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What’s new with wireless networked control?

State-based scheduling for control

Exploiting wireless protocols for control

Event-based control

Conclusions
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Wireless control system

How share common network resources while
maintaining guaranteed closed-loop performance?
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What is the effect on control performance
of a shared wireless network?
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Single Process

Packet loss influence on
control performance

Wireless Tank Process
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Uncertainty on several communication layers
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What’s new with control over wireless networks?

* Traditional control systems design is based on assumption
of perfect information being circulated in the system

* Information flow are dedicated to specific control loop

* Devices need to be fixed to infrastrqgture

D E—— |

- Non-ideal communication between system devices;
leads to interference, congestion, delay, loss, outages etc.

Wireless control systems have

+ Information can be shared between components and loops

+ Enhanced mobility and flexibility 4t§4£:--’:2‘:
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What’s new with wireless networked control?

State-base

d scheduling for control

Conclusion

Exploiting wireless protocols for control
Event-based control

S

Where taki

Plant 1

ng medium access decisions?

_I’ Sensor node makes local decisions on when to communicate

Network
manager

Planti
Plant M
Wireless network
(IEEE802.15.4 )
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Network manager allocates communication slots
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Is there a separation between
scheduling-estimation-control?

Stochastic control formulation

Plant:

Xk+1 = Axg + Bug +wy
Scheduler:

8 = fill) € 0.1}

T =[G 1 81 Gt
Controller:

ug = g (1)
1 = [O3h (83 ]

Cost criterion:

N—-1
J(f.8) =E[xyQoin+ Y, (x] Q1xg+u Qou)]
s=0
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Control without scheduling =
Classical LQG control of Kalman

The controller minimizing —»n\y
N-1

J=E [I%Qo:l?]\] +) (T Quzs + uZqus):|

s=0

up = —LpZre _u_ C ——
Lk = (Q2+ BT Sk11B) ' BT Sp 414
where

Sk =Q1+ATS; 1A — AT S, 1B(Qa + BT S, 11 B) ' BT Sy 1A

is given by

Ty = E[zk|{y}§as~] is the minimum mean-square error (MMSE) estimate

Kalman, 1960

Event-based scheduler

Plant:
u X
Xgt1 = Axy + Buy +wy, k k
Scheduler:

O = fk(HlS() {01}
1§ = [, ba oY ]
Controller:

ug = g (1)
1 = [O3h (83 ]

The separation principle does not hold for the optimal closed-loop system, so
the design of the (event-based) scheduler, estimator, and controller is coupled

Feldbaum, 1965; Astrém, 1970; Bar-Shalom and Tse, 1974 Ramesh et al., 2011




Conditions for Separation

Corollary: The optimal controller for the system {?P,S(f),C(g)}, with
respect to the cost ] is certainty equivalent if and only if the
scheduling decisions are not a function of the applied controls.

Nice architecture achieved at the cost of optimality

17
Ramesh et al., 2011

Event-based control architecture

= Plant P: i = CRM: ]P’(ak:”—yk:l) = P(af:llnkzl) =p
Xi+1 = aX + buyg + wy R N
k=l —ay)

a

= State-based Scheduler S:
L L0 500
{]_ e — %, 2> ea | Observer O: y = 6 x}

Yk =

0, otherwise. e = O(a@¥_yes + bug—1) + Sxe

5 o C N
Xijme_, = AX_ypy + bt = Controller C: u = —Lx§,

Ramesh et al., CDC, 2012
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How to integrate
contention resolution mechanisms?

* Hard problem because of correlation between transmissions (and the plant states)
* Closed-loop analysis can still be done for classes of event-based schedulers and MAC'’s

Ramesh et al., CDC 2011

Contention resolution through CSMA/CA

source Varaiya, 2011

max n trials

collision (P,)

success (1 — Fy)

transmit

* Every transmitting device executes this protocol
* For analysis, assume carrier sense events are independent [Bianchi, 2000]

CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance

10



Detailed model of CSMA/CA in IEEE 802.15.4

(P w
- \A —
i Backoff SiEgE M. »

Park, Di Marco, Soldati, Fischione, J, 2009

Markov state (s,c,r)

— s: backoff stage

— c: state of backoff counter

— r: state of retransmission counter
Model parameters

— q,: traffic condition (g,=0 saturated)

— mgy m, my, n: MAC parameters
Computed characteristics

— a: busy channel probability during CCA1
— B: busy channel probability during CCA2
— P_: collision probability

Detailed model for numerial evaluations

Reduced-order models for control design
Validated in simulation and experiment
Cf., Bianchi, 2000; Pollin et al., 2006

Lecture 2 Qutline

What’s new with wireless networked control?
State-based scheduling for control

Exploiting wireless protocols for control

Conclusions

Event-based control
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Slotted medium access

Many medium access protocols have slotted

contention-free and contention access periods

Pl L P L] e Time

|

’ Periodic superframe of N slots ‘

Hybrid MAC protocols

Exploit the mix of CFP’s and CAP’s for
networked control

Contention-free period for TDMA scheduled communication

LM 0L e L s

|

’ Periodic superframe of N slots ‘

Contention access period for random CSMA communication
RS RENENN  RENUNUNERNCNCCCCUCERNNUNENRN ANECT

Araujo et al., 2010, Tiberi et al., 2010
TDMA = Time division multiple access, CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance
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IEEE 802.15.4 MAC

Device

Contention-Access Collision-Free .
Period (CAP) Period (CFP) . .
Beacon|[— Beacon || .

Inactive . .

= Superframe Duration (S.D.)

Network Manager

— Beacon Interval (B.I.) —_—

25
Device
Contention-A Collision-F
Period (CAP) | Period (CFP) . o ©
Beacon|[— Beacon || .
Inactive . ‘
*«— Superframe Duration (S.D.)
— Beacon Interval (B.I.) —_— Network Manager
e 16 slots for CAP and CFP
e Maximum 7 slots for CFP
2%
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Beacon |[&

IEEE 802.15.4 MAC

Contention-Access Collision-Free
Period (CAP)

Period (CFP)

Beacon ||

Inactive

—

*«— Superframe Duration (S.D.)

Beacon Interval (B.1.) —_—

27
CSMA/CA
Contention-Access Collision-Free
Period (CAP) | Period (CFP) | -~
Beacon [~ Beacon ||
Inactive
*«— Superframe Duration (S.D.)
— Beacon Interval (B.I.) —_— Data message
28
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IEEE 802.15.4 MAC

CSMA/CA
Contention-Access Collision-Free
Period (CAP) | Period (CFP) | .
Beacon [ Beacon ||
Inactive
*«— Superframe Duration (S.D.)
— Beacon Interval (B.1.) _—

29
IEEE 802.15.4 MAC
CSMA/CA
Backoff!
Contention-Access Collision-Free
Period (CAP) | Period (CFP) | .
Beacon [~ Beacon ||
Inactive .
*«— Superframe Duration (S.D.)
 E— Beacon Interval (B.I.) —_—
30

7/3/13

15



Beacon [

IEEE 802.15.4 MAC
CSMA/CA

Backoff!

Contention-Access Collision-Free
Period (CAP) | Period (CFP) | .
Beacon ||
Inactive
*«— Superframe Duration (S.D.)
— Beacon Interval (B.1.) _—

31
IEEE 802.15.4 MAC
Contention-Access Collision-Free
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32
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IEEE 802.15.4 MAC

Contention-Access Collision-Free
Period (CAP) Period (CFP) .
Beacon|[— Beacon ||
Inactive
olifalslalslels]o ol il
= Superframe Duration (S.D.)
| — Beacon Interval (B.1.) _—

¢ o

Data message

e CFP slot allocation as First-Come First-Served

33

IEEE 802.15.4 MAC

Contention-Access Collision-Free
Period (CAP) Period (CFP) =
Beacon|[ Beacon ||

Inactive

ol112]3lalslel7ls oiiofmimiisiialis

*«— Superframe Duration (S.D.)

L Beacon Interval (B.I.) —_—

e 16 slots for CAP and CFP
e Maximum 7 slots for CFP

e CFP slot allocation as First-Come First-Served

Device

Network Manager

34
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Event-based sensor communication

Transmission!

1. Fixed scheduling of B}“*’"CFP /
sensing/actuation slots I /

2. Check triggering W
condition at every Slots allotated
allocated slot r(tk)

Sensor
- One-step ahead triggering () o(t) . i
condition IA(MO'}:I Plant I&* 2om M e |
4 [ W T r(ty,)

v
Network Wireless
Manager Network

u(ty)

3. If triggering condition is
true, transmit
measurement and
perform actuation

Wireless
Network

Controller

"(f)1

* Robust to disturbances

» Unnecessary bandwidth utilization
- Energy spent on checking triggering condition

Araujo, 2011 35

Predictive sensor communication

st
Beacon Transmission!

1. Scheduling of sensing/ J/ o /
actuation slots when J/
required, at beacon times I—\ I—\ I-ﬂ—\ I—\ I—\ lﬂ—\

Prediction of next triggering time

2. If triggering condition is

predicted to be true, sensor r(t)
transmit measurement and ) )
' [ [lt) | a(t) 2(t) [ eem |
perform control action [ Plant 2o Generator
Y 4 r‘7 z(ty)
3. At every transmission, \

predict and schedule the Tireless Network il

next triggering time R Manager Network
- Set node to sleep until next l

transmission ulte)
— Controller

- Efficient bandwidth utilization "mr

» Low energy consumption

* Less robust to disturbances

Araujo, 2011 36
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1. Scheduling of slots as
predictive scheme

2. Sensor node checks
triggering condition

continuously (or during

CAP)

3. If triggering condition is

true, transmit
measurement and
perform control action

Beacon

I —

Hybrid sensor communication

Disturbance!
Predictive transmission \

/

b ke b

Event transmission

T

A

CAP CFP

Prediction of next triggering time

Sensor

r(te)

Event |

Wireless
Network

y 4

IAz(uamrquk)I Plant Iﬂ.} Z0H z(t)
SE— )

Generator | ‘

a(tk)

Network
Manager

!

Controller

u(ty,)

- Efficient bandwidth utilization
* Robust to disturbances

o

* Energy spent on checking triggering condition

Wireless
Network

Araujo, 2011 37

Multi-hop networks

* Routing decisions
* Time delays
* Hidden terminal problem

@ Event-triggered node
@® Time-triggered node

= Communication link

7/3/13
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Lecture 2 Qutline

What’s new with wireless networked control?

State-based scheduling for control

Exploiting wireless protocols for control

Event-based control

Conclusions

Event-based control over wireless network

_I’ Sensor node makes local decisions on when to communicate

Plant 1

Planti
Plant M

Network
manager

Wireless network
(IEEE802.15.4 )

Y

- i
State . H
pred feedback Estimator i
i

Controller 1

Controller i I

Controller M I
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Event-based control loop

Wireless network

Rstrém, 2007, Rabi and 1., WICON, 2008

When to transmit?|

* Event detector mechanism on sensor side
— E.g., threshold crossing

Wireless network

How to control?

* Execute control law at actuator side
— E.g., piecewise constant controls, impulse control

Rabi et al., 2008

7/3/13
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Example: Fixed threshold with impulse control

* Event-detector implemented as fixed-
level threshold at sensor

* Event-based impulse control better
than periodic impulse control

Periodic Control Event-Based Control
2 2
1
> 0
-1
-2 -2
0 5 10 15 20 0 5 10 15 20
200 200
100 l ‘ 100
S T O Y et N
L 'l 1] I
-100 -100F
-200 -200
0 5 10 15 20 0 5 10 15 20

t Astrém & Bernhardsson, IFAC, 1999

Control generators and event detectors

1. Impulse 1. Fixed threshold
2. Zero order hold 2. Time-varying
3. Higher order hold 3. Adaptive

Wireless network

7/3/13
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Plant model

Plant dr = udt + dv,

Stochastic differential equation, interpreted as

s+T7 s+T
2(s+7) —a(r) = / w(t)dt + / dv(t)
with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

v is a Wiener process (or Brownian motion)

See Pksendal (2003) for an introduction to stochastic differential equations

Wiener process

A Wiener process v(t) fulfills
1. v(0)=0
2. v(t) is almost surely continuous

3. v(t) has independent increments o
with v(t)-v(s) ~ N(0O,t-s) for t>s=0

Remark The variance of a Wiener process is growing like

E(V(t+s) = W(1))* =|s|

7/3/13
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Plant model

Plant dr = udt + dv,

Stochastic differential equation, interpreted as

z(s+7)—x(r) = /TS+T u(t)dt + /TS+T du(t)

with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

When s > 0 is a small, the change of z(7) is
normally distributed with mean su(7) and variance s.

Plant model and control cost

Plant dr = udt + dv,

vis a Wiener process:  E(V(t+ s) — v(1))* = ||

. 1 r
Cost function V= TE/ 22 (t)dt.
0

7/3/13
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Periodic impulse control

-&r

/{Ndu .
oy yl\\[\
u(t) = —a(tp)d(t — ), o ,;;'” vt

Periodic reset of state every event.

Impulse applied at events

State grows linearly as K fl
E(v(t+ s) = V(0)° =s|
between sample instances, because dx = udt + dv,
Average variance over sampling period’ is %’2 so the
cost is

. 1
‘p[H = ;11

Rstrom, 2007

Periodic ZoH control

Traditional sampled-data control theory gives that

h

- %/U E=*(t)dt is minimized for the sampled system
x(t + h) = x(t) + hu(t) + e(t),

with

_ 1343

 h24+V3

U= —Lx

derived from

S=¢"S®+Q, - L"RL, L=R Y I'"S®»+Ql,), R=Q,+TI7TSr,

The minimum gives the cost

3+ ,\/§h
6

Vezon =

Rstrom, 2007

7/3/13
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Event-based impulse control
with fixed threshold

Suppose an event is generated whenever 1

generating impulse control

|z(te)| = a x ONWMM

u(t) = —a(ty)o(t — tr). 0 5 )

One can show that the average time 100

between two events is
hg == FE(Tya) = E(.r?rid) =a?

and that the pdf of = is triangular: ° t

f(a) = (a—|z[)/a®

The cost is 2
, a 13

Verm = F = —

Rstrom, 2007

Pdf f(z)=(a—|z[)/a® is the solution to the forward
Kolmogorov forward equation (or Fokker—Planck

equation)
of 19*f  1af . 10f ) G .
= =592~ 55, (D0 + 5o (=d),,  fl=a) = fla) =0,

7/3/13
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Comparison
PZOH PIH EIH
2 « 2 l 2
AT T Y
-2 v/ -2 -2
0 5 10 0 5 10 0 5 10
u u,/1000 u/1000
) 2 2
1 1
0 | N I |
-1 -1 I |
-2
2 -2
0 5 10 0 5 10 0 5 10
Rstrém, 2007

Event-based ZoH control
with adaptive sampling

Wireless network

. T
How choose {U;} and {r;} to minimize v = %E/ (1) dt.
0

Rabi et al., 2008

7/3/13
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Optimal control
with one sampling event

dzy = wydt + dB o :/A\
OM OA 4
T
min J= min E a;fds

WW v
UO7UlaT UOaU17T 0 70 B

T T
E/ :cgds -+ E/ x?ds]
0 T

= min
UOaUlaT

A joint optimal control and optimal stopping problem

Rabi et al., 2008

dr; = wdt + dBy

T , 0
min J= min E rgds
UOle)T UO7U177— 0

U1

fo 1

If 7 chosen deterministically (not depending on ;)
and xg = 0:

3z
U =0 Ut = — ;/2 ™ =T/2

If 7 is event-driven (depending on z;) and xg = O:

CY
_ X T
Us =0 =20

™ =inf{t: 27 > V3(T —t)}

Rabi et al., 2008 Envelope defines optimal level detector

7/3/13
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Optimal level detector

Dynamic level detector

Wireless network

dx; = udt + dBy

T
min J= min E

xgds
UO’Ul T UOaUl 5T 0 v

[

Rabi et al., 2008

Multiple samples

Extension to N>1 samples X

| T
JIn (;1‘0.11. {T};Ll) =E A z2ds

through nested single sample
problems

Extension to variable budget
sampling, allowing number of
samples to depend on x. u

Ty Ty

29



Event-based impulse control over
wireless network with communication losses

Plant dxy = dWy + wdt, 2(0) = 20,
Samplingevents 7 = {79,71,72,...},

Impulse control u; = Z:u ()
n=0

M
/ Zl{T <\I}O ST”)(18:|

n=0

Average sampling rate R —hmwp 7E

1 Mo
Average cost J = limsup VIE [/ 22ds
0

M—oo 1

Periodic impulse control

Sampling events T, =n1"  for n >0
Slot length Lgives 7 = NL
1

Average sampling rate Rperiodic = T

T
Average cost Jreriodic = 5

0~

HENENE

LU e m

Y

T ’ Periodic superframe of N slots ‘

7/3/13
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Level-triggered event-based control

Ordered set of levels £ ={...,l-2,l-1,l0,l1,2,.. .} lo=0
Multiple levels needed because we allow packet loss

Lebesgue sampling 7 = inf {7|7 > 7,2, € L, 2, ¢ ., }

s .
W W-. jl‘vf\ '

Level-triggered control

For Brownian motion, equidistant sampling is optimal
= {kA|k € Z}

First exit time

7, = inf {T|T >0, ¢ (E—AE+A),29= £}

A

Average sampling rate Ra = =

E Uer l‘:“:ds] A2
Average cost Ja = Elhntl 2

7/3/13
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Comparison between periodic and control

—

2 3

0 5 s 7 g g
Average sampling rate

T = A” gives equal average sampling rate for periodic control and
event-based control

Event-based impulse control is 3 times better than periodic
impulse control

What about the influence of communication losses?

When is event-based sampling better and vice versa?

Influence of communication losses

Times when packets are successfully received »i € {70 =0.71.72,...}

{po=0,p1,p2,...}. pi 2 Ti,

Average rate of packet reception

1 M N
R, = limsuvaE [/ Z 1, <aryd (s — pn)ds:| =p-R;
M—oo 1 0

n=0

Define the times between successful packet receptions P;.a)

E [fop(’"A) 1'?;1'3]
E [pg.a]

T
Average cost J, =limsup %E [ / r?ds}
T—oo 0

32
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Periodic control under packet losses

Sampling with fixed period T with loss probability p gives cost
T(1+p)

2(1—p)
Compared with event-based control by setting
T =A?
so that the average use of the communication channel is equal

Even-based control under packet losses

Proposition
If packet losses are 11D with prob p, then
equidistant event-based (Lebesque) sampling gives

A2 (5p+1)

o = 6(1—p)

Remark

* Event-based control with losses always better than periodic with losses.

Event-based control with losses outperformed by periodic control without
losses if
(1+5p)

- - > 1
3(1—p) —

soif p > 0.25 then periodic sampling do better than event-based sampling.

Rabi and J., 2009

7/3/13
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Sensor data ACK’ s

If controller perfectly acknowledges packets to sensor,
event detector can adjust its sampling strategy

Let A(l) = VI+ 1A

where [ > 0 number of samples lost since last successfully
transmitted packet

Gives E[TILI—TI-'} independent of .
Better performance than fixed A (1) for same sampling rate:

A*(1+p) _A?(1+5p)
6(1—p) — 6(1—p) 7

(-
J) =

Lecture 2 Qutline

What’s new with wireless networked control?

State-based scheduling for control

Exploiting wireless protocols for control

Event-based control

Conclusions
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Conclusions

* Wireless control and networking are enabling technologies

in many emerging industrial applications

* Fundamental challenges related to
— time-driven, synchronous, sampled data control theory, vs
— event-driven, asynchronous, ad hoc wireless networking

* New principles for control in large-scale wireless systems

= ~ ___::_“i__—._.-._.'.'.'.‘:::::_r -+
=7 e e R \ S
A PR T N =N
<RI et A s -
T4 EVTLL LR

L,@Q

Take-home message

Lecture 1: Motivating applications and challenges
— Networked control systems have societal importance
— Many new applications with challenging problems

Lecture 2: Wireless control systems
— Everything will be wireless, including control systems

— Interesting research challenges on the intersection
between sensor networks, wireless communication,
and control theory

http://www.ee.kth.se/~kallej
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