

Closing the Loop over Wireless Networks: Fundamentals and Applications

Karl H. Johansson
Electrical Engineering, Royal Institute of Technology
Stockholm, Sweden

Maben Rabi, Erik Henriksson, Henrik Sandberg, Mikael Johansson, Pan Gun Park, Emmanuel Witrant

WiOpt 2008, Berlin, 1-3 Apr

Closing the Loop over Wireless Networks: Fundamentals and Applications

Karl H. Johansson
Electrical Engineering, Royal Institute of Technology
Stockholm, Sweden

Maben Rabi, Erik Henriksson, Henrik Sandberg, Mikael Johansson, Pan Gun Park, Emmanuel Witrant

WiOpt 2008, Berlin, 1-3 Apr

Feedback control systems everywhere

Control over wireless networks

How to control a plant when sensor, actuator and controller nodes are wireless network devices?

- Emerging applications
- Control over wireless networks
 - A communication or a control problem?
 - Time- or event-driven communication?
- Event-driven control
- Predictive outage compensation
- Conclusions

Emerging applications

BOLIDEN ABI

BOLIDEN ABB

- Wireless mining ventilation control
- Wireless control of flotation process
- Vehicle fuel efficiency with networked sensing
- Disaster relief support using mobile sensors
- Disaster relief support using mobile sensors

- Level and flow sensors are used for regulating flotation process using SISO PID control
- Wireless sensors enable more flexible control strategies

Benefits of wireless networking in industrial control

- Cost
 - Reduced wiring
 - Reduced installation work
- Flexibility
 - Less physical design limitations
 - More mobile equipment
 - Faster commissioning and reconfiguration
- Reliability
 - No cable wear and tear
 - No connector failure

- Emerging applications
- Control over wireless networks
 - A communication or a control problem?
 - Time- or event-driven communication?
- Event-driven control
- Predictive outage compensation
- Conclusions

Influence of wireless networking on feedback control performance Reference and system output (grad) There is a conflict between traditional • time-driven, synchronous, sampled data control theory and • event-driven, asynchronous, ad hoc networking Witrant et al., IEEE CCA, 2007

A network-aware control architecture

- Compensate communication imperfections in controller
 - Packet losses and bit errors
 - Outages
 - Delay and jitter
 - Bandwidth limitations

Outline

- Emerging applications
- Control over wireless networks
 - A communication or a control problem?
 - Time- or event-driven communication?
- Event-driven control
- Predictive outage compensation
- Conclusions

Event-driven control

- Transmit information only when needed:
 - "If it ain't broke, don't fix it" [Åström]

When to transmit?

Simple medium access mechanism at sensor,

How to control?

• Apply control law from fixed control alphabet, e.g., piecewise constant controls

Rabi et al., IEEE CDC, 2006 Johannesson et al., HSCC, 2007 Cervin & Henningsson, 2008 Rabi et al., 2008

Mathematical framework

$$dx_t = f(x_t, u_t)dt + g(x_t, u_t)dB_t$$

 x_t state

 u_t control

 B_t Brownian motion

Piecewise constant controls: $u_t = \sum_{i=0}^{N} U_i \cdot \mathbf{1}_{\tau_i \le t < \tau_{i+1}}$

Cost: $J = \mathsf{E} \int_0^T L(x_s, u_s) ds$

Rabi et al., 2008

Controlled Brownian motion with one sampling event

$$dx_t = u_t dt + dB_t$$

$$egin{aligned} \min_{U_0,U_1, au} J &= \min_{U_0,U_1, au} \mathsf{E} \int_0^T x_s^2 ds \end{aligned} = \min_{U_0,U_1, au} \left[\mathsf{E} \int_0^ au x_s^2 ds + \mathsf{E} \int_ au^T x_s^2 ds
ight]$$

A joint optimal control and optimal stopping problem

$$dx_t = u_t dt + dB_t$$

$$\min_{U_0, U_1, \tau} J = \min_{U_0, U_1, \tau} \mathbf{E} \int_0^T x_s^2 ds$$

If τ chosen deterministically (not depending on x_t) and $x_0 = 0$:

$$U_0^* = 0$$
 $U_1^* = -\frac{3x_{T/2}}{T}$ $\tau^* = T/2$

$$\tau^* = T/2$$

If
$$\tau$$
 is event-driven (depending on x_t) and $x_0=0$:
$$U_0^*=0 \qquad U_1^*=-\frac{3x_{\tau^*}}{2(T-\tau^*)}$$

$$\tau^* = \inf\{t: \ x_t^2 \ge \sqrt{3}(T-t)\}$$

Envelope defines optimal level detector

- Emerging applications
- Control over wireless networks
 - A communication or a control problem?
 - Time- or event-driven communication?
- Event-driven control
- Predictive outage compensation
- Conclusions

Predictive outage compensation

 Compensate for communication outages by model-based extrapolation of control commands

$$y(k) = P(q) \left(u(k) + d(k) \right) = \frac{B(q)}{A(q)} \left(u(k) + \frac{d(k)}{d(k)} \right)$$

Unknown piecewise constant disturbance

$$u(k) = \left\{ \begin{array}{ll} u_c(k) & \text{Command from controller received} \\ \hat{u}(k) & \text{Command from controller lost} \end{array} \right.$$

$$u_c(k) = C(q) \Big(r(k) - y(k) \Big) = \frac{S(q)}{R(q)} \Big(r(k) - y(k) \Big)$$

$$\hat{u}(k) = G(q)\hat{d}(k) = \frac{E(q)}{F(q)}\hat{d}(k)$$

Henriksson et al., 2008

- Emerging applications
- Control over wireless networks
 - A communication or a control problem?
 - Time- or event-driven communication?
- Event-driven control
- Predictive outage compensation
- Conclusions

Conclusions

• Wide range of emerging wireless control applications:

- Need integrated view of control and wireless networking
 - Event-triggered control to support asynchronous networking
 - Outage compensation for control under varying radio conditions

http://www.ee.kth.se/~kallej