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Abstract— This paper discusses a transform for successive
pictures of an image sequence which strictly maintains orthog-
onality while permitting motion compensation between pairs
of pictures. The well known motion-compensated lifted Haar
wavelet maintains orthogonality only approximately. In the case
of zero motion fields, the motion-compensated lifted Haar wavelet
is known to be orthogonal. But for complex motion fields
with many multi-connected and unconnected pixels, the motion-
compensated lifted Haar wavelet cannot accurately maintain its
transform property and, hence, suffers a performance degrada-
tion. The presented motion-compensated orthogonal transform
strictly maintains orthogonality for any motion field. Further, the
transform is designed with an energy-concentration constraint.
The energy of the input pictures is accumulated in the temporal
low-band while the temporal high-band is zero if the input
pictures are identical up to a known single-connecting motion
field. This constraint makes the transform suitable for coding
applications.

I. INTRODUCTION

We address the problem of representing image sequences for
coding and communication applications. Well known meth-
ods are standard hybrid video coding techniques as well
as subband coding schemes. The latter are deemed to pro-
vide more flexible representations which may better adapt
to heterogeneous communication scenarios. For 3-D subband
coding with motion compensation, [1] proposes to distin-
guish between connected, covered, and uncovered pixels when
incorporating motion compensation for filtering in temporal
direction. Motion-compensated filtering in [2] addresses the
problem of double-connected pixels and proposes an ad-hoc
method to resolve the ambiguity. [3], [4], [5] choose a lifting
implementation for the temporal filter and incorporate motion
compensation into the lifting steps. In contrast to previous
work, the lifting implementation permits a reversible filter
structure, but still, it struggles with unconnected, connected,
and multi-connected pixels when performing the update step.
[6] proposes an optimum update step that minimizes the
mean-squared reconstruction error. But note that the motion-
compensated lifted Haar wavelet maintains orthogonality only
approximately. For a zero motion field, the motion-compen-
sated lifted Haar wavelet is known to be orthogonal. But for
complex motion fields with many multi-connected and un-
connected pixels, the motion-compensated lifted Haar wavelet
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cannot accurately maintain its transform property and, hence,
suffers a performance degradation.

In contrast to previous work, the presented motion-compen-
sated orthogonal transform strictly maintains orthogonality for
any motion field. The transform is factored into a sequence
of incremental transforms that are strictly orthogonal. The
incremental transforms maintain scale counters to keep track
of the scale factors that are introduced to ensure orthogonality.
The decorrelation factor of each incremental transform is
determined by the scale counters and is chosen such that the
transform meets an energy-concentration constraint.

The paper is organized as follows: Section II introduces
the motion-compensated orthogonal transform and discusses
the incremental transform as well as the energy-concentration
constraint. Section III proposes an adaptive spatial transform to
process the resulting temporal low-band. Section IV presents
the experimental results.

II. MOTION-COMPENSATED ORTHOGONAL TRANSFORM

This section discusses how the transform is factored into
incremental transforms. We outline the construction of the
incremental transform and the incorporation of the energy-
concentration constraint.

Let x1 and x2 be two vectors representing consecutive
pictures of an image sequence. The transform T maps these
vectors according to

(

y1

y2

)

= T

(

x1

x2

)

(1)

into two vectors y1 and y2 which represent the temporal low-
and high-band, respectively. Now, we factor the transform T

into a sequence of k incremental transforms Tκ such that

T = TkTk−1 · · ·Tκ · · ·T2T1, (2)

where each incremental transform Tκ is orthogonal by itself,
i.e., TT

κ Tκ = TκTT
κ = I holds for all κ = 1, 2, · · · , k. This

guarantees that the transform T is also orthogonal. It can
be imagined that the pixels of the image x2 are processed
from top-left to bottom-right in k steps where each step κ is
represented by the incremental transform Tκ.
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A. The Incremental Transform

Let x
(κ)
1 and x

(κ)
2 be two vectors representing consecutive

pictures of an image sequence if κ = 1, or two output vectors
of the incremental transform Tκ−1 if κ > 1. The incremental
transform Tκ maps these vectors according to

(

x
(κ+1)
1

x
(κ+1)
2

)

= Tκ

(

x
(κ)
1

x
(κ)
2

)

(3)

into two vectors x
(κ+1)
1 and x

(κ+1)
2 which will be further trans-

formed into the temporal low- and high-band, respectively.
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Fig. 1. The incremental transform Tκ for two frames x
(κ)
1 and x

(κ)
2 which

strictly maintains orthogonality for any motion field between the two frames.

Fig. 1 depicts the process accomplished by the incremental
transform Tκ with its input and output images as defined
above. The incremental transform removes the energy of the
j-th pixel x

′

2,j in the image x
(κ)
2 with the help of the i-th

pixel x
′

1,i in the image x
(κ)
1 which is linked by the motion

vector ~dκ (or of the j-th block with the help of the i-th block
if all the pixels of the block have the same motion vector
~dκ). The energy-removed pixel value x

′′

2,j is obtained by a
linear combination of the pixel values x

′

1,i and x
′

2,j with scalar
weights h21 and h22. The energy-concentrated pixel value x

′′

1,i

is also obtained by a linear combination of the pixel values
x

′

1,i and x
′

2,j but with scalar weights h11 and h12. All other
pixels are simply kept untouched.

The scalar weights hµν are arranged into the matrix

H =

(

h11 h12

h21 h22

)

(4)

which is required to be orthogonal. For a 2 × 2 matrix,
one scalar decorrelation factor an is sufficient to capture all
possible orthogonal transforms. We use the form

H =
1

√

1 + a2
n

(

1 an

−an 1

)

, (5)

where an is a positive real value to remove the energy in the
image x2 and to concentrate the energy in the image x1. The
decorrelation factor an will be determined in the next subsec-
tion which discusses the energy-concentration constraint.

To summarize, the incremental transform Tκ touches only
pixels that have the same motion vector. Of these, Tκ performs
only a linear combination with pixels pairs that are connected
by this motion vector. All other pixels are simply kept un-
touched. This is reflected with the following matrix notation

Tκ =
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, (6)

where the diagonal elements equal to 1 represent the un-
touched pixels and where the elements hµν represent the pixels
subject to linear operations.

Note that for accomplishing the transform T , each pixel in
x2 is touched only once whereas the pixels in x1 may be
touched multiple times or never. Further, the order in which
the incremental transforms Tκ are applied does not affect
the orthogonality of T . But the order may affect the energy
concentration of the transform T .

B. The Constraint of Energy Concentration

The decorrelation factor an for each pixel touched by the
incremental transform has to be chosen such that energy is
removed from the image x2. We discuss a method that reduces
the energy in the high-band to zero for any motion vector field
if the input pictures are identical and of constant intensity.

Consider the pixel pair x1,i and x2,j to be processed by
the incremental transform Tκ. To determine the decorrelation
factor an for the pixel x2,j , we assume that the pixel x2,j is
connected to the pixel x1,i such that x2,j = x1,i. Consequently,
the resulting “to be high-band” pixel x

′′

2,j shall be zero. Note
that the pixel x1,i may have been processed previously by Tτ ,
where τ < κ. Therefore, let vn be the scale factor for the
pixel x1,i such that x

′

1,i = vnx1,i. The pixel x2,j is used only
once during the transform process T and no scale factor needs
to be considered, i.e., x

′

2,j = x2,j . Let vm be the scale factor
for the pixel x1,i after it has been processed by Tκ. Now, the
pixels x

′

1,i and x
′

2,j are processed by Tκ as follows:
(

vmx1,i

0

)

=
1

√

1 + a2
n

(

1 an

−an 1

)(

vnx1,i

x1,i

)

(7)

The condition of energy concentration is satisfied if

an =
1

vn

and (8)

vm =
√

v2
n + 1. (9)
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Now, let n be the scale counter. n simply counts how often
the pixel x1,i is used as reference for motion compensation. In
the beginning, i.e., before the transform is applied, the scale
counter for each pixel x1,i is n = 0 and the scale value is
v0 = 1. With a scale counter n for each pixel x1,i, (9) and (8)
simplify to vn =

√
n + 1 and an =

1
√

n+1
, respectively.

The above mentioned condition of energy concentration is
applicable only to pictures of the first level of the temporal
decomposition. At the first level, each pixel x2,j of the picture
x2 is used only once during the transform process. Therefore,
there is no need to maintain a scale counter for the pixels in the
picture x2. But at the second level of temporal decomposition,
both pictures x1 and x2 are temporal low-bands resulting from
transforms at the first level. Therefore, we need to consider
scale factors vn1

and vn2
for the pixels x1,i and x2,j at higher

levels of the temporal decomposition.
Let vn1

and vn2
be the scale factors for the pixels x1,i

and x2,j that have been processed previously by Tτ , where
τ < κ. Let vm be the scale factor for the pixel x1,i after it
has been processed by Tκ. There is no need for an updated
scale counter which corresponds to the pixels x2,j as they are
touched only once during the transform process. To determine
the decorrelation factors an of a transform Tκ at higher levels
of the dyadic decomposition, we assume identical pictures of
constant intensity as the input of the transforms at the first
level. Again, we design a transform at a higher level of the
dyadic decomposition such that the resulting “to be high-band”
x

(κ+1)
2 is zero. Now, the pixels x1,i at higher levels of the

dyadic decomposition are processed by Tκ as follows:
(

vmx1,i

0

)

=
1

√

1 + a2
n

(

1 an

−an 1

)(

vn1
x1,i

vn2
x1,i

)

(10)
The condition of energy concentration is satisfied if

an =
vn2

vn1

and (11)

vm =

√

v2
n1

+ v2
n2

. (12)

According to the definition of the scale counters at the first
level of dyadic decomposition, the resulting scale factors are
vn1

=
√

n1 + 1 and vn2
=

√
n2 + 1. For the second level, the

condition of energy concentration in (12) requires the scale
factors to satisfy vm =

√
n1 + 1 + n2 + 1. This result allows

us to extend the definition of the scale counter to be applicable
to any level of a dyadic decomposition if the scale counter m

of the next higher level of dyadic decomposition satisfies the
following scale counter update rule:

m = n1 + n2 + 1 (13)

Consequently, the scale factor at the second level is vm =√
m + 1 with the scale counter update rule. Moreover, the

relation between the scale counter and the scale factor is valid
for any level of a dyadic decomposition.

vn =
√

n + 1 (14)

This allows us to state the condition of energy concentration
in terms of the scale counter. The decorrelation factor is

an =

√
n2 + 1√
n1 + 1

(15)

with the scale counters n1 and n2 which are maintained
according to (13).

III. ADAPTIVE SPATIAL TRANSFORM

The spatial transform that further decomposes the temporal
low-band has to consider the scale factors that have been
used during the temporal decomposition. In the following, we
outline an adaptive spatial transform that is suitable.

u

u1 u2 u3 u4 u5 u6

...
...

...
...

...
...

-S

w

w1 w3 w5 w2 w4 w6

...
...

...
...

...
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Fig. 2. The adaptive horizontal transform S for a temporal low-band u.

Fig. 2 depicts the temporal low-band u and its horizontal
decomposition w. Let u2r+1 and u2r+2 be the odd and
even horizontal samples of the the temporal low-band u. The
adaptive spatial transform S maps these pixels according to

(

w2r+1

w2r+2

)

= S

(

u2r+1

u2r+2

)

(16)

into spatial low- and high-band coefficients w2r+1 and w2r+2,
respectively. The transform matrix S is the same as the matrix
H in (5). The decorrelation factor an is also determined by
(15), where n2 denotes the scale counter of the even pixels and
n1 that of the odd pixels in the picture u. The scale counter
update rule for the spatial decomposition is also given by (13),
where m depicts the updated scale counter for the odd pixels
in the picture w.

After updating the scale counter, the scale counter for the
even pixels in the picture w are set to zero. Consequently, a
standard Haar transform (an = 1) is applied to obtain the
horizontal and diagonal subbands. But an adaptive vertical
transform is used to obtain the low-pass and the vertical
subband. The adaptive vertical transform is analogous to the
adaptive horizontal transform.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results assessing the energy compaction are
obtained for the QCIF sequences Foreman, Bus, and Mother &
Daughter. Our coding scheme with the motion-compensated
orthogonal transform is compared to schemes which use a
motion-compensated lifted Haar wavelet with and without
update step. In addition, the performance of closed loop coding
with hierarchical P pictures is reported.
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Fig. 3. PSNR over the rate for the luminance signal of the QCIF sequence
Foreman at 30 fps with 288 frames.
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Fig. 4. PSNR over the rate for the luminance signal of the QCIF sequence
Bus at 15 fps with 64 frames.

For the coding process with the orthogonal transform, a
scale counter n is maintained for every pixel of each picture.
The scale counters are an immediate results of the utilized
motion vectors and are only required for the processing at
encoder and decoder. The scale counters do not have to be
encoded as they can be recovered from the motion vectors.

All schemes operate with a GOP size of 16 frames. The
block size for motion compensation is limited to 8×8. For sim-
plicity, the resulting temporal subbands are coded with JPEG
2000. The temporal high-bands are coded directly, whereas
the temporal low-band is re-scaled with (14) before encoding.
For optimal rate allocation, Lagrangian costs are determined
where the distortion term considers the scale factors applied
to the temporal low-band.

Figs. 3, 4, and 5 depict the rate distortion performances for
the luminance signals of the test sequences. Results for the
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Fig. 5. PSNR over the rate for the luminance signal of the QCIF sequence
Mother & Daughter at 30 fps with 64 frames.

orthogonal transform, the lifted Haar wavelet with and without
update step, as well as for closed loop coding with hierarchical
P pictures are given. For all test sequences, the orthogonal
transform outperforms the reference schemes. For Bus, the
significant motion in the sequence degrades the performance of
the lifted Haar wavelet as the update step introduces substantial
noise. For Mother & Daughter, the orthogonal transform
outperforms the lifted Haar wavelet with update step by a
small margin as the weak motion in the sequence does not
substantially harm the lifted Haar wavelet.

V. CONCLUSIONS

This paper presents a motion-compensated orthogonal trans-
form which strictly maintains orthogonality for any motion
field. It outperforms the motion-compensated lifted Haar
wavelet which is not able to maintain orthogonality in all
cases. The orthogonality principle improves energy com-
paction and provides a highly robust video representation.
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