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Abstract

We extend the rate distortion theory of motion-compensated prediction to linear predictive
models. The power spectrum of the motion-compensated prediction error is related to the
displacement error pdfs of an arbitrary number of linear predictor input signals in a closed form
expression. The inuence of the residual noise level and the gains achievable are investigated.
We then extend the scalar approach to motion-compensated vector prediction. The vector
predictor coe�cients are �xed, but we conduct a search to �nd the optimum input vectors.
We control the rate of the motion compensation data which have to be transmitted as side
information to the decoder by minimizing a Lagrangian cost function where the regularization
term is given by the entropy associated with the motion compensation data. An adaptive
algorithm for optimally selecting the size of the linear vector predictor is given. The designed
motion-compensated vector predictors show PSNR gains up to 4.4 dB at the cost of increased
bit-rate of 16 kbit/s when comparing them to conventional motion-compensated prediction.

1 Introduction

Submitted to ISIT'98

Block-based motion-compensating video coding schemes achieve data compression by exploiting dependencies
between successive frames in the video signal. In order to predict a block in the current frame, a set of past,
decoded blocks is searched for the best mapping. It has been observed that linear combinations of past, decoded
blocks can reduce the prediction error signi�cantly. The term multi-hypothesis motion-compensated prediction
has been coined for this approach in video coding. Examples are B-frames [1] or overlapped block motion-
compensation [2]. Multi-hypothesis motion-compensated prediction can be viewed as a special case of linear
vector prediction. Thus, we will refer to the linear predictor input signals as hypotheses as well. Linear vector
prediction was introduced in [3] and [4] in the context of predictive vector quantization (PVQ) [5]. PVQ is
the extension of predictive scalar quantization or di�erential pulse code modulation (DPCM) to vector valued
signals. PVQ has mainly been exploited in speech coding [6].

In this paper, we present both theoretical and experimental results for multi-hypotheses motion-compensated
prediction of video signals. Following the theoretical framework for the rate distortion analysis of motion-
compensated prediction in [7] and [8], we will derive a closed form expression, where the power spectrum of the
prediction error is related to the displacement pdfs of an arbitrary number of scalar input signals to the linear
predictor. While in [7] and [8] mainly the e�ect of prediction accuracy is discussed, we focus in this paper on
the e�ect of number of input signals vs. residual noise level of motion-compensated linear prediction. Previous
work of Girod on the subject can be found in [9].

In this work as well as in [9], the bit-rate to transmit the motion-related information is initially neglected. Since
motion compensation has to be performed simultaneously at encoder and decoder, the required information
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needs to be transmitted to the decoder. Hence, motion compensation is performed using blocks instead of
scalars in order to lower the bit-rate of the motion information, extending our approach to motion-compensated
linear vector prediction. Even then, the motion vector bit-rate may be too high when we consider for example
N = 4 input vectors and a very low bit-rate application is targeted. Hence, the selection of the motion-
compensated linear vector predictors requires a rate distortion framework. We interpret motion compensation
as minimum distortion vector quantization of a current image block given its (quantized) past as the code
book, subject to a rate constraint. Hence, we can make use of the insights learnt from entropy-constrained
vector quantization (ECVQ) [10]. The vectors in our ECVQ interpretation of block-based motion-compensated
prediction are image blocks in the video frame that is to be transmitted. The image blocks are vector quantized
using individual code books that consist of image blocks of the same size in the previously decoded frames.
A code book entry is addressed by translational motion parameters pointing into the past frames which are
entropy-coded.

This paper is organized as follows. In section 2, we derive a theoretical model for motion-compensated linear
prediction. We evaluate the obtained results numerically and obtain insights into the prediction gains of our
approach. The framework for our extension of motion-compensated linear prediction to vector valued signals
is introduced in section 3. An algorithm for motion-compensated linear vector predictor is given in section 4.
Finally, we incorporate an entropy constraint into the algorithm for motion-compensated linear vector prediction
in section 5. We derive an algorithm for adaptively selecting the optimum number of hypotheses per block and
demonstrate its performance.

2 A Model for Motion-Compensated Linear Prediction

Let s[x; y] be a scalar two-dimensional signal sampled on an orthogonal grid with horizontal spacing X and
vertical spacing Y . We model motion-compensated prediction as the prediction of the signal s by modi�ed
versions of itself ŝi. The ŝi are modi�ed from s in that they are shifted by arbitrary displacements and
corrupted by additive noise zi. The \noise" signal zi is drawn from a stationary, white random process and is
assumed to be uncorrelated to s. It comprises all signal components that cannot be described by a translatory
displacement model including camera noise, quantization noise, illumination changes, resolution changes, and so
on. Motion-compensation is assumed to be the alignment of the ŝi to s up to a certain accuracy producing the
motion-compensated signals ci. The alignment data, i.e., the displacement vector �eld, can never be completely
accurate since it has to be transmitted as side information. More precisely,

ci[x; y] = s[x��xi; y ��yi] + zi[x; y]: (1)

with �xi and �yi being the horizontal and vertical displacement error. Let the ci be collected in c = (c1; : : : ; cN )
and the zi in z = (z1; : : : ; zN ). Assume that s and with that c are generated by a jointly wide-sense stationary
random process with the real valued power spectral density �ss(!x; !y), the N � N power spectral density
matrices �cc(!x; !y) and �zz(!x; !y), as well as the N � 1 cross spectral density vector �cs(!x; !y). Power
spectra and cross spectra are de�ned according to

�ab(!x; !y) = F�fEfa[x+ x0; y + y0]bH [x; y]gg; (2)

where the superscript bH denotes the transposed complex conjugate of b, [x; y] 2 � are the sampling locations.
Efa[x + x0; y + y0]bH [x; y]g is the matrix of space-discrete cross correlation functions between a and b which
for wide-sense stationary random processes does not depend on x and y but only on the relative shifts x0 and
y0. Finally, F�f�g is the 2-D band-limited discrete-space Fourier transform

F�f�g =
X

[x;y]2�

(�)e�j!x
x
X
�j!x

y
Y 8 j!xj < �; j!yj < �: (3)

With the de�nition

D =

0
BBBBBB@

e�j!x�x1=X�j!y�y1=Y

...

e�j!x�xi=X�j!y�yi=Y

...

e�j!x�xN=X�j!y�yN=Y

1
CCCCCCA

(4)
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we can write down the cross spectral density vector

�cs = F�fEfc[x+ x0; y + y0]sH [x; y]gg = EfDg�ss; (5)

and the power spectral density matrix

�cc = F�fEfc[x+ x0; y + y0]cH [x; y]gg = �ssEfDD
Hg+�zz; (6)

recalling that s and z are assumed to be uncorrelated. We will omit the independent variables (!x; !y), when
there is no danger of confusion. We observe that

EfDg =

Z 1

�1

� � �

Z 1

�1

p(�x1;�y1; : : : ;�xN ;�yN )

0
BBBBBB@

e�j!x�x1=X�j!y�y1=Y

...

e�j!x�xi=X�j!y�yi=Y

...
e�j!x�xN=X�j!y�yN=Y

1
CCCCCCA
d�x1d�y1 � � � d�xNd�yN

=

0
BBBBBB@

Ffp(�x1;�y1)g
...

Ffp(�xi;�yi)g
...

Ffp(�xN ;�yN )g

1
CCCCCCA

=

0
BBBBBB@

P1(!x; !y)
...

Pi(!x; !y)
...

PN (!x; !y)

1
CCCCCCA

:= P (7)

Thus, the i'th component Pi(!x; !y) of EfDg is the 2-D Fourier transform Ffp(�xi;�yi)g of the continuous
2-D pdf of the displacement error �xi;�yi. Using (7), we can write

EfDDHg =

0
BBB@

1 P1P
�
2 � � � P1P

�
N

P2P
�
1 1 � � � P2P

�
N

...
...

. . .
...

PNP
�
1 PNP

�
2 � � � 1

1
CCCA := Q (8)

which holds under the assumption that the displacement error vectors (�xi;�yi) and (�xk;�yk) are mutually
statistically independent for i 6= k.

It is well understood how to predict a scalar s from a vector valued signal c, such that the mean square of the
prediction error

e[x; y] = s[x; y]� h[x; y] � c[x; y] (9)

is minimized. In (9), the asterisk � denotes 2-D convolution, i.e.,

h[x; y] � c[x; y] =

1X
u=�1

1X
v=�1

h[u; v] � c[x � u; y � v] (10)

Note h[x; y] is a row vector of impulse responses. The power density of the prediction error is

�ee = �ss ��scH
H �H�cs +H�ccH

H = �ss � 2<fH�csg+H�ccH
H ; (11)

where <f�g denotes taking the real part and H = H(!x; !y) = F�fh[x; y]g is a row vector of N complex transfer
functions. Using Eqs. (5) and (6) and combining them with (7) and (8) , we can recast (11) as

�ee = �ss � 2<fHP�ssg+H(�ssQ+�zz)H
H ; (12)

Recalling that �ss is real-valued, we can rewrite Eq. (12) as

�ee = �ss

�
1� 2<fHPg+H

�
Q+

�zz
�ss

�
HH

�
; (13)
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The optimum Wiener �lter H� that minimizes (12) is given by

H� = �H
cs�

�1
cc

= PH

�
Q+

�zz
�ss

��1
(14)

which yields when incorporated into (13)

�ee = �ss

 
1�PH

�
Q+

�zz
�ss

��1
P

!
(15)

the best prediction performance achievable.

We can use Eqs. (13) and (15) to evaluate some interesting cases numerically. Like in [7, 8, 9], we assume that
the video input signal s has an isotropic power spectrum

�ss(!x; !y) =
2�

!2
0

�
1 +

!x + !y
!2
0

�� 3
2

: (16)

The noise power spectrum is assumed to be at

�zz(!x; !y) =
�2
z

4�
E(N�N); (17)

with E(N�N) being the identity matrix of dimension (N �N). The isotropic pdfs of the displacement errors is
assumed to be equal for all ci, and is given by

p(�x;�y) =
1

2��2�
exp

(
�
�2
x +�2

y

2�2�

)
; (18)

with the corresponding power spectral density

P (!x; !y) = expf�2�2�(!
2
x + !2

y)g: (19)

In contrast to [9] where variations of the motion compensation accuracy, i.e., various values of �� are analyzed,
we restrict the motion compensation accuracy such that spatial displacements are only multiple of the sampling
grid X and Y . Assuming equal vertical and horizontal spacing (X = Y ), the minimum displacement error
variance is given as �2� = X2=12.

We de�ne

G = 10 log10

(R �
��

R �
��

�ss(!x; !y)d!xd!yR �
��

R �
��

�ee(!x; !y)d!xd!y

)
(20)

in order to measure prediction gain. Fig. 1 shows the prediction gain G as function of number of hypotheses N
when using the Wiener �lter H� according to (14). The curves are computed evaluating (15) for various values
of �2z = 0:1; 0:02; 0:01; 0:001; 0:0001, numerically. The relative gains when increasing the number of hypotheses
depend on the noise level �2z . At the extreme values for �

2
z in our plot, the gain between the cases number of

hypotheses N = 1 and N = 2 is 0.9 dB for �2z = 0:1 and 2.1 dB for �2z = 0:0001 while the gains between number
of hypotheses N = 1 and N = 8 are 3.4 and 7.2 dB for these noise levels respectively.

The case when simply averaging the N hypotheses, i.e., F�1� fHg = h = ( 1
N ; : : : ;

1
N ) is depicted in Fig. 2.

The dashed lines correspond to averaging the hypotheses while the solid lines correspond to optimum Wiener
�ltering according to (14). Here, completely di�erent tendencies can be observed. First of all, the prediction
gains for N = 1 hypotheses are much smaller in case of optimal �ltering especially for high noise levels �2z . But,
the relative gains when increasing the number of hypotheses from N = 1 to N = 2 for the averaging case are
increasing for increasing noise levels, i.e., we gain 3 dB when operating at noise level �2z = 0:1 but only 2.6 dB
at noise level �2z = 0:0001. The curves for the averaging and optimal �ltering cases merge, when the respective
prediction error power spectra are at.

Relating our results to rate distortion theory, we can predict the bit-rate savings �R achievable for memoryless
encoding of the prediction error using (20) or calculate the rate distortion bound by

�R =
1

8�2

Z �

��

Z �

��

log2

�
�ss(!x; !y)

�ee(!x; !y)

�
d!xd!y: (21)
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Figure 1: Prediction gain in [dB] versus number
of hypotheses, i.e., input vectors N , when using
the Wiener �lterH�. The numbers 0.1, 0.02, 0.01,
0.001, 0.0001 indicate various values of �2z .

Figure 2: Comparison of prediction gain in [dB]
of the Wiener �lter H� (solid) against the case
of averaging the hypotheses F�1� fHg = h =
( 1
N ; : : : ;

1
N )(dashed).

3 Motion-Compensated Linear Vector Prediction

The gains predicted in the previous chapter motivate the design of motion-compensated linear predictors.
However, since the information required for motion compensation has to be transmitted as side information
to the decoder, we cannot operate on scalars. Hence, we propose to use motion-compensated linear vector
predictors instead.

Consider an image of Ah lines and Aw pixels per line in a video sequence at time instant k given by Ik. Let us
denote a partitioning of Ik into blocks of height ah and width aw with spacing ah � aw as follows

Sk(ah � aw) = fS1;1;k; : : : ;Sj;i;k; : : : ;Sbh;bw;kg (22)

with bh = Ah=ah and bw = Aw=aw. Hence, the block Sj;i;k is extracted at vertical position j �ah and horizontal
position i � aw. Note that the image partitioning Sk is disjunct. Assume a video source code applied to an
image Ik producing Îk as the mapping of the partition Sk(ah � aw) into its reconstruction Rk(ah � aw). More
precisely, the source code investigated in this work operates independently on each block Sj;i;k and maps it into
Rj;i;k.

Our block source code employs a linear vector predictor that has motion-compensated support from recon-
structed images Îl. Let us write the partitioning of image Îl into overlapping blocks with spacing 1� 1 as

Rl(1� 1) = fR1;1;l; : : : ;Rj;i;l; : : : ;RAh�ah;Aw�aw;lg: (23)

The motion estimation is denoted by selecting a block out of the set of partitioned frames
fRl1; : : : ;Rli; : : : ;RlMg that are available to both encoder and decoder using a 3-D index vn = (xn; yn;mn),
1 � n � N . The result of this selection process is collected in the set

C = fC1; : : : ;Cn; : : : ;CNg: (24)

With these de�nitions, we de�ne our linear vector predictor as

~Sj;i =

NX
n=1

hn �Cn: (25)

The ~Sj;i and Cn are matrices of dimension ah � aw while hn is a scalar weighting value.
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Note that the original de�nition of the linear vector predictor permits much more degrees of freedom in that
the scalar weights hn in our de�nition correspond to matrices in the general vector predictor de�nition, e.g.,
see [5]. We can also construct this predictor by writing ~Sj;i and Cn as column vectors of size ahaw � 1. Then
each scalar hn would be a matrix Hn of size ahaw � ahaw. Since typical numbers for ah and aw are 16, the
matrix Hn would be of dimension 256� 256 = 65536. Estimation of these high dimensional predictor matrices
Hn, for example by using the Wiener equations, would require extremely high complexity. Hence, we restrict
the vector predictor to the de�nition given by (25). But, we will return to this issue in the next section.

4 Optimal Hypothesis Selection Algorithm

Before we move on let us get some insights about the properties of our linear vector prediction model. In order
to achieve optimal prediction performance, the �lter h should be a Wiener �lter. But then, its coe�cients have
to be updated simultaneously at encoder and decoder or, if that is not possible, transmitted as side information
occupying bit-rate. In addition to that, one might consider to use the large vector prediction model with the
coe�cient matrix Hn of size ahaw � ahaw for input blocks Ci of size ah � aw in order to achieve decorrelation
between the input vectors. In this case, transmission of the updated predictor coe�cients is in most cases not
useful because of the high bit-rate associated with that. Hence, a rule for simultaneous up-date of the vector
predictor coe�cients is needed, like 3-D Kalman �ltering [11]. In contrast to that, given �xed prediction vectors
h, our approach to the problem is to �nd a set C of optimum hypotheses in order to obtain the prediction gain.

For that, each input vector or hypotheses C� is selected using a 3-D index v� = (x� ; y� ;m�), which has to be
transmitted as side information to the decoder. This address is relative to the position of the predicted block
~Si;j;k . We de�ne the search space for the selection of the blocks C� to be the set of all allowed v� . Thus, the
cost for transmitting the 3-D indexes is incurred instead of the bit-rate required to update the prediction �lter.
In fact, it will turn out later in this section that a compromise between these two approaches is optimum in the
rate distortion sense, which our results will indicate.

Allowing a search space of size [�a; a]� [�a; a] within each previous frame and m previous frames to be used,
a full search algorithm to �nd the optimum set C of n input vectors implies a complexity of

Cf =
�
m(2a+ 1)2

�n
(26)

block comparisons. For practical parameters (a = 15, m = 10, n = 4), the complexity of Cf = 8:5 � 1015 block
comparisons is computationally too demanding.

An iterative algorithm, which is patterned after the Iterated Conditional Modes (ICM) of Besag [12], avoids
searching the complete space by successively improving n optimal conditional solutions. Convergence to a local
optimum is guaranteed, because the algorithm prohibits an increase of the error measure. A relative decrease
of the rate-distortion measure of less than 0.5% indicates practical convergence. Our iterative version of ICM
is called Optimal Hypothesis Selection Algorithm (OHSA) and is given in Fig. 3.

The algorithm �nds a locally optimal set of n input vectors or hypotheses by minimizing the cost function

we de�ned in step 0. In step 0, we also speci�ed the conditional search space to re�ne input vector C
(i)
� , to

be the cube around its position in the 3-D collection of the partitioned frames fRl1; : : : ;Rli; : : : ;RlMg. We
initialize the OHSA with n hypotheses by applying the rule of Splitting One Hypothesis. The computational
demand of �nding a single hypothesis in the set of [�a; a]� [�a; a]� [1;m] is rather moderate. Therefore, we
split this optimal 1-hypothesis into n n-hypotheses with identical positions in search space and associate the
corresponding predictor coe�cients h� .

For each n-hypothesis in each iteration, OHSA performs a full search within a conditional search space in which
an optimal conditional n-hypothesis has to be found. The size of the conditional search space [�b; b]� [�b; b]�
[�b; b] a�ects the quality of the local optimum and the complexity of the algorithm, which is

Ci = m(2a+ 1)2 + In(2b+ 1)3 (28)

search positions for I iterations. For practical parameters, b = 4, and I = 3 iterations, the complexity is reduced
by factor 4:6 � 1011 to Ci = 1:8 � 104 search positions.

6



Step 0: Given a motion-compensated vector predictor with n input vectors, we de�ne the cost
function

D(C1; : : : ;C�; : : : ;Cn) =

S�
nX
�=1
� 6=�

C�h� �C�h�


2

2

(27)

subject to minimization for each original block S. De�ne the size of the conditional search

space as [�b; b]� [�b; b]� [�b; b]. Initialize the algorithm with n hypotheses (C
(0)
1 ; : : : ;C

(0)
n )

and set i := 0.

Step 1: Set i := i+ 1 and � = 0.

Step 2: Set � := �+ 1

Step 3: Find C
(i+1)
� by minimizing the cost function (27) in the conditional search space

min
C
(i+1)
�

D(C
(i+1)
1 ; : : : ;C

(i+1)
��1 ;C(i+1)

� ;C
(i)
�+1; : : : ;C

(i)
n )

Step 4: If � � n, go to step 2, else continue.

Step 5: As long as the target function decreases, go to step 1.

Figure 3: Optimal Hypothesis Selection Algorithm

Figures 4 and 5 reect the inuence of the conditional search space size b and demonstrate the performance of
the algorithm. In each input vector re�nement step in OHSA, the vectors inside the cube [�b; b]� [�b; b]� [�b; b]
around the position of the old input vector in the 3-D collection of the partitioned frames is searched. Figures 4
and 5 show PSNR vs. number of hypotheses for the sequences Foreman and Mother-Daughter when performing
motion compensation experiments with QCIF frames, i.e., Aw = 176 and Ah = 144. The results are averaged
over 10s of video when searching blocks of horizontal size aw = 16 and vertical size ah = 16 dependent on
conditional search space size b. b is varied over 2, 4, and 8. The search range consists of original blocks, thus
the experiment here is to predict an original block by blocks in 10 past frames that are sampled at 7.5 frames/s.
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Figure 4: PSNR vs. number of hypotheses for
the sequence Foreman (QCIF, 7.5 fps, 10s), when
searching 16�16 blocks dependent on conditional
search space size b. b is varied over 2, 4, and 8.

Figure 5: Prediction error and the number of
hypotheses for the sequence Mother-Daughter

(QCIF, 7.5 fps, 10s). Simulation conditions as
for the sequence Foreman in Fig. 4.

Comparing the results in Figs. 4 and 5 which are measured with real signals with the performance �gures
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predicted by our our model calculations in section 2, we observe the following. The gains predicted by our
theoretical model for 2, 3 and to a certain extend also for 4 hypothesis are encouragingly close to the measured
values. For the realistic residual noise level �2

z
= 0:01, our theory predicts 1.6, 2.6 and 3.4 dB gain when

increasing the number of hypothesis from 1 to 2, 3 and 4, respectively. For the corresponding cases, we measured
for the sequence Forman gains of 1.7, 2.3, and 2.7000 dB while the experiments with Mother-Daughter showed
gains of 1.75, 2.4 and 2.75 dB. Note that the prediction by our theoretical model becomes inaccurate already
for 4 hypotheses while the gap between calculated and measured gains for 8 hypotheses is very high. We believe
that the OHSA has problems to �nd that many uncorrelated hypotheses in the restricted search space in our
experiment.

5 Entropy-Constrained Motion-Compensated Linear Vector Predic-

tion

So far, we were only concerned with prediction gains and neglected the bit-rate associated with transmitting
the information to perform motion compensation in our linear vector predictor. Also, we expect the number of
hypotheses e�ective in the rate distortion sense to vary from block to block. The OHSA neither determines the
optimal number of hypotheses in a multi-hypothesis, nor does it take the bit-rate associated with the hypothesis
selection into account. Hence, we incorporate an entropy constraint into (27)

J(C1; : : : ;C�; : : : ;Cn) =

S�
nX
�=1
� 6=�

C�h� �C�h�


2

2

+ �

0
B@ nX

�=1
� 6=�

j(C�)j+ j(C�)j

1
CA ; (29)

where j(C�)j denotes the bit-rate associated with the variable length encoding (C� . We can run the OHSA
with (29) instead of (27) and obtain N hypotheses which are locally optimal in the rate distortion sense. The
result will, of course, depend on �, and thus on bit-rate available for signaling the hypotheses selected.

There still remains the question regarding the optimum value of n for a particular block. To solve this problem,
we again apply rate-constrained techniques. For a given maximal number N , we determine the optimal number
of hypotheses for each original block by running the OHSA for all numbers n from 1 to N and picking the one
that minimizes the rate-distortion measure

min
n:1�n�N

�s� c(n)h(n)
2
2
+ �j(c(n))j

�
(30)

The entropy code to transmit the motion information in the variable hypotheses case is patterned similar to
universal codes, where the entries in the �rst code book indicates how many hypotheses are transmitted and
with that a pointer into the second code book is given. The second code book contains the code words actually
associated to the motion information.

Figures 6 and 7 compares �ve di�erent motion-compensated vector predictors in terms of average PSNR vs.
average bit-rate to transmit the information to perform motion compensation at the decoder. We evaluate the
rate-distortion performance for the designed predictors (� = 100) by predicting the test sequences Foreman

and Mother-Daughter for various values of the Lagrange multiplier values (25; 50; 100; : : : ; 1600). The optimal
number of hypotheses in the rate-distortion sense depends signi�cantly on the rate constraint. We compare the
adaptive method which determines the optimum number of hypotheses according to (30) with four curves gener-
ated by methods with a constant number of hypotheses. The four curves for the method with constant numbers
of hypothesis are generated using the OHSA with (29) incorporated instead of (27) and setting n = 1; 2; 3 and
4. We observe that the adaptive method outperforms the methods with constant number of hypotheses.

Focusing on the sequence Foreman, the overall PSNR gain when comparing the adaptive motion-compensated
linear vector predictor to conventional motion compensation, i.e., the case of n = 1 constant input vectors, is
about 2.3 dB at the cost of 13 kbit/s increased side information. Note that the reference in this case was motion
compensation using the last 10 frames. Note that in existing video coding algorithms, motion compensation is
performed by using the last decoded frame only. Though not given in the �gures, the PSNR for the corresponding
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motion compensation experiment using the last frame is 27.7 dB at 7 kbit/s. When comparing that to the results
produced by the adaptive motion-compensated vector predictor, we obtain PSNR gains of 4.4 dB at the cost of
16 kbit/s that we have to transmit as side information.
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Figure 6: PSNR vs. bit-rate of the for the se-
quence Foreman (QCIF, 7.5 fps, 10s), and 16�16
blocks.

Figure 7: PSNR vs. bit-rate of the for the se-
quence Mother-Daughter (QCIF, 7.5 fps, 10s),
and 16� 16 blocks.

6 Conclusions

In this paper, we investigate the e�ciency of motion-compensated multi-hypothesis prediction for video coding.
The theoretical analysis based on second order statistics yields insights to what extend the increase of the
number of input vectors can reduce energy of the prediction error.

The extension of the scalar approach to motion-compensated vector prediction demonstrated how closely our
model calculations are related to practical experiments. For a realistic residual noise level the theory predicts
1.6, 2.6 and 3.4 dB gain when increasing the number of hypothesis from 1 to 2, 3 and 4, respectively. For the
corresponding cases, we measured, for example, for the sequence Forman gains of 1.7, 2.3, and 2.7 dB which
were achieved by motion-compensated linear vector prediction with 16� 16 blocks.

Due to the time and space variant statistics in real video signals, the vector predictor coe�cients are not
updated, i.e., we keep the coe�cient sets �xed and conduct a conditional search to �nd the optimum input
vectors. This search is further accelerated by using equal, scalar weights. Thus, instead of decorrelating the
input signals by adapting the prediction �lter, we search the optimum set of input vectors for a given prediction
�lter.

We incorporate an entropy constraint into the search algorithm for the vector predictor input signals. An
adaptive algorithm for optimally selecting the size of the linear vector predictor is given. When comparing the
case of several input vectors to just one input vector both having prediction support of 10 frames, a PSNR
gain of 2.3 dB at the cost of 13 kbit/s increased side information is obtained. Note that in existing video
coding algorithms, motion compensation is performed by using only the last decoded frame. For this case, the
designed motion-compensated vector predictors show PSNR gains up to 4.4 dB at the cost of increased bit-rate
of 16 kbit/s. These results are very encouraging regarding the gains achievable when incorporating entropy-
constrained motion-compensated linear vector prediction into a full video algorithm including prediction error
coding, which is subject to future work.
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