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ABSTRACT

We address the problem of coding multiple image sequences in
a video sensor network. Multiple correlated video signals origi-
nate from cameras that monitor the same scene from different view
points. Based on motion-compensated temporal transform coding
of image sequences, the paper develops a high-rate approxima-
tion for the coding efficiency of a video sensor network with N
cameras. We establish the rate difference between collaborative
coding of correlated video signals and non-collaborative coding at
each sensor. Bounds are obtained by assuming very accurate dis-
parity compensation among all cameras. The goal is to study the
impact of both inter-view correlation among video sensor signals
and number of cameras in the network.

1. INTRODUCTION

This paper discusses N video sensors that monitor a non-static
scene from different views. Each sensor comprises a video camera
and a motion-compensated encoder. All video sensors are net-
worked to a central decoder. As all video sensors sample the same
scene from different views, the camera signals are correlated. This
correlation can be exploited for the rate distortion efficiency of the
video sensor network.

Video signals can be compressed more efficiently if correlated
video side information is available at encoder and decoder. In one
compression scenario, N encoders communicate with each other
and compress the video signals jointly. In an alternative compres-
sion scenario, N encoders do not communicate with each other but
rely solely on the joint decoding of the video signals. A special
case of the latter is source coding with side information. Wyner
and Ziv showed that, for certain cases, the encoder does not need
the side information to which the decoder has access to achieve
the rate distortion bound [1]. Practical coding schemes for video
sensor networks may utilize a combination of both scenarios and
may permit a limited communication between the encoders. But
both scenarios have in common that they achieve the same rate
distortion bound for certain cases.

The encoder at each video sensor utilizes a motion-com-
pensated temporal transform. In [2], motion-compensated tem-
poral wavelets based on lifting implementations have been pro-
posed. Motion-compensated temporal transforms permit open-
loop video coding schemes that are rate distortion efficient. In
[3], their rate distortion efficiency is investigated by modeling a
motion-compensated subband coding scheme for a group of K
pictures with a signal model for K motion-compensated pictures

that are decorrelated by a linear transform. The Karhunen-Loeve
transform is used to obtain performance bounds at high bit rates.

A transform-based approach to distributed source coding in
image sensor networks seems promising. [4] discusses a frame-
work for the distributed compression of vector sources. Each ter-
minal applies a suitable local transform to its observation and en-
codes the resulting components separately in a Wyner-Ziv fashion,
i.e., treating the compressed description of all other terminals as
side information available to the decoder. [5] investigates Wyner-
Ziv quantization and transform coding at high rates.

The outline of the paper is as follows: Section 2 draws the
architecture of our video sensor network and discusses the coding
problem. Section 3 investigates the rate distortion efficiency based
on a model for transform-coded video signals.

2. CODING IN VIDEO SENSOR NETWORKS

Our video sensor network consists of N synchronized cameras,
each providing K successive pictures. Each sensor encodes a
motion-compensated version of its K camera images and trans-
mits the data to a central decoder. The central decoder receives
N data streams and reconstructs NK camera images. Each cam-
era captures a different view point of the same scene. We assume
that each camera image can be efficiently modeled by a disparity-
compensated reference image. Signal components that cannot be
modeled are captured by an additive model error. This model error
shall be orthogonal to the disparity-compensated signal and statis-
tically independent white noise is used. Further, we assume that
the position of each camera is exactly known. Hence, we are able
to perform very accurate disparity compensation. Note that inac-
curate disparity compensation causes a degradation in coding per-
formance. To obtain the theoretical efficiency bounds, we assume
very accurate disparity compensation.

Fig. 1 depicts encoding and decoding in a video sensor net-
work with N sensors. The ν-th image sequence is represented by
K successive pictures s(ν−1)K+k[x, y], where ν = 1, 2, . . . , N
and k = 1, 2, . . . , K. x and y denote the horizontal and vertical
pixel position in the picture, respectively. Each sensor transmits a
data stream at rate Rν to the central decoder. The decoder recon-
structs NK pictures ŝi[x, y], i = 1, 2, . . . , NK. The distortion in
the video sensor network is the expected value of the mean square
error between camera and reconstructed images. For the following
investigation, the sensor network operates at high bit rates such
that the reconstructed images at the decoder approach the corre-
sponding camera images.



M. Flierl: Coding Efficiency of Video Sensor Networks, IEEE ICIP, Genova, Italy, Sept. 2005. 2

Encoder 1

Encoder 2

Encoder N

Decoder

s1
r - -

ŝ1
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Fig. 1. Coding of N video sensor signals. Each image se-
quence ν, ν = 1, 2, . . . , N , consists of K pictures s(ν−1)K+k,
k = 1, 2, . . . , K, and is transmitted at rate Rν . The decoder re-
constructs NK pictures ŝi, i = 1, 2, . . . , NK.

2.1. Coding of One Video Signal with Side Information

First, we consider only the ν-th video sensor and regard the re-
maining N − 1 video signals as side information which enhance
the coding efficiency of Encoder ν. The K images of the ν-th
video signal are denoted by u1, . . . ,uK . w1, . . . ,w(N−1)K are
the remaining N − 1 video signals.

As the video sensor network in Fig. 1 is studied at high rates,
the reconstructed side information also approaches the original
side information, i.e., ŵi → wi for i = 1, . . . , (N − 1)K. With
that, we have a Wyner-Ziv scheme (Fig. 2) where the source u is
encoded with Encoder ν and decoded in the presence of the side
information w. In this case, the rate distortion function R∗

ν of En-
coder ν is bounded by the conditional rate distortion function [1].

As already pointed out, we assume very accurate dispar-
ity compensation. Additive white Gaussian noise zµ,k, µ =
1, . . . , N − 1 and k = 1, . . . , K is used for the model error.
Therefore, the N − 1 side information signals are noisy ver-
sions of the video signal uk, k = 1, . . . , K, to be encoded, i.e.,
w(µ−1)K+k = uk + zµ,k, µ = 1, . . . , N − 1. The noise zµ,k

has variance σ2
z for all µ, k, is mutually statistically independent

as well as statistically independent of uk. With these assumptions,
the rate distortion function R∗

ν of Encoder ν is equal to the condi-
tional rate distortion function for coding u given the side informa-
tion w [1].

The conditional rate distortion function enables us to inves-
tigate the efficiency of our video sensor network. Therefore, the
conditional power spectral density matrix of the video signal u

given the video side information w is of interest.
Let the cross spectral density of picture uk[l] and uκ[l], k, κ =

1, 2, . . . , K, be denoted by Φukuκ
(ω). Let Φuu(ω) be the power

spectral density matrix of the K pictures uk whose elements are
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Fig. 2. Coding of K pictures u1, . . . ,uK of sensor ν at rate R∗
ν

with side information of (N − 1)K pictures w1, . . . ,w(N−1)K at
the decoder.

Φukuκ
(ω). For all remaining sensors µ = 1, . . . , N − 1, let

Φzz(ω) be the power spectral density matrix of K noise signals
zµ,k. With that, the power spectral density matrix of the side in-
formation is
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Please note the block structure of this matrix which permits us to
write it as a sum of direct products

Φww = I ⊗ Φzz + 11
T ⊗ Φuu, (1)

where I is the (N − 1) × (N − 1) identity matrix, and 11
T is the

(N − 1) × (N − 1) matrix with all elements equal to 1.
The cross spectral density matrix Φwu(ω) is also character-

ized by a block structure such that we can write the direct product

Φwu(ω) = 1 ⊗ Φuu, (2)

where 1 is the vector of length N − 1 with all elements equal to 1.
With the well known conditional power spectral density matrix

Φu|w(ω) of the video signal u given the video side information w,
i.e., Φu|w(ω) = Φuu(ω) − ΦH

wu(ω)Φ−1
ww(ω)Φwu(ω), we apply

our assumptions in (1) and (2) and obtain the conditional power
spectral density matrix that characterizes the video sensor network
with N cameras:

Φu|w(ω) = Φuu(ω) [(N − 1)Φuu(ω) + Φzz(ω)]−1 Φzz(ω)
(3)

Interestingly, the power spectral density of the video signal u
is weighted by N−1 when compared to the power spectral density
of the inter-view correlation noise z. That is, in a video sensor
network with N cameras, the variance of the inter-view correlation
noise is reduced by a factor of N − 1. For a very large number
of cameras N , the conditional power spectral density matrix is
dominated by the reduced inter-view correlation noise.

Φu|w(ω) →
Φzz(ω)

N − 1
for N → ∞ (4)
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2.2. Coding of N Video Signals

So far, we have considered only the ν-th video sensor and have
regarded the remaining N − 1 video signals as side information
which enhance the coding efficiency of Encoder ν. Now, we dis-
cuss the total bit rate which arrives at the central decoder.

We assume that the power spectral density of each camera sig-
nal is the same before disparity compensation. The signal of the
current sensor always serves as a reference view point for dispar-
ity compensation. Therefore, only N − 1 noisy versions of the
current video signal are considered as side information. By chang-
ing the current sensor, we change the reference view point and,
hence, adapt the disparity compensation. As the camera positions
are known exactly, disparity compensation can be performed very
accurately, independent of the current sensor. But we assume that
the model error has the same variance, independent of the current
sensor / reference view point. Consequently, each sensor shows
the same rate distortion performance such that the total bit rate
which arrives at the central decoder is N times the bit rate of the
current sensor.

In the following, we will discuss the bit rate per video sensor
for comparison purpose. But we keep in mind that the total bit rate
that is received by the decoder is N times larger.

3. EFFICIENCY OF VIDEO SENSOR NETWORKS

In this section, we outline a video signal model to study the effi-
ciency of collaborative coding in video sensor networks.

3.1. Model for Transform-Coded Video Signals

We build upon a model for motion-compensated subband cod-
ing of video that is outlined in [3]. A group of K pictures
(GOP) is motion compensated with respect to a reference pic-
ture. The motion-compensated pictures are transform coded and
the Karhunen-Loeve transform is used to obtain high-rate perfor-
mance bounds. Any of the K pictures can be used as reference pic-
ture for motion compensation. We assume that we know the exact
displacement information for all pictures relative to the reference
frame but we permit also a displacement error to model inaccu-
rate motion compensation. Further, statistically independent white
Gaussian noise is added to model both occlusions due to motion
and illumination changes.

[3] assumes that the pictures uk are shifted versions of the
model picture v which are also degraded by independent additive
white Gaussian noise nk. The displacement error ∆k in the k-th
picture is statistically independent from the model picture v and
the noise nk, but correlated to other displacement errors. We as-
sume a 2-D normal distribution with variance σ2

∆ and zero mean
where the x- and y-components are statistically independent.

From [3], we adopt the power spectral density matrix of the
pictures uk and normalize it with respect to the power spectral
density of the model picture v. We write it also with the identity
matrix I and the matrix 11

T with all elements equal to 1.

Φuu(ω)

Φvv(ω)
= [1 + α(ω) − P (ω)] I + P (ω)11

T (5)

α = α(ω) is the normalized power spectral density of the noise
Φnknk

(ω) with respect to the model picture v.

α(ω) =
Φnknk

(ω)

Φvv(ω)
for k = 1, 2, . . . , K (6)

P = P (ω) = exp(− 1
2
ωT ωσ2

∆) is the characteristic function of
the continuous 2-D Gaussian displacement error.

3.2. Conditional Power Spectral Density Matrix

Given the power spectral density matrix Φuu(ω) in (5), we deter-
mine the conditional power spectral density matrix in (3) for our
model assumptions. In Section 2.1, we assumed that the inter-view
correlation noise zµ,k is mutually statistically independent. There-
fore, its power spectral density matrix is given by

Φzz(ω) = γ(ω)Φvv(ω)I, (7)

where I is the K × K identity matrix and γ = γ(ω) is the
normalized power spectral density of the side information noise
Φzkzk

(ω) with respect to the model picture v.

γ(ω) =
Φzkzk

(ω)

Φvv(ω)
for k = 1, 2, . . . , K (8)

Finally, we obtain the normalized K × K conditional power
spectral density matrix for our model assumptions as follows

Φu|w(ω)

Φvv(ω)
=

Q

[N − 1]Q + γ
γI+ (9)

P

[N − 1]Q + γ
·

γ

[N − 1][Q + KP ] + γ
γ11

T ,

where Q = Q(ω) = 1 + α(ω)−P (ω). Note that both I and 11
T

are K × K matrices.

3.3. Conditional Karhunen-Loeve Transform

Now, it is sufficient to use the conditional Karhunen-Loeve trans-
form and code the N video signals at high rates in order to achieve
the conditional rate distortion function.

For our signal model, the conditional Karhunen-Loeve trans-
form is as follows: The first eigenvector just adds all components
and scales with 1/

√
K. For the remaining eigenvectors, any or-

thonormal basis can be used that is orthogonal to the first eigen-
vector. Therefore, a set of N suitable bases can be chosen for our
sensor network.

Finally, K eigendensities are needed to determine the perfor-
mance bounds. They are obtained from (9) as follows:

Λ∗
1(ω)

Φvv(ω)
=

Q + γKP

[N−1][Q+KP ]+γ

[N − 1]Q + γ
γ, (10)

Λ∗
k(ω)

Φvv(ω)
=

Q

[N − 1]Q + γ
γ, k = 2, 3, . . . , K. (11)

3.4. Coding Gain for Video Sensor Networks

With the conditional eigendensities (10) and (11), we are able to
determine the coding gain due to collaborative coding in video sen-
sor networks. We normalize the conditional eigendensities Λ∗

k(ω)
with respect to the eigendensities Λk(ω) that we obtain for non-
collaborative coding as Λ∗

k(ω) → Λk(ω) for γ(ω) → ∞. The
normalized conditional eigendensities are

Λ∗
1(ω)

Λ1(ω)
=

γ

[N − 1]Q + γ
·
Q + γKP

[N−1][Q+KP ]+γ

Q + KP
, (12)

Λ∗
k(ω)

Λk(ω)
=

γ

[N − 1]Q + γ
, k = 2, 3, . . . , K. (13)
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Fig. 3. Rate difference to non-collaborative motion-compensated
transform coding vs. number of cameras N for groups of K pic-
tures. The displacement inaccuracy β of motion compensation
among K pictures is -1 (half-pel accuracy), the RNL is -30 dB,
and the correlation-SNR is 20 dB.

The rate difference to non-collaborative coding is used to mea-
sure the improved compression efficiency for each picture k of the
ν-th sensor.

∆R∗
ν,k =

1

4π2

π
∫

−π

π
∫

−π

1

2
log2

(

Λ∗
k(ω)

Λk(ω)

)

dω (14)

It represents the maximum bit rate reduction (in bit/sample) possi-
ble by optimum encoding of the eigensignal in the case of collab-
orative coding, compared to optimum encoding of the eigensignal
without collaborative coding for Gaussian wide-sense stationary
signals for the same mean square reconstruction error. The rate
difference ∆R∗

ν of the ν-th sensor is the average over all K
eigensignals. Note that the rate differences of all sensors are iden-
tical due to our model assumptions.

We plot the average rate difference to non-collaborative mo-
tion-compensated transform coding as a function of the number
of cameras N , of the correlation-SNR c-SNR = 10 log10([1 +

σ2
n]/σ2

z), and of the displacement inaccuracy β = log2(
√

12σ∆).
We choose half-pel accurate motion compensation, i.e., β = −1.
For all graphs, the residual noise level RNL = 10 log10(σ

2
n) is -30

dB which is common for practical video sequences. Note that the
variance of the model picture v is normalized to σ2

v = 1.
Fig. 3 depicts the average rate difference to non-collaborative

coding over the number of cameras N . It investigates the GOP size
K for motion-compensated transform coding at a correlation-SNR
of 20 dB. For the comparison, collaborative and non-collaborative
coding utilize the same GOP size K. Note that for a large number
of cameras, the rate difference decreases by 0.5 bit per sample per
camera if the number of cameras doubles.

Fig. 4 shows the average rate difference to non-collaborative
coding over the correlation-SNR. It shows the impact of the num-
ber of cameras N in the sensor network for a GOP size of K = 32
pictures. For highly correlated video signals, the gain due to col-
laborative coding increases by 1 bit per sample if the c-SNR in-
creases by 6 dB.
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Fig. 4. Rate difference to non-collaborative motion-compensated
transform coding vs. correlation-SNR for N cameras. The dis-
placement inaccuracy β of motion compensation among K = 32
pictures is -1 (half-pel accuracy) and the RNL is -30 dB.

Finally, we point out that these results are bounded by the
above assumptions. First, assuming independent white noise for
model errors like occlusions and illumination differences is limit-
ing. These errors may also be correlated. Second, the high-rate as-
sumption guarantees a high quality of the side information. Quan-
tization noise in the side information will degrade its efficiency.
Third, the Wyner-Ziv bound may not be achieved if the innovation
is not Gaussian. Fourth, numerical results are obtained with Gaus-
sian signals. Actual video can be compressed more efficiently.

4. CONCLUSIONS

We discussed coding of multiple image sequences in a video sen-
sor network. We observe with our model that, first, for a large
number of cameras, the rate difference to non-collaborative mo-
tion-compensated coding decreases by 0.5 bit per sample per cam-
era if the number of cameras doubles. Second, for highly corre-
lated sensor signals, the gain due to collaborative coding increases
by 1 bit per sample if the correlation-SNR increases by 6 dB.
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