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ABSTRACT

Wyner-Ziv coding of multiview images is an attractive solution be-
cause it avoids communications between individual cameras. To
achieve good rate-distortion performance, the Wyner-Ziv decoder
must reliably estimate the disparities between the multiview images.
For the scenario where two reference images exist at the decoder,
we propose a codec that effectively performs unsupervised learn-
ing of the two disparities between an image being Wyner-Ziv coded
and the two reference images. The proposed two-disparity decoder
disparity-compensates the two references images and generates side
information more accurately than an existing one-disparity decoder.
Experimental results with real multiview images demonstrate that
the proposed codec achieves PSNR gains of 1-5 dB over the one-
disparity codec.

Index Terms— image coding, data compression, stereo vision,
disparity

1. INTRODUCTION

Multiview images captured by a camera array are very similar. Ex-
ploiting these similarities is desirable for compression. The conven-
tional approach requires a joint encoder, but this method is not practi-
cal if the cameras do not communicate with one another. Distributed
coding has emerged as an alternative, with separate encoders and a
joint decoder. The information theoretic Slepian-Wolf and Wyner-
Ziv theorems suggest that distributed coding can be as efficient in
coding performance as conventional joint compression [1][2].

A common way to relate multiview images is through dispari-
ties. Distributed coding must solve the challenge of estimating the
disparities only at the decoder. A similar issue arises in distributed
video coding (DVC), in which the motion between neighboring
frames must be estimated at the decoder [3][4]. In that situation,
motion-compensated temporal interpolation (MCTI) of two intra-
coded key frames is commonly used [3]. MCTI assumes, however,
symmetric motion vectors, which would be an invalid assumption
for disparities between multiview images in general.

A Wyner-Ziv stereoscopic image codec in [5] proposes unsuper-
vised learning of the disparity at the decoder using the Expectation
Maximization (EM) algorithm [6]. It is a lossy extension of a sim-
pler lossless Slepian-Wolf codec reported in [7]. The decoder iter-
atively learns by EM the unknown disparity between an image be-
ing transmitted X and a previously received image Y. A disparity-
compensated version of Y serves as the side information. When two
previously received images Y1 and Y> reside at the decoder, how-
ever, the system still only uses one reference image rather than using
both simultaneously.

In this paper, we generalize the one-disparity codec in [5] to per-
form unsupervised learning of two disparities, one between X and
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Fig. 1. One-disparity Wyner-Ziv image (a) encoder and (b) decoder.

Y1 and one between X and Y>. Disparity-compensated versions of
Y1 and Y are used to generate higher-quality side information, lead-
ing to significantly improved rate-distortion efficiency in coding X.
Unlike previous multiple-reference codecs in [8] or [9] which make
hard decisions about disparities, our EM-based codec makes soft de-
cisions in estimating the disparities. In Section 2, the one-disparity
codec is reviewed. In Section 3, the proposed two-disparity codec is
presented with a generalized EM algorithm and an improved recon-
struction method. In Section 4, experimental results for multiview
image sets demonstrate that the two-disparity codec achieves PSNR
gains of 1-5 dB over the one-disparity codec.

2. ONE-DISPARITY CODEC

The Wyner-Ziv image codec from [5] can be summarized by the
block diagram in Fig. 1. One image Y is transmitted by conven-
tional coding, such as JPEG. Another image X must be encoded
independently of Y but decoded using Y as side information. To
exploit spatial correlation, the Wyner-Ziv encoder transforms X
into 8-by-8 blockwise discrete cosine transform (DCT) coefficients
XT and quantizes X T by a JPEG-recommended quantization table.
Quantized coefficients X7 are losslessly communicated using a
rate-adaptive low-density parity-check (LDPC) code [10]. The rate-
adaptive LDPC code enables small portions of the syndrome S to be
incrementally sent, assuming a feedback channel is available.

The Slepian-Wolf decoder within the larger Wyner-Ziv decoder
in Fig. 1 is the loop formed by the LDPC decoder, the disparity
estimator, and the side information generator. This loop is an in-
stance of the EM algorithm, as detailed thoroughly in [7]. Using
the received portions of S and the reference image Y, the Slepian-



Wolf decoder iteratively estimates the quantized transform coeffi-
cients XT?. When the disparity D between X and Y can be accu-
rately estimated, the Slepian-Wolf decoder provides significant bit
rate saving over conventional lossless transmission of X 7% . Thus,
reliable disparity estimation is a critical step in efficient coding.

As part of the decoder’s EM algorithm, the disparity estimator it-
eratively calculates an a posteriori distribution of D having observed
Y and S. On iteration ¢, the update is

PO{D} = PV {D}P {Y, S|D; 0“)} D=di,...dy ()

where D ranges over M values with nonzero probability and )
is the current statistical estimate of X 72, 6() is determined by the
LDPC decoder through joint bitplane decoding, as described in [7].
The probability P {D} indicates how likely the image Y, which
is Y shifted by D, will match X.

Similarly, the side information generator iteratively updates the
distribution of disparity-compensated side information ), a soft es-
timate of X 79 having observed Y for multiple values of D. Each
shifted image Yp must be transformed and quantized to produce side
information YDT @ in the transform domain that is directly compara-
ble to XT2. Thus, ¢ conveys probabilities of quantized transform
coefficients. On iteration ¢, the update is

dn
yOw) = > PY{D=ayP {XTQ - w\Yd}
d=d;
dn
= 3 PYD=ayPy (w - YdTQ) @)

d=dq

where w indicates quantized coefficient values. In the second equa-
tion, Py (n) is the distribution of the noise that remains between
quantized transform coefficients after optimal disparity compensa-
tion. A Laplacian distribution is an accurate model for N. Eq. (2)
can be interpreted as blending together probabilities of quantized
transform coefficients for different shifted versions of Y.

After the coefficients X 7% are recovered by the Slepian-Wolf
decoder, the Wyner-Ziv decoder proceeds to reconstruct the actual
image. The existing one-disparity system uses nearest-neighbor re-
construction [3]. A comparison of this and other reconstruction
methods, including an optimal reconstruction scheme, will be given
in Section 3.

3. TWO-DISPARITY CODEC

When two images Y: and Y- are available at the decoder, the one-
disparity codec described in Section 2 performs suboptimally. Intu-
itively, image X will be better matched to Y7 in some regions and
to Y5 in some other regions. Also, in general, the union of Y; and
Y- provides a larger field-of-view than either image alone. A two-
disparity codec can use Y7 and Y> to generate higher-quality side in-
formation, which leads to both lower bit rate in Slepian-Wolf decod-
ing of the quantized transform coefficients X 7% and higher-quality
in reconstructing X itself.

A diagram for the improved codec is shown in Fig. 2. Only the
decoder is depicted because the encoder is the same as in the one-
disparity system of Fig. 1. The two decoders are structurally similar.
In the EM algorithm, the main difference is that the disparity estima-
tor now estimates two disparities and the side information generator
selectively chooses the best content from Y; and Y> to match X. In
the reconstruction, the additional reference image leads to a lower
error in estimating transform coefficients.
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Fig. 2. Two-disparity Wyner-Ziv image decoder. Syndrome S is
generated by the encoder in Fig. 1(a).

3.1. Generalized EM Learning Algorithm

The EM algorithm of the one-disparity system can be generalized to
simultaneously estimate two disparities. For D, between X and Y;
and D- between X and Y2, the proposed update step becomes

P (D} = PV (D} P {Yk, S|Dy; e“)}
Dr=di,.dy k=12 @3)

which reduces to (1) if either P®{D;} = 0 or P*V{Dy} = 0.
The two distributions on D1 and D- are also normalized such that
their joint sum is unity. Effectively, the search space for disparity-
compensation candidates has been doubled, from M different can-
didates for a single D to 2M different candidates for D, and D-.

The side information generator selectively blends together prob-
abilities for the shifted reference images as before, using twice as
many candidates as in (2). On iteration ¢, the new update is
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so that the weighted sum includes shifted versions of Y7 and Y. IVy
and N, represent two different Laplacian noise models. Since full
distributions of Dy and D- are maintained, the blending operation
allows all shifted candidates to contribute partially to the side in-
formation. Other non-EM codecs which disparity-compensate two
reference images restrict D; and D, to be deterministic and thus
only permit two shifted candidates to be blended together [8].

The proposed method can be easily generalized to the case
of K reference images. In (3) and (4), index k& would range over
{1,..., K} instead of just {1, 2}.

3.2. Transform Coefficient Reconstruction

Once the quantized transform coefficients X9 are Slepian-Wolf
decoded, the reconstruction block in Fig. 2 calculates the dequan-
tized transform coefficients X7. Side-information-assisted recon-
struction (SIAR) gives better results than choosing the centroid of
the quantization bin [Z;, Z;1] determined by X 7. Several SIAR
methods are compared in this section, including the optimal two-
disparity method used in our codec.

3.2.1. Nearest-Neighbor Reconstruction

This first method has been widely used for DVC [3]. It assumes only
one reference image Y is available. For our two-disparity codec, we



can generate a single Y using a weighted sum of the most likely
shifted versions of Y7 and Y5, in the form

Y =
dy =

P Dy = di} - Yiar + PO {Da = d3} - Yous

argmax P {Dy =d} k=12 (5)
de{dy,....dp }

where P(>) denotes the final probability after convergence of EM.
If YT € [Zi, Zi1), the value is used to estimate X . Otherwise,
YT falls outside the correct bin and the estimate of X7 is clipped to
the boundary of the nearest neighboring bin.

3.2.2. Optimal One-Disparity Reconstruction

The assignment in nearest-neighbor reconstruction only approxi-
mates the optimal one-disparity reconstruction, which is the condi-
tional expectation £ [X ™| X" € [Z;, Zi11], Y. This expectation
has been analytically evaluated for a Laplacian noise model [9].

3.2.3. Optimal Two-Disparity Reconstruction

For two reference images, the two previous SIAR methods are sub-
optimal, and the optimal two-disparity reconstruction is the condi-
tional expectation E [X”|X™ € [Zi, Zit1], V1", Y5 |. A closed-
form solution for the two-disparity case is also given in [9] for the
Laplacian noise model. The authors of [9] calculate the optimal
shifts di and d3 using MCTI and then assume for simplicity the
two disparities are equally probable. Since our two-disparity codec
learns the probabilities of the disparities, a more general reconstruc-
tion formula is proposed here. Breaking the interval [Z;, Z;11] into
J non-overlapping subintervals Z; = qo < ¢1 < ... < ¢5 = Zit1
so that simple integrals can be used, the solution is derived to be
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where A\ (k = 1, 2) are the parameters of the Laplacian noise terms
Ni (k = 1,2) from (4) and d, is calculated from (5). In Section
4, experimental results will show that two-disparity reconstruction
outperforms the other two methods.

4. EXPERIMENTAL RESULTS

The performance of the one-disparity and two-disparity codecs are
evaluated using two sets of multiview images from [11], which we
call Teddy and Barn. One image from each set is shown in Fig. 3(a-
b) and takes the role of the image X which is Wyner-Ziv coded. Two
other images in each set are chosen to serve as the reference images
Y1 and Y>. We assume high-quality versions of Y; and Y5 reside at
the decoder, having been previously transmitted using conventional
coding. For simplicity, disparities are only estimated at block reso-
lution, and the search space is constrained to horizontal integer-pel
shifts of blocks in Y7 or Ya. Fig. 3(d-g) shows the minimum mean-
squared-error disparities D1 and D-, for a block size of 8.

The rate-distortion performance of several decoders are com-
pared. First, an impractical decoder called an oracle receives the
blockwise disparities from Fig. 3(d-g). Disparity values are obtained
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Fig. 3. Image X from multiview sets (a) Teddy and (b) Barn, each
of size 176-by-144 and bit depth 8. (c) Disparity legend. Horizontal
disparites from (d) Y; to X for Teddy, (e) Y> to X for Teddy, (f) Y3
to X for Barn, and (g) Y> to X for Barn.

by block matching using either reference image Y7 or Yz. The oracle
resembles a conventional coding scheme in which disparity is calcu-
lated at the encoder and transmitted to the decoder. It is meant to
measure an upper performance bound for practical disparity learn-
ing. Second, the one-disparity decoder is tested using Y7 or Y2 in-
dividually. Third, the proposed two-disparity decoder is tested using
Y1 and Y> together. For all decoders, the EM algorithm is permitted
to run for 50 iterations at each incremental rate of the rate-adaptive
LDPC code. If after 50 iterations convergence is not achieved, the
LDPC decoder advances to the next higher incremental rate.

Rate-PSNR plots for Teddy and Barn are presented in Fig. 4. For
Teddy, the two-disparity decoder achieves up to 0.9 dB and 2.3 dB
increases over one-disparity decoding with Y7 and Y53, respectively.
For Barn, the two-disparity decoder again performs better, produc-
ing gains of up to 5.3 dB and 2.1 dB over one-disparity decoding
with Y7 and Ya, respectively. Gaps between two-disparity decod-
ing and the oracle reflect the inefficiency of decoder-side disparity
learning relative to traditional encoder-side disparity search.

The key reason for the two-disparity decoder’s superior perfor-
mance is that it can select, on a blockwise basis, the reference im-
age that minimizes the mismatch with X in the transform domain.
Let d7 and d3 be defined as in (5). Fig. 5 shows the fraction of
blocks for which P{D, = di} > P{D, = d3}, the fraction
for which P{D: = di} < P{D, = d3}, and the fraction for
which P{D, = di} ~ P{D2 = d5}. The last case, where Y1
and Y> are almost equally good choices, resembles classical two-
hypothesis prediction. If either Y7 or Yz is unavailable, as is the case
for one-disparity decoding, Fig. 5 shows that the decoder would
be forced to make suboptimal choices for a significant fraction of
blocks. Fig. 5 also shows that the fractions depend on rate. At low
rates, quantization is coarse and the two sets of quantized transform
coefficients Y;"< and Y,” < are similar, so many blocks of X 7% can
be accurately compensated using both Y,”“ and Y," . At high rates,
quantization is finer and the differences between Y;'“ and Y, < are
more pronounced, so most blocks of X 7% match significantly bet-
ter with the quantized transform coefficients of one reference image
than with the other.

The two-disparity decoder uses the optimal two-disparity recon-
struction. If nearest-neighbor or optimal one-disparity reconstruc-
tion is used instead in the reconstruction block of Fig. 2, the quality
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Fig. 4. Rate-PSNR performances for four different Wyner-Ziv de-
coders, for (a) Teddy and (b) Barn.

of the final image will be reduced. Fig. 6 displays the PSNR drops
relative to two-disparity reconstruction resulting from usage of sub-
optimal reconstructions. The reductions are as large as 0.2 dB and
0.5 dB for Teddy and Barn, respectively.

5. CONCLUSION

This paper presents a Wyner-Ziv image codec that learns two dis-
parities in an unsupervised fashion at the decoder. The proposed
two-disparity decoder generalizes the statistical estimation frame-
work of an existing one-disparity decoder and contains an improved
reconstruction step. Significant rate-distortion gains are achieved
over one-disparity decoding. Future research should investigate ex-
tensions of our framework to disparity compensation with three or
more reference images and with fractional-pel accuracy.
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