Zeno. For example, a
temporal regularization, which imposes a lower bound
on the amount of time that elapses between succes-
sive discrete transitions, gives a non-Zeno automaton.
Executions for the regularized automaton are de�ned
beyond the Zeno time for arbitrarily small values of
the regularization parameters. As the regularization
parameters tend to zero, the regularized automaton
should in some sense tend to the original automaton.
A continuation of the Zeno execution is then obtained
as the limit of the regularized executions as the regu-
larization parameters tend to zero.

As an example of regularization, consider spatial and
temporal regularization of the water tank automaton
in Example 2. The spatial regularization is de�ned
by introducing a minimum deviation in the continu-
ous state variables between the discrete transitions. A
physical interpretation of the regularization is to as-
sume that the measurement devices for x1 and x2 are

0 0.5 1 1.5 2 2.5 3
0

1

2

3
Time delay = 0.1

0 0.5 1 1.5 2 2.5 3
0

1

2

3
Time delay = 0.01

Time

Figure 8: Simulation of temporally regularized water tank
automaton. The upper plot corresponds to time
delay � = 0:1 and the lower to � = 0:01. The
solid line is x1 and the dashed x2. This tem-
poral regularization suggests another continua-
tion than the spatial regularization in Figure 7.

based on 
oats, which have to move a certain distance
corresponding to the volume � > 0 to respond. The
temporal regularization of the water tank automaton,
on the other hand, corresponds to introducing a lower
bound � > 0 on the time it takes to change the in-

ow from Tank 1 to Tank 2, and vice versa. Simula-
tions of these two regularizations are given in Figures 7
and 8, respectively. Both regularizations de�ne contin-
uations that are admissible by the extensions of the
corresponding Zeno executions. Note that the continu-
ations are di�erent. The spatial regularization suggests
x1(t) = x2(t) = 2� t=2 for t > �1, while the temporal
regularization suggests x1(t) = 1 and x2(t) = 3� t for
t > �1. See [10] for further discussions on regulariza-
tions of Zeno hybrid automata.

5.2 Continuation by Averaging
Extending a Zeno execution � = (�; q; x) through av-
eraging the vector �eld close to the Zeno time gives a
continuation of �. Assume Q1 =

Sk

`=1 q` and de�ne

f(q1; bx) = lim
i!1

1

�i+k � �i

kX
`=1

Z �i+`+1

�i+`

f
�
q`; x(t)

�
dt:

This averaged vector �eld then suggests a continuation
of the Zeno execution through integration of f(q1; bx).
It is easy to check that for the water tank example
f(q1; bx) = (1; 1)T (w�v1�v2)=2. Note that this agrees
with the continuation suggested by the spatial regular-
ization illustrated in Figure 7.

5.3 Continuation by Filippov Solution
For special classes of hybrid automata, the extension
can be restricted in a natural way using the notion
of Filippov solution [8]. Consider a hybrid automa-
ton with invariants given by disjoint sets �lling the
state space, guards being the boundaries of these sets
with vector �elds pointing out of the sets, and iden-
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tity reset maps. Such a hybrid automaton describes
a piecewise smooth system. Assume that the vector
�eld f is an analytic function in x and that the in-
variants are given by I(q) = fx 2 X : �(q; x) �
0g, where � is also an analytic function in x. Con-
sider a Zeno execution with Z1 = fbq; bq0g � fbxg.
Then, we de�ne the continuation of the Zeno exe-
cution through dx=dt = f(q1; x), with initial state
(q1; bx), f(q1; x) = �(x)f(bq; x) + �

1 � �(x)
�
f(bq0; x),

and �(x) = Lf�(q0; x)
�
[Lf�(q0; x) � Lf�(q; x)]. Such

Filippov extension was suggested for simulation of relay
systems in [15]. Zeno executions in Filippov automaton
are in many cases easy to resolve, because the Zeno de-
tection is relatively simple and it is easy to derive the
continuation above. For some simple examples, the ap-
proach has been studied [14] and tested in simulations
[17]. Related ideas of simulating a class of hybrid sys-
tems are discussed in [11].

6 Conclusions

The simulation of hybrid systems poses a number of
di�cult theoretical and computational problems, not
encountered in conventional continuous systems. In this
paper, we have shown how Zeno executions may arise in
hybrid systems. Physical systems are not Zeno. But due
to modeling simpli�cation, models of real systems can
be Zeno. A motivation for our research is to increase
the e�ciency of simulation tools for hybrid systems. In
particular, we are interested in developing methods to
automatically detect Zeno hybrid automata and to ex-
tend the simulation of the automaton beyond the Zeno
time.We illustrated the Zeno phenomena through some
simple physical examples. It might look like they sug-
gest that Zenoness can easily be avoided by introduc-
ing slightly more involved models. In complex systems
it is, however, not obvious that this is the case. Ongo-
ing work includes further investigations of properties of
Zeno hybrid automata, see [19].
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