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ABSTRACT

Wyner-Ziv coding of multiview images is an attractive solution be-
cause it avoids communications between individual cameras. To
achieve good rate-distortion performance, the Wyner-Ziv decoder
must reliably estimate the disparities between the multiview images.
For the scenario where two reference images exist at the decoder,
we propose a codec that effectively performs unsupervised learn-
ing of the two disparities between an image being Wyner-Ziv coded
and the two reference images. The proposed two-disparity decoder
disparity-compensates the two references images and generates side
information more accurately than an existing one-disparity decoder.
Experimental results with real multiview images demonstrate that
the proposed codec achieves PSNR gains of 1-5 dB over the one-
disparity codec.

Index Terms— image coding, data compression, stereo vision,
disparity

1. INTRODUCTION

Multiview images captured by a camera array are very similar. Ex-
ploiting these similarities is desirable for compression. The conven-
tional approach requires a joint encoder, but this method is not practi-
cal if the cameras do not communicate with one another. Distributed
coding has emerged as an alternative, with separate encoders and a
joint decoder. The information theoretic Slepian-Wolf and Wyner-
Ziv theorems suggest that distributed coding can be as efficient in
coding performance as conventional joint compression [1][2].

A common way to relate multiview images is through dispari-
ties. Distributed coding must solve the challenge of estimating the
disparities only at the decoder. A similar issue arises in distributed
video coding (DVC), in which the motion between neighboring
frames must be estimated at the decoder [3][4]. In that situation,
motion-compensated temporal interpolation (MCTI) of two intra-
coded key frames is commonly used [3]. MCTI assumes, however,
symmetric motion vectors, which would be an invalid assumption
for disparities between multiview images in general.

A Wyner-Ziv stereoscopic image codec in [5] proposes unsuper-
vised learning of the disparity at the decoder using the Expectation
Maximization (EM) algorithm [6]. It is a lossy extension of a sim-
pler lossless Slepian-Wolf codec reported in [7]. The decoder iter-
atively learns by EM the unknown disparity between an image be-
ing transmitted X and a previously received image Y . A disparity-
compensated version of Y serves as the side information. When two
previously received images Y1 and Y2 reside at the decoder, how-
ever, the system still only uses one reference image rather than using
both simultaneously.

In this paper, we generalize the one-disparity codec in [5] to per-
form unsupervised learning of two disparities, one between X and
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Fig. 1. One-disparity Wyner-Ziv image (a) encoder and (b) decoder.

Y1 and one between X and Y2. Disparity-compensated versions of
Y1 and Y2 are used to generate higher-quality side information, lead-
ing to significantly improved rate-distortion efficiency in coding X .
Unlike previous multiple-reference codecs in [8] or [9] which make
hard decisions about disparities, our EM-based codec makes soft de-
cisions in estimating the disparities. In Section 2, the one-disparity
codec is reviewed. In Section 3, the proposed two-disparity codec is
presented with a generalized EM algorithm and an improved recon-
struction method. In Section 4, experimental results for multiview
image sets demonstrate that the two-disparity codec achieves PSNR
gains of 1-5 dB over the one-disparity codec.

2. ONE-DISPARITY CODEC

The Wyner-Ziv image codec from [5] can be summarized by the
block diagram in Fig. 1. One image Y is transmitted by conven-
tional coding, such as JPEG. Another image X must be encoded
independently of Y but decoded using Y as side information. To
exploit spatial correlation, the Wyner-Ziv encoder transforms X
into 8-by-8 blockwise discrete cosine transform (DCT) coefficients
XT and quantizes XT by a JPEG-recommended quantization table.
Quantized coefficients XTQ are losslessly communicated using a
rate-adaptive low-density parity-check (LDPC) code [10]. The rate-
adaptive LDPC code enables small portions of the syndrome S to be
incrementally sent, assuming a feedback channel is available.

The Slepian-Wolf decoder within the larger Wyner-Ziv decoder
in Fig. 1 is the loop formed by the LDPC decoder, the disparity
estimator, and the side information generator. This loop is an in-
stance of the EM algorithm, as detailed thoroughly in [7]. Using
the received portions of S and the reference image Y , the Slepian-



Wolf decoder iteratively estimates the quantized transform coeffi-
cients XTQ. When the disparity D between X and Y can be accu-
rately estimated, the Slepian-Wolf decoder provides significant bit
rate saving over conventional lossless transmission of XTQ . Thus,
reliable disparity estimation is a critical step in efficient coding.

As part of the decoder’s EM algorithm, the disparity estimator it-
eratively calculates an a posteriori distribution ofD having observed
Y and S. On iteration t, the update is

P
(t){D} = P

(t−1){D}P
n

Y, S|D; θ(t)
o

D = d1, ..., dM (1)

where D ranges over M values with nonzero probability and θ(t)

is the current statistical estimate of XTQ. θ(t) is determined by the
LDPC decoder through joint bitplane decoding, as described in [7].
The probability P (t){D} indicates how likely the image YD , which
is Y shifted by D, will match X .

Similarly, the side information generator iteratively updates the
distribution of disparity-compensated side information ψ, a soft es-
timate of XTQ having observed YD for multiple values of D. Each
shifted image YD must be transformed and quantized to produce side
information Y TQ

D in the transform domain that is directly compara-
ble to XTQ. Thus, ψ conveys probabilities of quantized transform
coefficients. On iteration t, the update is

ψ
(t)(w) =

dM
X

d=d1

P
(t){D = d}P

n

X
TQ = w|Yd

o

=

dM
X

d=d1

P
(t){D = d}PN

“

w − Y
TQ

d

”

(2)

where w indicates quantized coefficient values. In the second equa-
tion, PN (n) is the distribution of the noise that remains between
quantized transform coefficients after optimal disparity compensa-
tion. A Laplacian distribution is an accurate model for N . Eq. (2)
can be interpreted as blending together probabilities of quantized
transform coefficients for different shifted versions of Y .

After the coefficients XTQ are recovered by the Slepian-Wolf
decoder, the Wyner-Ziv decoder proceeds to reconstruct the actual
image. The existing one-disparity system uses nearest-neighbor re-
construction [3]. A comparison of this and other reconstruction
methods, including an optimal reconstruction scheme, will be given
in Section 3.

3. TWO-DISPARITY CODEC

When two images Y1 and Y2 are available at the decoder, the one-
disparity codec described in Section 2 performs suboptimally. Intu-
itively, image X will be better matched to Y1 in some regions and
to Y2 in some other regions. Also, in general, the union of Y1 and
Y2 provides a larger field-of-view than either image alone. A two-
disparity codec can use Y1 and Y2 to generate higher-quality side in-
formation, which leads to both lower bit rate in Slepian-Wolf decod-
ing of the quantized transform coefficients XTQ and higher-quality
in reconstructing X itself.

A diagram for the improved codec is shown in Fig. 2. Only the
decoder is depicted because the encoder is the same as in the one-
disparity system of Fig. 1. The two decoders are structurally similar.
In the EM algorithm, the main difference is that the disparity estima-
tor now estimates two disparities and the side information generator
selectively chooses the best content from Y1 and Y2 to match X . In
the reconstruction, the additional reference image leads to a lower
error in estimating transform coefficients.

Fig. 2. Two-disparity Wyner-Ziv image decoder. Syndrome S is
generated by the encoder in Fig. 1(a).

3.1. Generalized EM Learning Algorithm

The EM algorithm of the one-disparity system can be generalized to
simultaneously estimate two disparities. For D1 between X and Y1

and D2 between X and Y2, the proposed update step becomes

P
(t) {Dk} = P

(t−1) {Dk}P
n

Yk, S|Dk; θ(t)
o

Dk = d1, ..., dM k = 1, 2 (3)

which reduces to (1) if either P (t){D1} = 0 or P (t){D2} = 0.
The two distributions on D1 and D2 are also normalized such that
their joint sum is unity. Effectively, the search space for disparity-
compensation candidates has been doubled, from M different can-
didates for a single D to 2M different candidates for D1 and D2.

The side information generator selectively blends together prob-
abilities for the shifted reference images as before, using twice as
many candidates as in (2). On iteration t, the new update is

ψ
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2
X
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(4)

so that the weighted sum includes shifted versions of Y1 and Y2. N1

and N2 represent two different Laplacian noise models. Since full
distributions of D1 and D2 are maintained, the blending operation
allows all shifted candidates to contribute partially to the side in-
formation. Other non-EM codecs which disparity-compensate two
reference images restrict D1 and D2 to be deterministic and thus
only permit two shifted candidates to be blended together [8].

The proposed method can be easily generalized to the case
of K reference images. In (3) and (4), index k would range over
{1, . . . ,K} instead of just {1, 2}.

3.2. Transform Coefficient Reconstruction

Once the quantized transform coefficients XTQ are Slepian-Wolf
decoded, the reconstruction block in Fig. 2 calculates the dequan-
tized transform coefficients XT . Side-information-assisted recon-
struction (SIAR) gives better results than choosing the centroid of
the quantization bin [Zi, Zi+1] determined by XTQ. Several SIAR
methods are compared in this section, including the optimal two-
disparity method used in our codec.

3.2.1. Nearest-Neighbor Reconstruction

This first method has been widely used for DVC [3]. It assumes only
one reference image Y is available. For our two-disparity codec, we



can generate a single Y using a weighted sum of the most likely
shifted versions of Y1 and Y2, in the form

Y = P
(∞) {D1 = d

∗
1} · Y1,d∗

1
+ P

(∞) {D2 = d
∗
2} · Y2,d∗

2

d
∗
k = argmax

d∈{d1,...,dM}

P
(∞) {Dk = d} k = 1, 2 (5)

where P (∞) denotes the final probability after convergence of EM.
If Y T ∈ [Zi, Zi+1], the value is used to estimate XT . Otherwise,
Y T falls outside the correct bin and the estimate of XT is clipped to
the boundary of the nearest neighboring bin.

3.2.2. Optimal One-Disparity Reconstruction

The assignment in nearest-neighbor reconstruction only approxi-
mates the optimal one-disparity reconstruction, which is the condi-
tional expectation E

ˆ

XT |XT ∈ [Zi, Zi+1], Y
T

˜

. This expectation
has been analytically evaluated for a Laplacian noise model [9].

3.2.3. Optimal Two-Disparity Reconstruction

For two reference images, the two previous SIAR methods are sub-
optimal, and the optimal two-disparity reconstruction is the condi-
tional expectation E

ˆ

XT |XT ∈ [Zi, Zi+1], Y
T
1 , Y

T
2

˜

. A closed-
form solution for the two-disparity case is also given in [9] for the
Laplacian noise model. The authors of [9] calculate the optimal
shifts d∗1 and d∗2 using MCTI and then assume for simplicity the
two disparities are equally probable. Since our two-disparity codec
learns the probabilities of the disparities, a more general reconstruc-
tion formula is proposed here. Breaking the interval [Zi, Zi+1] into
J non-overlapping subintervals Zi = q0 < q1 < ... < qJ = Zi+1

so that simple integrals can be used, the solution is derived to be
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where λk (k = 1, 2) are the parameters of the Laplacian noise terms
Nk (k = 1, 2) from (4) and d∗k is calculated from (5). In Section
4, experimental results will show that two-disparity reconstruction
outperforms the other two methods.

4. EXPERIMENTAL RESULTS

The performance of the one-disparity and two-disparity codecs are
evaluated using two sets of multiview images from [11], which we
call Teddy and Barn. One image from each set is shown in Fig. 3(a-
b) and takes the role of the imageX which is Wyner-Ziv coded. Two
other images in each set are chosen to serve as the reference images
Y1 and Y2. We assume high-quality versions of Y1 and Y2 reside at
the decoder, having been previously transmitted using conventional
coding. For simplicity, disparities are only estimated at block reso-
lution, and the search space is constrained to horizontal integer-pel
shifts of blocks in Y1 or Y2. Fig. 3(d-g) shows the minimum mean-
squared-error disparities D1 and D2, for a block size of 8.

The rate-distortion performance of several decoders are com-
pared. First, an impractical decoder called an oracle receives the
blockwise disparities from Fig. 3(d-g). Disparity values are obtained
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Fig. 3. Image X from multiview sets (a) Teddy and (b) Barn, each
of size 176-by-144 and bit depth 8. (c) Disparity legend. Horizontal
disparites from (d) Y1 to X for Teddy, (e) Y2 to X for Teddy, (f) Y1

to X for Barn, and (g) Y2 to X for Barn.

by block matching using either reference image Y1 or Y2. The oracle
resembles a conventional coding scheme in which disparity is calcu-
lated at the encoder and transmitted to the decoder. It is meant to
measure an upper performance bound for practical disparity learn-
ing. Second, the one-disparity decoder is tested using Y1 or Y2 in-
dividually. Third, the proposed two-disparity decoder is tested using
Y1 and Y2 together. For all decoders, the EM algorithm is permitted
to run for 50 iterations at each incremental rate of the rate-adaptive
LDPC code. If after 50 iterations convergence is not achieved, the
LDPC decoder advances to the next higher incremental rate.

Rate-PSNR plots for Teddy and Barn are presented in Fig. 4. For
Teddy, the two-disparity decoder achieves up to 0.9 dB and 2.3 dB
increases over one-disparity decoding with Y1 and Y2, respectively.
For Barn, the two-disparity decoder again performs better, produc-
ing gains of up to 5.3 dB and 2.1 dB over one-disparity decoding
with Y1 and Y2, respectively. Gaps between two-disparity decod-
ing and the oracle reflect the inefficiency of decoder-side disparity
learning relative to traditional encoder-side disparity search.

The key reason for the two-disparity decoder’s superior perfor-
mance is that it can select, on a blockwise basis, the reference im-
age that minimizes the mismatch with X in the transform domain.
Let d∗1 and d∗2 be defined as in (5). Fig. 5 shows the fraction of
blocks for which P{D1 = d∗1} � P{D2 = d∗2}, the fraction
for which P{D1 = d∗1} � P{D2 = d∗2}, and the fraction for
which P{D1 = d∗1} ≈ P{D2 = d∗2}. The last case, where Y1

and Y2 are almost equally good choices, resembles classical two-
hypothesis prediction. If either Y1 or Y2 is unavailable, as is the case
for one-disparity decoding, Fig. 5 shows that the decoder would
be forced to make suboptimal choices for a significant fraction of
blocks. Fig. 5 also shows that the fractions depend on rate. At low
rates, quantization is coarse and the two sets of quantized transform
coefficients Y TQ

1 and Y TQ
2 are similar, so many blocks of XTQ can

be accurately compensated using both Y TQ
1 and Y TQ

2 . At high rates,
quantization is finer and the differences between Y TQ

1 and Y TQ
2 are

more pronounced, so most blocks of XTQ match significantly bet-
ter with the quantized transform coefficients of one reference image
than with the other.

The two-disparity decoder uses the optimal two-disparity recon-
struction. If nearest-neighbor or optimal one-disparity reconstruc-
tion is used instead in the reconstruction block of Fig. 2, the quality
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Fig. 4. Rate-PSNR performances for four different Wyner-Ziv de-
coders, for (a) Teddy and (b) Barn.

of the final image will be reduced. Fig. 6 displays the PSNR drops
relative to two-disparity reconstruction resulting from usage of sub-
optimal reconstructions. The reductions are as large as 0.2 dB and
0.5 dB for Teddy and Barn, respectively.

5. CONCLUSION

This paper presents a Wyner-Ziv image codec that learns two dis-
parities in an unsupervised fashion at the decoder. The proposed
two-disparity decoder generalizes the statistical estimation frame-
work of an existing one-disparity decoder and contains an improved
reconstruction step. Significant rate-distortion gains are achieved
over one-disparity decoding. Future research should investigate ex-
tensions of our framework to disparity compensation with three or
more reference images and with fractional-pel accuracy.
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Fig. 5. Fraction of blocks with most probable shift candidate from
Y1, Y2, or both reference images, for (a) Teddy and (b) Barn.
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