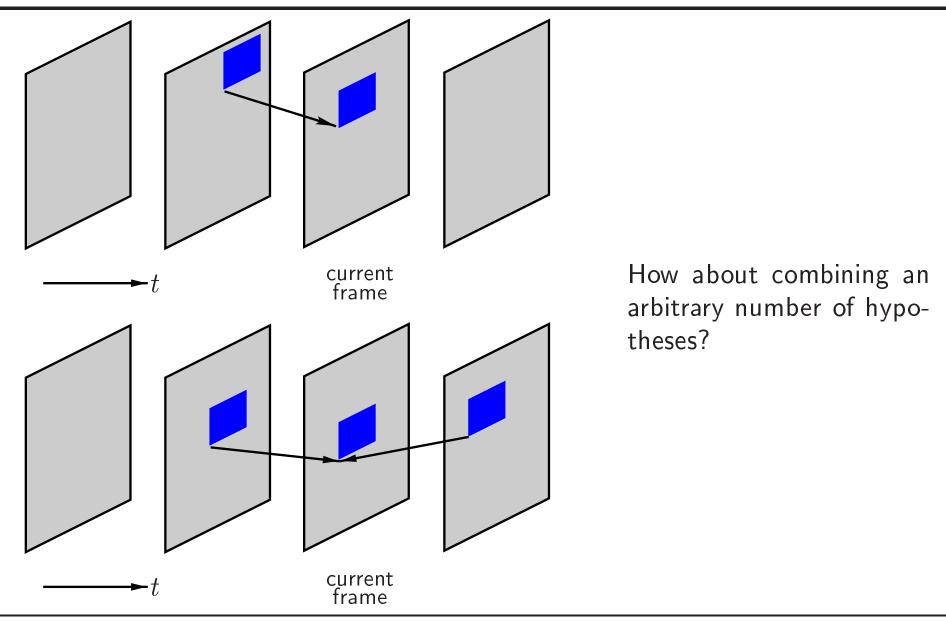
A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis Motion-Compensated Prediction

Markus Flierl, Thomas Wiegand, Bernd Girod

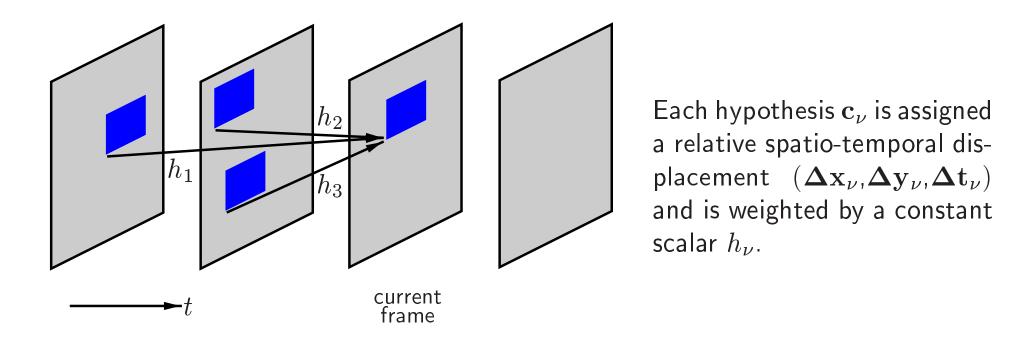
Telecommunications Laboratory University of Erlangen-Nuremberg Erlangen, Germany

Motivation



Markus Flierl, Telecommunications Laboratory, University of Erlangen-Nuremberg

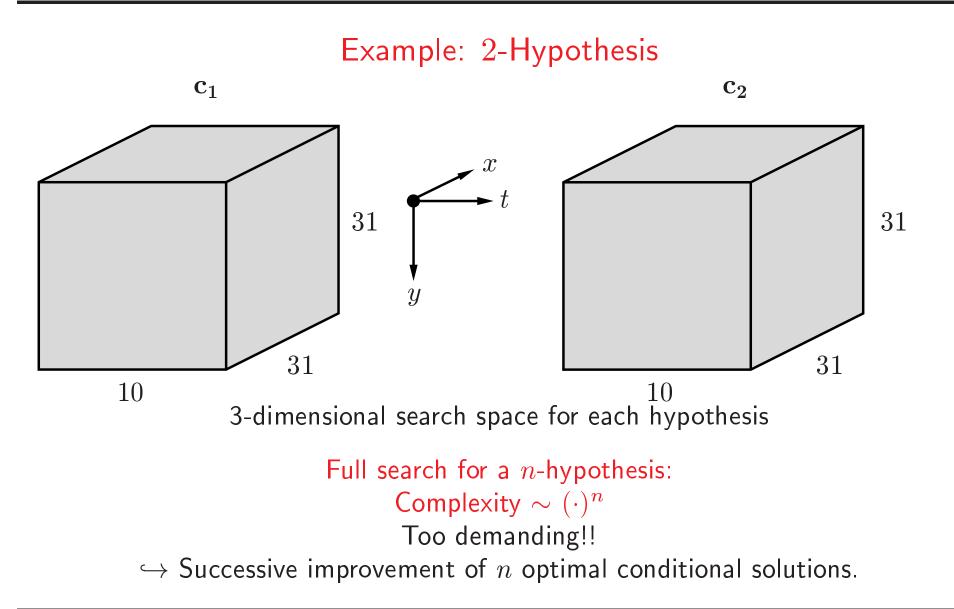
Multi-Hypothesis Motion-Compensated Prediction



Hypotheses are selected only from previous frames!

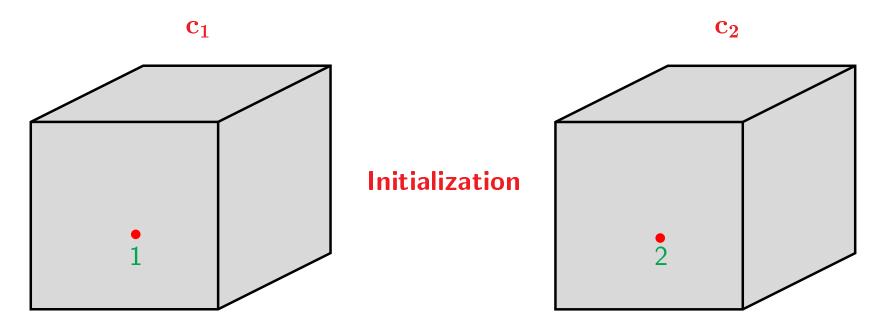
Multi-hypothesis: Array of hypotheses

How to Select an Optimal Multi-Hypothesis?



Hypothesis Selection Algorithm I

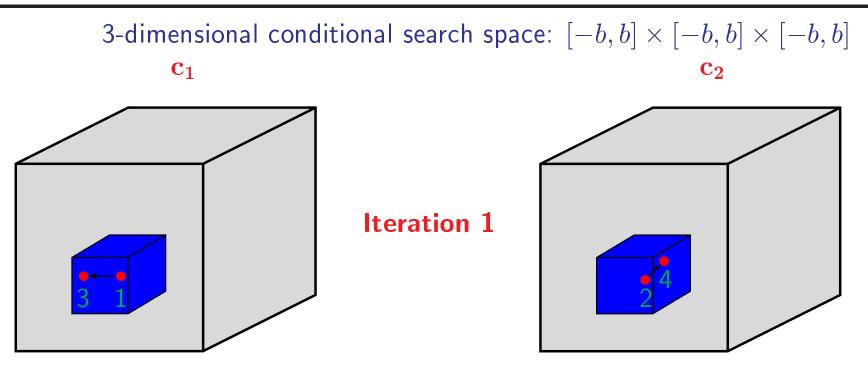
An iterative algorithm, which is inspired by the *Iterated Conditional Modes*.



 \Rightarrow Find the optimal 1-hypothesis in search space.

 \Rightarrow Repeat the optimal 1-hypothesis n times to generate the initial n-hypothesis.

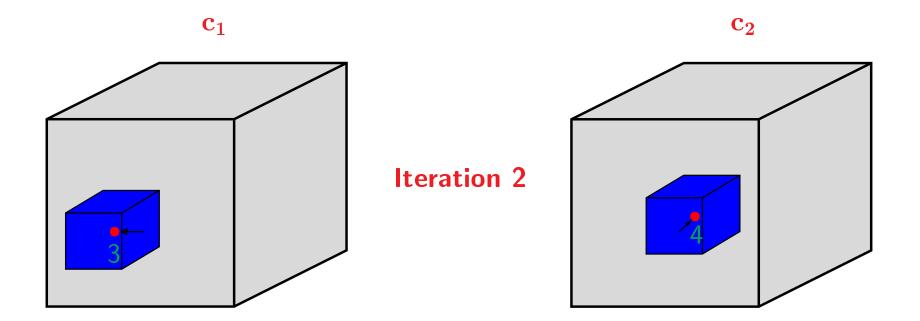
Hypothesis Selection Algorithm II



 \Rightarrow 1 and 2 are centers of the conditional search spaces.

- $\Rightarrow \text{ Hypothesis } \mathbf{c_2} \text{ is fixed. Optimize hypothesis } \mathbf{c_1} \text{ by full} \\ \text{ search within its conditional search space (3).}$
- \Rightarrow Hypothesis c_1 is fixed. Optimize hypothesis c_2 by full search within its conditional search space (4).

Hypothesis Selection Algorithm III

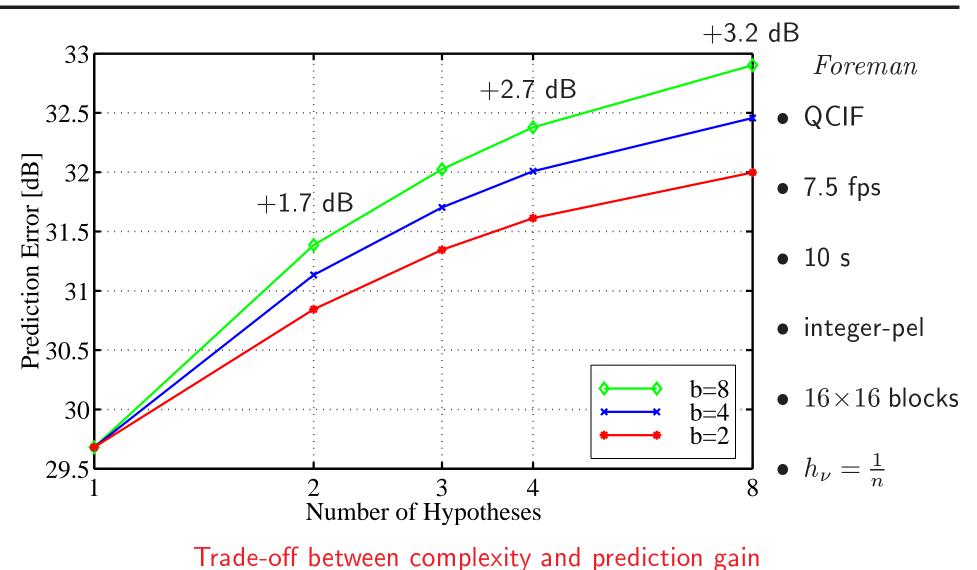


 \Rightarrow 3 and 4 are centers of the conditional search spaces.

 \Rightarrow ...

Continue until convergence.

Hypothesis Selection Algorithm IV

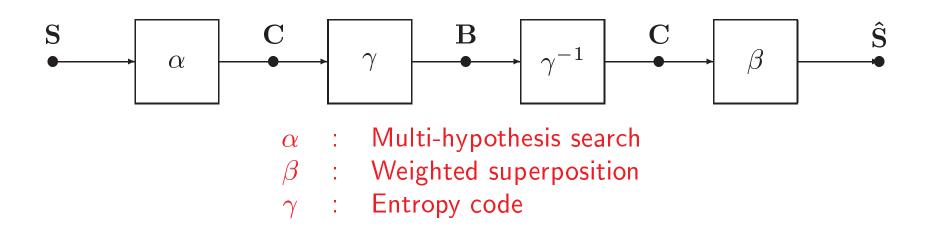


Rate-Constrained Multi-Hypothesis MCP

- ⇒ Multi-hypothesis MCP quantizes the original blocks and generates a multi-hypothesis code.
- \Rightarrow Improved prediction performance and higher data rate due to more than one hypothesis per block

\hookrightarrow Rate-constrained vector quantization for modeling multi-hypothesis MCP

Predictor Model



The optimal predictor $\{\alpha^*, \beta^*, \gamma^*\}$ minimizes the average rate-distortion measure

$$J(\alpha, \beta, \gamma, \lambda, \mathbf{S}) = E\left\{ \|\mathbf{S} - \beta \circ \alpha(\mathbf{S})\|_{2}^{2} + \lambda |\gamma \circ \alpha(\mathbf{S})| \right\}$$

for given distribution of the original blocks S_c and constant Lagrange multiplier λ_c .

$$\min_{lpha,eta,\gamma} J(lpha,eta,\gamma,\lambda_c,\mathbf{S}_c).$$

Iterative Design Algorithm

1: Given: Entropy code γ and predictor coefficients h

 $\min_{\mathbf{c}} \left\{ \left\| \mathbf{s} - \mathbf{c}h \right\|_{2}^{2} + \lambda |\gamma(\mathbf{c})| \right\} \begin{array}{l} \text{Optimal multi-hypothesis } \mathbf{c} \text{ for each} \\ \text{original block } \mathbf{s} \end{array} \right.$

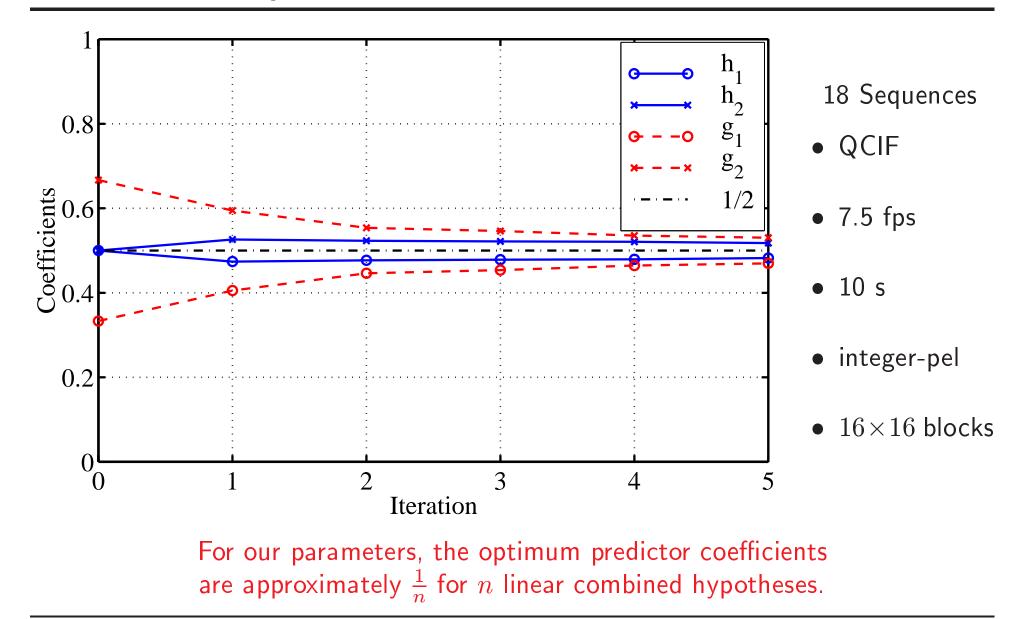
2: Given: New distribution of multi-hypotheses \mathbf{C} from Step 1

 $\min_{\gamma} E\left\{ |\gamma(\mathbf{C})| \right\} \qquad \qquad \mathsf{Optimal entropy code } \gamma$

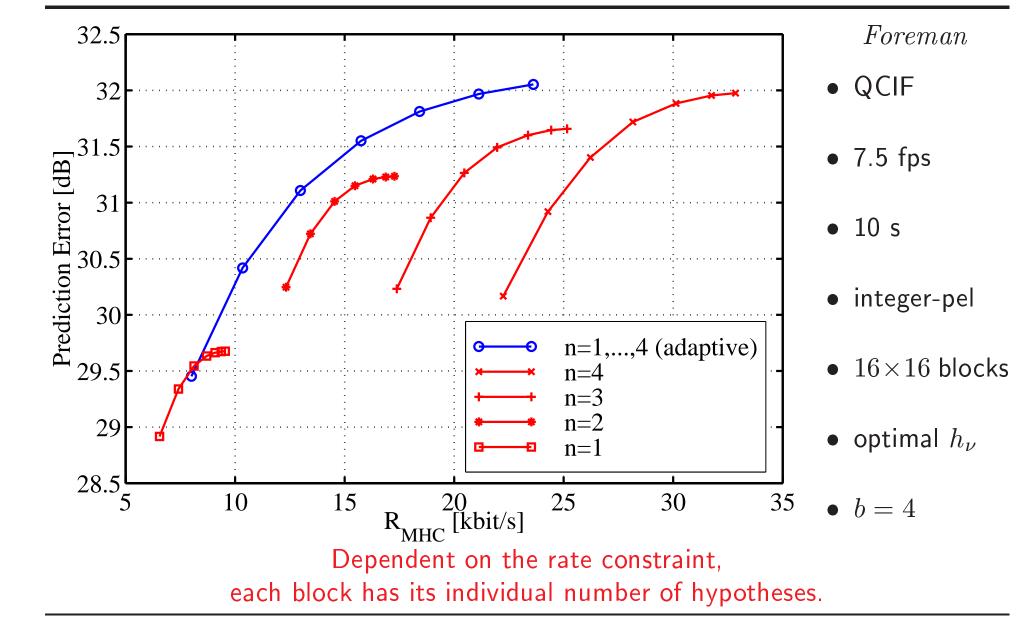
3: Given: Multi-hypotheses C from Step 1

 $\min_{h} E\left\{ \left\| \mathbf{S} - \mathbf{C}h \right\|_{2}^{2} \right\} \qquad \text{Optimal predictor coefficients } h$

Optimal Predictor Coefficients



Optimal Number of Hypotheses



- \Rightarrow Multi-hypothesis prediction increases prediction gain.
- \Rightarrow The hypothesis selection algorithm reduces the complexity of the underlying joint optimization problem to a feasible size.
- ⇒ We observed that the optimum predictor coefficients are approximately $\frac{1}{n}$ for *n* linear combined hypotheses.
- $\Rightarrow\,$ Dependent on the rate constraint, each block has its individual number of hypotheses.